(1,2) *-D*-closed sets and (1,2) *-D**-closed sets in ideal bitopological spaces

¹Dr. R. Asokan, ²Deviprabha.P

¹Professor &Head, Department of Mathematics, School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India

²Research scholar (Part time, Department of Mathematics, Madurai Kamaraj University), Assistant Professor, Govt. Arts college(autonomous,) Coimbatore

*Corresponding Author: deviprabhaponnusamy@gmail.com

ABSTRACT. In this paper, we introduce the notion of $(1,2)^*$ -D*-closed sets and $(1,2)^*$ -D**-closed sets in ideal bitopological spaces. Additionally, we examine the characteristics of the novel concepts and contrast them with preexisting ones.

1. INTRODUCTION

In topological spaces, Levine proposed the notion of g-closed sets. Subsequent to these endeavors, contemporary mathematics expanded upon this notion and discovered numerous extensions of g-closed sets.

2. PRELIMINARIES

Definition 2.1

A subset S of a TPS X is called:

- (i) semi-open if $S \subseteq cl(int(S))$;
- (ii) α -open if S \subseteq int(cl(int(S)));
- (iii) β -open (semi-pre-open) if S \subseteq cl(int(cl(S)));
- (vi) regular open if S = int(cl(S))

The complements of the above-mentioned open sets are called their respective closed sets.

The semi-closure (resp. α -closure, semi-pre-closure, regular-closure) of a subset S of X, scl(S) (resp. α cl(S), spcl(S), rcl(S)) is defined to be the intersection of all semi-closed (resp. α -closed, semi-pre-closed, regular-closed) of X containingS. It is known that scl(S) (resp. α cl(S), spcl(S), rcl(S)) is semi-closed (resp. α -closed, semi-pre-closed, regular-closed, regular-closed).

Definition 2.2

A subset S of a TPS X is called

- (i) g-closed set (briefly, g-cld) if $cl(S) \subseteq P$ whenever $S \subseteq P$ and P is open.
- (ii) αgs -closed (briefly, αgs -cld) if $\alpha cl(S) \subseteq Pwhenever S \subseteq P$ and P is semi-open.
- (iii) semi-generalized closed (briefly, sg-cld) if $scl(S) \subseteq P$ whenever $S \subseteq P$ and P is semi-open.
- (iv) ψ -closed (briefly, ψ -cld) if scl(S) \subseteq P whenever S \subseteq P and P is sg-open.
- (v) generalized semi-closed (briefly, gs-cld) if $scl(S) \subseteq P$ whenever $S \subseteq P$ and P is open.
- (vi) α -generalized closed (briefly, α g-cld) if α cl(S) \subseteq P whenever S \subseteq P and P is open.
- (vii) generalized semi-pre-closed(briefly, gsp-cld) if $spcl(S) \subseteq P$ whenever $S \subseteq P$ and P is open.

The complements of the above-mentioned closed sets are called their respective open sets.

Definition 2.3

The intersection of all sg-open subsets of X containing S is called the sg-kernel of S and denoted by sg-ker(S).

Definition 2.4

A subset S of X is called locally closed (briefly, lc) if $S = U \cap F$, where U is open and F is closed in X.

Definition 2.5

A subset S of a space X is called:

- (i) \hat{g} -cld (= ω -cld) if cl(S) \subseteq P whenever S \subseteq P and P is semi-open in X. The complement of \hat{g} -cldis called \hat{g} -open set;
- (ii) \ddot{g} -cld if cl(S) \subseteq Pwhenever S \subseteq P and P is sg-open in X.

The complement of \ddot{g} -cld is called \ddot{g} -open.

Definition 2.6

A subset S of a space X is called a g^{s-cld} set if $scl(S) \subseteq P$ whenever $S \subseteq P$ and P is gs-open in X. The complement of g^{s-cld} is called g^{s-open} .

Definition 2.10

A subset S of a space X is called:

- (i) generalized locally closed (briefly, glc) if $S = V \cap F$, where V is g-open and F is g-cld.
- (ii) semi-generalized locally closed (briefly, sglc) if $S = V \cap F$, where V is sg-open and F is sg-cld.
- (iii) regular-generalized locally closed (briefly, rg-lc) if $S = V \cap F$, where V is rg-open and F is rg-cld.
- (iv) generalized locally semi-closed (briefly, glsc) if $S = V \cap F$, where V is g-open and F is semi-cld.
- (v) locally semi-closed (briefly, lsc) if $S = V \cap F$, where V is open and F is semi-cld.
- (vi) α -locally closed (briefly, α -lc) if S = V \cap F, where V is α -open and F is α -cld.
- (vii) ω -locally closed (briefly, ω -lc) if S = V \cap F, where V is ω -open and F is ω -cld.

The class of all generalized locally closed (resp. generalized locally semi-closed, locally semi-closed, ω -locally closed) sets in X is denoted by *GLC* (X) (resp. *GLSC* (X), *LSC* (X), ω -LC(X)).

Throughout this paper (X, τ_1 , τ_2) or X will always denote bitopological spaces when A is a subset of $\tau_{1,2}$ -

cl(A) and $\tau_{1,2}$ -int(A) denote the $\tau_{1,2}$ -closure set of A and $\tau_{1,2}$ -interior set of A respectively.

Definition 3.1

A subset A of X is called

- (i) $(1,2)^*$ -D-closed (briefly, $(1,2)^*$ -D-cld) if $(1,2)^*$ -scl(A) $\subseteq \tau_{1,2}$ -int U whenever A \subseteq U and U is $(1,2)^*$ - ω -open. The complement of $(1,2)^*$ -D-closed set is called $(1,2)^*$ -D-open.
- (ii) $(1,2)^*-\hat{D}$ -closed (briefly, $(1,2)^*-\hat{D}$ -cld) if $(1,2)^*$ -spcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -D-open. The complement of $(1,2)^*-\hat{D}$ -closed set is called $(1,2)^*-\hat{D}$ -open.

The class of all $(1,2)^*$ - \hat{D} -cld in X is denoted by $(1,2)^*$ - \hat{D} C.

3. (1,2)*-D**-CLOSED SETSIN BITOPOLOGICAL SPACES

Definition 3.1

A subset A of X is called

- (iii) (1,2)*-D*-closed (briefly, (1,2)*-D*-cld) if (1,2)*-scl*(A) $\subseteq \tau_{1,2}$ -int U whenever A \subseteq U and U is (1,2)*- ω -open. The complement of (1,2)*-D*-closed set is called (1,2)*-D*-open.
- (iv) $(1,2)^*$ -D**-closed (briefly, $(1,2)^*$ -D**-cld) if $(1,2)^*$ -spcl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -D*-open. The complement of $(1,2)^*$ -D**-closed set is called $(1,2)^*$ -D**-open.

The class of all $(1,2)^*$ -D**-cld in X is denoted by $(1,2)^*$ -D**C.

Proposition 3.2

Each $\tau_{1,2}$ -closed (resp. (1,2)*- α -cld, (1,2)*-pre-cld, (1,2)*-semi-cld) is (1,2)*-D**-cld.

Proof

Let A be any $\tau_{1,2}$ -closed set. Let $A \subseteq U$ and U is $(1,2)^*$ -D*-open set in X. Then $\tau_{1,2}$ -cl(A) $\subseteq U$. But $(1,2)^*$ -spcl(A) $\subseteq \tau_{1,2}$ -cl(A) $\subseteq U$. Thus A is $(1,2)^*$ - D**-cld. The proof follows from the facts that $(1,2)^*$ -spcl(A) $\subseteq (1,2)^*$ -scl(A) $\subseteq \tau_{1,2}$ -cl(A) and $(1,2)^*$ -spcl(A) $\subseteq (1,2)^*$ -acl(A) $\subseteq \tau_{1,2}$ -cl(A).

Remark 3.3

The reverse of the above proposition need not be true.

Example 3.4

Let X={1, 2, 3, 4, 5} with $\tau_1 = \{\phi, \{1\}, \{1,2\}, X\}$ and $\tau_2 = \{\phi, \{3,4\}, X\}$. Then $\tau_{1,2} = \{\phi, \{1\}, \{1,2\}, \{3,4\}, \{1,3,4\}, \{1,2,3,4\}, X\}$. Here, $J = \{1,2,4\}$ is $(1,2)^*$ -D**-cld (resp. not $(1,2)^*$ -pre-cld, not $(1,2)^*$ - α -cld, not $(1,2)^*$ -semi-cld).

Proposition 3.5 Every (1,2)*-D*-cld is (1,2)*-D-cld

Proof

Since $(1,2)^*-scl^*(A) \subseteq (1,2)^*-scl(A)$.

Example 3.6

Proposition 3.7

Each (1,2)*-D**-cld is (1,2)*-gspr-cld

Proof

Let A be any $(1,2)^*$ -D**-cld set. Let $A \subseteq U$ and U is regular $(1,2)^*$ -open in X. Since each regular $(1,2)^*$ -open set is $\tau_{1,2}$ -open and each $\tau_{1,2}$ -open is $(1,2)^*$ -D*-open, we get $(1,2)^*$ -spcl(A) \subseteq U. Hence, A is $(1,2)^*$ -gspr-cld.

Remark 3.8

The reverse of the above proposition need not be true.

Example 3.9

Let X={1, 2, 3, 4} with $\tau_1 = \{\phi, \{1\}, \{2\}, \{1,2\}, X\}$ and $\tau_2 = \{\phi, \{4\}, \{2,4\}, X\}$. Then $\tau_{1,2} = \{\phi, \{1\}, \{2\}, \{4\}, \{1,2\}, \{2,4\}, \{1,2,4\}, X\}$. Here, $J = \{1,2,4\}$ is $(1,2)^*$ -gspr-cld but not $(1,2)^*$ -D**-cld.

Theorem 3.10

Each $(1,2)^*$ - ω -cld is $(1,2)^*$ -D**-cld.

Proof

Let A be $(1,2)^*-\omega$ -cld in X. Let $A \subseteq U$ and U is $(1,2)^*-D^*$ -open. Then $\tau_{1,2}$ -cl(A) $\subseteq U$. Since each $(1,2)^*-\omega$ -cld set is $(1,2)^*$ -pre-cld and each $(1,2)^*$ -pre-cld set is $(1,2)^*$ -semi-pre-cld, A is $(1,2)^*$ -semi-pre-cld.

 $\begin{array}{l} \text{Then } A \subseteq (1,2)^* \text{-pcl}(A) \subseteq (1,2)^* \text{-}\omega \text{cl}(A), \text{ Since each } \tau_{1,2} \text{-}\text{closed is } (1,2)^* \text{-}\omega \text{-}\text{cl}(A) \subseteq \tau_{1,2} \text{-}\text{cl}(A). \\ \text{Therefore, } (1,2)^* \text{-}\text{spcl}(A) \subseteq (1,2)^* \text{-}\text{pcl}(A) \subseteq \tau_{1,2} \text{-}\text{cl}(A) \subseteq U. \\ \text{Hence, } A \text{ is } (1,2)^* \text{-}\text{D}^* \text{-}\text{cl}. \end{array}$

Remark 3.11

The reverse of the above proposition need not be true.

Example 3.12

Let X={1, 2, 3} with $\tau_1 = \{\phi, \{1\}, X\}$ and $\tau_2 = \{\phi, \{2\}, X\}$. Then $\tau_{1,2} = \{\phi, \{1\}, \{2\}, \{1,2\}, X\}$. Here, $J = \{1\}$ is $(1,2)^*$ -D**-cld but not $(1,2)^*$ - ω -cld.

Proposition 3.13

Each (1,2)*-D**-cld is (1,2)*-gsp-cld.

Proof

Let A be any (1,2)*-D**-cld in X. Let $A \subseteq U$ and U is $\tau_{1,2}$ -open set in X. Since every $\tau_{1,2}$ -open is (1,2)*-D*-open, we get (1,2)*-spcl(A) $\subseteq U$. Hence A is (1,2)*-gsp-cld.

Remark 3.14

The reverse of the above proposition need not be true.

Example 3.15

Let X={1, 2, 3} with $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{1\}, X\}$. Then $\tau_{1,2} = \{\phi, \{1\}, X\}$. Here, $J = \{1, 2\}$ is (1,2)*-gsp-cld but not (1,2)*-D**-cld.

Proposition 3.16

Each $(1,2)^*$ -D**-cld is $(1,2)^*$ -pre-semi-cld

Proof

Let A be any $(1,2)^*$ -D**-cld in X. Let $A \subseteq U$ and U is $(1,2)^*$ -g-open in X. Since each $(1,2)^*$ -g-open is $(1,2)^*$ -D**-open, we get $(1,2)^*$ -spcl(A) \subseteq U. Hence, A is $(1,2)^*$ -pre-semi-cld.

Remark 3.17

The reverse of the above proposition need not be true.

Example 3.18

Let X={1, 2, 3, 4} with $\tau_1 = \{\phi, \{1\}, X\}$ and $\tau_2 = \{\phi, \{1,2,3\}, X\}$. Then $\tau_{1,2} = \{\phi, \{1\}, \{1,2,3\}, X\}$. Here, $J = \{\phi\}$ is $(1,2)^*$ -pre-semi-cld but not $(1,2)^*$ -D**-cld.

REFERENCES

- [1] I. Arockiarani, K. Balachandran and M. Ganster, Regular-generalized locally closed sets and RGLcontinuous functions, Indian J. Pure. Appl. Math., 28(1997), 661-669.
- [2] P. Battacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375-382.
- [3] R. Devi, K. Balachandran and H. Maki, On generalized α-continuous maps and α-generalized continuous maps, Far East J. Math. Sci., Special Volume, Part I (1997), 1-15.
- [4] Z. Duszynski, M. Jeyaraman, M. Joseph Israel and O. Ravi, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [5] Y. Gnanambal, Studies on generalized pre-regular closed sets and generalization of locally closed sets, Ph.D Thesis, Bharathiar University, Coimbatore1998.
- [6] M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Internat J. Math. Sci., 12(3)(1989), 417-424.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(1970), 89-96.
- [8] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [9] G. B. Navalagi, Semi generalized Separation axioms in topology, International Journal of Mathematics and Computing Applications, 3 91-1 (2011), 23-31.
- [10] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [11] J. H. Park and J. K. Park, On semi-generalized locally closed sets and SGLC-continuous functions, Indian J. Pure. Appl. Math., 31(9) (2000), 1103-1112.

- [12] O. Ravi, and S. Ganesan, \ddot{g} -Closed sets in topology, International Journal of Computer Science and Emerging Technologies, 2(3) (2011), 330-337.
- [13] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
- [14] P. Sundaram and M. Rajamani, Some decompositions of regular generalized continuous maps in topological spaces, Far East J. Math. Sci., special volume, Part II,(2000), 179-188.
- [15] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi-T1/2-spaces, Bull. Fukuoka Univ. Ed. III, 40(1991), 33-40.
- [16] O Ravi, R Senthil Kumar, A Hamari Choudhi, Weakly ⊐ g-closed sets, Bulletin Of The International Mathematical Virtual Institute, 4, Vol. 4(2014), 1-9
- [17] O Ravi, R Senthil Kumar, Mildly Ig-closed sets, Journal of New Results in Science, Vol3, Issue 5 (2014) page 37-47
- [18] O Ravi, A senthil kumar R & Hamari Choudhi, Decompositions of I g-Continuity via Idealization, Journal of New Results in Science, Vol 7, Issue 3 (2014), Page 72-80.
- [19]O Ravi, A Pandi, R Senthil Kumar, A Muthulakshmi, Some decompositions of πg-continuity, International Journal of Mathematics and its Application, Vol 3 Issue 1 (2015) Page 149-154.
- [20]S. Tharmar and R. Senthil Kumar, Soft Locally Closed Sets in Soft Ideal Topological Spaces, Vol 10, issue XXIV(2016) Page No (1593-1600).
- [21] P. Sundaram, Study on generalizations of continuous maps in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, 1991.
- [22] M. K. R. S. Veera Kumar, Between semi-closed sets and semi pre-closed sets, Rend Istit Mat. Univ. Trieste, Vol XXXII, (2000), 25-41.
- [23] M. K. R. S. Veera Kumar, \hat{g} -locally closed sets and $\hat{G}LC$ -functions, Indian J.Math., 43(2) (2001), 231-247.
- [24] M. K. R. S. Veerakumar, On \hat{g} -closed sets in topological spaces, Bull. Allah.Math. Soc., 18(2003), 99-112.
- [25] M. K. R. S. Veera Kumar, g*-preclosed sets, Acta Ciencia Indica, Vol. XXVI-IIM, (1) (2002), 51-60.