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Abstract: This study develops the Runge-Kutta Like Method (RKLM), which uses Pontryagin's principle to solve optimal 

control problems numerically using forward-backward sweep methods. It is based on the Patade and Bhalekar methodology. The 

RKLM's stability properties and its convergence are examined. The Forward-backward sweep algorithm and the RKLM 

algorithm are implemented using MATLAB code. Physical optimum control problems are solved with the RKLM. The first 

problem's conclusion demonstrates that, when investment declines, the capital first grow to boost production before it depreciates. 

The outcome of the second problem demonstrates that a larger weight parameter causes the harvesting rate to reach zero more 

quickly and the total fish mass to reach its maximum level more quickly. The findings obtained demonstrate the effectiveness of 

using RKLM in conjunction with forward-backward sweep methods to solve optimal control problems. 
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1. Introduction  

First order ordinary differential equations of initial value problems arise from a variety of physical problems 

that exist in our surroundings nowadays (Alkali et al., 2023). Traditionally, analytical approaches have been used 

to find solutions to these differential equations; however, certain differential equations have extremely difficult 

solutions, if any exist at all, with the exception of an approximate solution found through the use of numerical 

methods (Areo & Adeniyi, 2013). Numerous numerical techniques have been developed in response to the need to 

acquire more precise approximate solutions to mathematical models that arise in the fields of engineering, sciences, 

medical sciences, economics, and social sciences. 

Finding the best control trajectory and related state trajectory for an Optimal Control (OC) problem aims to 

optimize a user-specified performance measure while taking into account process restrictions and system dynamics 

(Garrete, 2015; Andres-Martinez, 2022; Aduroja et al., 2024). A country's economy could be the dynamical system, 

with the goal of minimizing unemployment; in this scenario, fiscal and monetary policy could be the control. Finding 

the best answer might help you spot possible constraints that could be broken and cause harm or other unfavorable 

outcomes (Lenhart & Workman, 2007; Adamu, 2023). OC has been used to tackle physical system problems in a 

variety of sectors, including aerospace, science, engineering, economics, management, biology, and medicine 

(Rodrigues et al., 2014; Adamu, 2023). The numerical solution to the optimal control model of actual investment 

and fish management was presented in this research. Naeval (2002) explained how to solve continuous time optimal 

control models using Microsoft Excel. Real investment and fishery management models are solved to show how 

academics can use Excel's Solver Tool to tackle optimal control problems. 

The Runge-Kutta (R-K) formulas represent a significant family of iterative techniques for the approximation 

of ODE solutions (Odekunle, 2000; Odekunle et al., 2004) and are one of the most ancient schemes in numerical 

analysis (Musa et al., 2010). Runge-Kutta techniques, which were initially examined by Carle Runge and Martin 

Kutta (Hildebrand, 1974), are often single-step techniques with several phases in each step. The introduction of 

Butcher tableau and John Butcher's improvements are largely responsible for modern advances. Other researchers, 

such as (Odekunle et al., 2004), (Musa et al., 2010) explored Runge-Kutta methods, and (Usman et al., 2013), also 

attempted to simplify the Runge-Kutta technique's derivation process or create an implicit Runge-Kutta approach 

for solving initial value problems involving ordinary differential equations. 

Forward Backward Sweep (FBS) is an iterative technique named based on the way the algorithm solves the 

problem state and adjoint ODEs (Garret, 2015; Adamu, 2023). In order to solve optimal control problems using the 

Classical Runge Kutta Method (CRKM) using Pontryagin's principle, (Garrete, 2015) and (Rodrigues et al., 2014) 

employed Forward Backward Sweep approaches. Runge-Kutta methods struggle to solve issues when they grow 

stiff and the development of CRKM is time-consuming and difficult. However, the classical Runge Kutta method 

has become a prominent instrument for solving optimum control problems utilizing the Forward Backward Sweep 

approach. 
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In order to convert a single step trapezoidal approach into a three stage Runge Kutta type method with constant step 

length for the solution of ordinary differential equations, (Patade & Bhalekar, 2015) applies the Daftardar-Gejji and 

Jafari technique. The second-order techniques that have been developed have shown to be effective in solving 

ordinary differential equations. In order to build a Runge-Kutta-like method that follows the Patade and Bhalekar 

approach for the solution of optimal control problems utilizing the Forward Backward Sweep method via 

Pontryagin's principle. Adamu et al. (2024) consider a single step method with hybrid point not taking at the middle 

and developed four stage numerical method. This work considers a single step trapezoidal method with hybrid point 

taking at the middle for the development of the method for solving some application problems. 

The other sections are arranged as follows: Section 2 presents preliminary studies. Methodology is covered in 

Section 3, while RKLM analysis is covered in Section 4. Section 5 presents numerical experiments, while Section 

6 concludes the paper. 

 

2. Preliminary Studies 

 Definition 2.1 A general single-step method can be written in the form  

                  ).,,(1 hyxhyy jjjj =−+      (2.1) 

The function   is called the increment function (Patade & Bhalekar, 2015). 

 

 Definition 2.2 (Patade & Bhalekar, 2015) A single step method defined in (2.1) is said to be consistent if  

                  ( ) ( ).,0,, yxfyx =       (2.2) 

 

 Definition 2.3 A single step method defined in (2.1) is said to be regular if the function  ( )hyx ,,  is defined and 

continuous in the domain 
00,,..,2,1,, hhniybxa j =−   and if there exist a constant L  such 

that  

      ,),,(),,(  −− yyLhyxhyx      (2.3) 

for every  ( )−  ,,],,[ 0 yybxx  , ( )0,0 hh  (Patade & Bhalekar, 2015). 

 

 Theorem 2.1 Suppose the single step method defined in (2.1) is regular. Then the relation (2.2) is a necessary and 

sufficient condition for the convergence of the method. 

 

 Definition 2.4 A method is stable if the cumulative effect of all errors, including round-off error is bounded, 

independent of the number of mesh points. 

 

 Definition 2.5 A Runge-Kutta method is said to be of order p  if 

( ).);(( phOhxyN =       (2.4) 

And the local truncation error Tn+1 at xn+1 is given by N(y(x); h). 

 

 

 Definition 2.6 (Butcher, 1996)  For a method given by the tableau  

c A 

 b 

the stability for a qyy =   is the set of points in the complex plane satisfying ( ) .1zR  

 

3. Methods 

3.1 Development of Linear Multistep Method 

Approximating the exact solution )(tx  of a differential equation ( )),()( txtftx =  on the partition 

]......[],[ 110 btttttaba Nnn === +  of the integration interval ],[ ba   using first Boubaker 

polynomials of the form 

( ),)(
3

0

tBatx nn

n


=

=        (3.1) 

where ],[ bat , Rna  are unknown parameters to be determined. To generate the collocation points, closed 
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Newton Cote's collocation point is considered as  

.2,1,0,
)(

  , =
−

=+= i
N

ab
hhiati

     (3.2) 

 

First Boubaker polynomials satisfy the following recursive formula 

( ) ( ) ( ) ( ) . ,2 , ,1 3

3

2

210 tttBttBttBtB +=+===  

 

Interpolating and collocating (3.1) using the points  

( ) ( ) 1,
2

1
,0  , ;0  , ==== ++++ jftxjxtx jnjnjnjn

 

gives a system of equations  

,UXA =         (3.3) 

where 

,
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fffxUaaaaA ++
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Solving the system (3.3) for the unknown parameters and substitute the results into the approximate solution (3.1) 

to get the continuous scheme 

,)()()()( 1100
2

1

2

1 +++ +++= nnnntn hfthfthftxtx     (3.4) 

Where the coefficients )(),(),(),( 100
2

1 tttt   are: 

 ,1)(0 =t   

 ( )1)(
2
32

3
2

0 +−= tttt ,  

 ( )ttt
3
42 2)(

2

1 −= ,  

 ( )
2
1

3
22

1 )( −= ttt .  

Evaluating equation (3.4) at point 1+nx  gives the discrete scheme 

( ).4
6

11
2

1 +++ +++= nnnnn fff
h

xx      (3.5) 

 

3.2 Development of the Iterative Method 

3.2.1 Runge-Kutta like method 

Equation (3.5) can be written as  

.
66

4

6
11

2

1 +++ +++= nnnnn f
h

f
h

f
h

xx      (3.6) 

Let 

,1+= nxx         (3.7) 

( ),,
6

4
),(

6 2

1

2

10 ++
++==

nnnnn xtf
h

xtf
h

xfx     (3.8) 

and 

( ).,
6

)()( 111 +++ == nnn xtf
h

xNxN      (3.9) 
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Using 3-terms solution of DJM series then,  

,210 xxxx ++=        (3.10) 

( )( ).000 xNxNxx ++=       (3.11) 

Substituting (3.7) and (3.8) into (3.11) to get 
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This can be simplified (by using equation 3.9) as 

( )
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Equation (3.13) reduces to 

( ),4
6

4211 kkk
h

xx nn +++=+       (3.14) 

where 

 ),,(1 nn xtfk =  

( )  ,,
2
1

2
12 ++

=
nn

xtfk  
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6

4
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
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h
k

h
xtfk nn  

.
66

4

6
, 32114 








+++= + k

h
k

h
k

h
xtfk nn  

This is the required RKLM 

 

 

Lemma 3.1  The RKLM (3.14) is not a Runge-Kutta method. 

Proof  To show that, the RKLM is not a Runge-Kutta method, Runge-Kutta properties are tested. The RKLM is 

written as  

( ),443322111 kbkbkbkbhxx nn ++++=+  

while ik  is written as  

( ) 4,3,2,1,)(, 443322111 =+++++= ikakakakahxhctfk iiiijji  

 

The following parameters are extracted from the RKLM  

;1,
2

1
 ,0 ;

6

1
 ,0 ,

3

2
 ,

6

1
43214321 ======== ccccbbbb  

 ,0 ,0 2423222114131211 ======== aaaaaaaa  

,0,
3

2
 ,

6

1
 ,0 ,

6

4
 ,

6

1
4442434134333231 ======== aaaaaaaa  

Thus the Butcher table for RKLM is 
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6
1

3
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For Runge-Kutta method, it is necessary that iij

j

ca =
=

4

1

 (Butcher,1996). From the parameters,  

36
5

34333231 caaaa =+++ . This sufficiently shows that RKLM is not a Runge-Kutta method. 

 

4 Analysis of the New Method 

 

4.1 Order of the method 

 

 Theorem 4.1 The Runge-Kutta like method in (3.14) is of order four. 

 Proof  We have  

.1 nfk =          (4.1) 

Using second order Taylor's series, we can write ,2k  3k  and 4k  as 

...
84442
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where 

( )
( )

,
,

2

4

2

,,6,2,6

,8,4,4,4,26
4

6

3 222

222















++++++

++++++
=

xxnn
h

xntxnn
h

ttn
h

tnn
h

xxn
h

xn
h

txn
h

ttn
h

tn
h

n
h

n
h

ffhffffhff

fffffff
W  

 

𝑓𝑛 = 𝑓(𝑡𝑛, 𝑥𝑛), 𝑓𝑛,𝑡 = (
𝜕𝑓(𝑡, 𝑥)
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)

(𝑡𝑛,𝑥𝑛)
, 𝑓𝑛,𝑥 = (
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𝑓𝑛,𝑡𝑡 = (
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𝜕𝑡2
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Using (4.1), (4.2), (4.3) and (4.4) in (3.14), we get 
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The Taylor's series expansion of exact value )(tx  about nt  is 
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The truncation error gives 
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













+++++

++
+















+++++

+++
+















++++

+++++
+









+++++=+

txnttntxnntxnnxxnttntxnxxn

ntxnxxnntxnxxnnxxn

ntxnxnnxnxxnntnxxnntxnxxntxnxn

ttnxntxntnxnxxnnxxn

nxnxxnnxnxxnntxnxntn

xntxnxnnxxntxnttnxxn

nxnxnxntnnnn

ffffffffff

ffffffff
h

ffffffffffffff

ffffffff
h

ffffffffff

ffffffff
h

fffffhhfxT

,,24
12

,36
12

,216
1

,,96
1

,,72
1

,,144
12

,,864
12

,288
1

5

,,216
1

,,144
1

,,48
12

,,144
1

,,18
1

,,24
1

,,12
1

,,72
132

,576
1

4

2

,,24
12

,,144
1

,6
1

,,12
1

2

,36
1

,

2

,6
12

,24
1

,6
1

,4
1

,12
1

3

,

3

,,,

2

1
6

1

6

1

6

1

2

1

 (4.7) 

 

).( 6

,,24
12

,36
12

,216
1

,,96
1

,,72
1

,,144
12

,,864
12

,288
1

5

1 hO
ffffffffff

ffffffff
hT

txnttntxnntxnnxxnttntxnxxn

ntxnxxnntxnxxnnxxn

n +














+++++

++
=+

 (4.8) 

Hence, the new iterative method is of fourth order. 

 

 

4.1.1 Convergence of the iterative methods 

 Theorem 4.2 An RKLM (3.14) is said to be convergent by Theorem 2.1 if the following results hold: 

  (𝑖) Consistency holds 

 (𝑖𝑖) Regularity holds 

 

 Proof Consider the increment function in (3.14),  
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If  ,0=h   then 
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Therefore, by Definition 2.2, the method (3.14) is consistent. 
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Now using equation (4.9) 
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where ( ).1
36

5
36

18 22hLLhLL ++=   

Therefore, the increment   satisfies a Lipschitz condition in x  and hence, by Definition 2.3, the method (3.14) is 

regular. 

 

 Lemma 4.1 Suppose the function  𝑓(𝑡, 𝑥) is defined and continuous in the strip 𝑆(|𝑡 − 𝑡0| ≤ 𝑎,   ‖𝑥‖ < ∞, 𝑎 > 0) 

  and satisfy Lipschitz condition  

              ‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑥∗)‖ ≤ 𝐿‖𝑥 − 𝑥∗‖,  

for every ,),(),,( Sxtxt 
 where L  is Lipschitz constant; then, method (3.14) is said to be convergent 

 Proof  Since consistency and regularity holds for method (3.14), by Theorem 2.1, it is convergent. 
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4.1.2 Stability of the iterative methods 

 Theorem 4.3  For the iterative method (3.14) to be stable, we must have 
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 Proof  Using Definition 2.4. Applying the iterative method (3.14) to the test equation  ,xx =   we obtain  

,1 nxk =  

 , 
2
12 +

=
n

xk   

,
6

4

6
1

2

13 +
+








+=

nn x
h

x
h

k


  

.
3

4

36

1

3
1

2
1

22

4 







+








++=

+nn x
h

xh
h

k





  

From (3.14), we can write  
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So that, 

( )
( )

.
1

1

36
4

12
4

21663
2

1 22

3322

nhh

hhh

n xx




+−

+++
=+  

Now, for stability of RKLM and by Definition (2.6), we must have  
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4.2 Algorithm for Forward Backward Sweep Methods 

4.2.1 Algorithm for FBS implementation for RKLM 

Applying (3.14), the algorithms are given as 

 Algorithm 4.1 Forward algorithm 

for  Nn :1=   

  ),,(1 nnn uxtfk =   

  ( ))),(,( 12
1

12
1

2
1

2 ++ +++= nnnnn uuxxhtfk   

  ( )126
4

163  , , ++++= n
hh

nn ukkxhtfk   

 ( )13626
4

164  , , +++++= n
hhh

nn ukkkxhtfk   

  ( )42161 4 kkkxx h
nn +++=+   

 

 

 

 Algorithm 4.2 Backward algorithm 

        for  Nj :1=   
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  jNn −+= 2   

 ( )nnnn uxtfk ,,,1 =   

  ( ))(),(),(, 12
1

12
1

12
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2
1

2 −−− +++−= nnnnnnn uuxxhtfk    

 ( )126
4

1613 ,, , −− −−−= n
hh

nnn ukkxhtfk    

  ( )13626
4

1614 ,,, −− −−−−= n
hhh

nnn ukkkxhtfk    

  ( )42161 4 kkkh
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5. Numerical Experiment 

This section provide solution to optimal control model for real investment and fish management using RKLM. Let  

)(txN  and )(tx  be the approximate and numerical solutions for the state respectively, then the absolute error of 

the state is given by )()( txtxN − . Let )(tu N  and )(tu  be the approximate and numerical solutions for the 

control respectively; then, the absolute error of the control is given by )()( tutuN − . All numerical solutions are 

given in figure and tabular forms. All computations in this section are done with the aid of a written MATLAB 

codes, which were run on a Window 8.1 computer. 

 

Table 1: Notations 

Abbreviations Meaning 

NM2 Naevdal (2002) Method 

Err Absolute Error 

 

Example 1 (Real Investment) A firm has a production 
axy = . Here y  is output and x  is capital. The stock of 

capital is assumed to be driven by the differential equation xux −= . Here u  is investment and   is the rate 

of capital depreciation. Assume that the cost of investment is given by 
2

2
uc  and the market price of y  is equal to 

one. This leads to the following maximization problem 

( ) ,
2

, max 2
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dteu
c

xuxJ rta

T

u

−








−=   

subject to  

,xux −=  

( ) .00 =x  

Solving with the following weight parameters (the choice of the parameters implies that, the investment has a 

constant rate of depreciation) 

,0 ,1 ===== rTac   

lead to optimal control with optimality solution 

,1
2

1

2

1
1)( 11 tt eeetx −−−









−+−=  

( ) .1 1− −= tetu  

Source: (Naevdal, 2002). 

 

Solution  The optimality system of the problem is developed by first constructing the Hamiltonian 

( ).
2

2 xueu
c

xH rta  −+







−= −

 

The problem is a maximization problem as 

.0
2

2

−=


 −rtce
u

H
 

The optimality condition 
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,0
rt

rt

ce
ucue

u

H
−

− −=−=



=


  

and the adjoint equation is  

.1 rta eax
x

H −−−=



−=   

Using the optimality system, the numerical code is generated, written in MATLAB R2018a. This problem is solved 

with :10=N   The results are shown in Figure 1, Figure 2, and Table 2. 
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Figure 1: The optimal state, adjoint and control of RKLM for Example 1 
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Figure 2: The optimal state, adjoint and control of NM2 for Example 1 

 

 

Table 2: State and Control for Example 1 

                            State                          Control 

t Exact RKLMErr NM2Err Exact RKLMErr NM2Err 

0 0 0 0 0.632 4.666e-05 7.666e-05 

0.2 0.107 1.038e-05 2.353e-05 0.550 2.212e-05 7.491e-5 

0.4 0.178 1.350e-05 5.422e-05 0.451 1.777e-06 6.862e-05 

0.6 0.216 1.32e-05 6.291e-05 0.329 1.150e-06 5.587e-05 

0.8 0.223 4.802e-06 6.097e-05 0.181 1.382e-05 3.412e-05 

1.0 0.199 6.007e-6 4.846e-6 0 0 0 

 

To maximize productivity is the goal. As the investment progressively decreases in Figures 1 and 2, the capital x   

first increases to boost production. Between 7.0=t  and 8.0=t , capital accumulates. Then allowing capital to 

degrade for the remaining time horizon. It is evident from a comparison of Figures 1 and 2 that RLKLM and NM2 
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are identical. Table 2 demonstrates how capital increases as investment declines until it reaches its optimal level, at 

which point it starts to decline. Additionally, Table 2 makes it quite evident that RKLM is more accurate than NM2. 

 

Example 2 (Fish Harvesting) Suppose at some point, designated as 0=t , a fish population is introduced into a 

fishery of some kind (for example, an artificial tank or a netted area in a body of water). Let )(tx  be the population 

level (scaled) at time t, where 0)0( 0 = xx  is the initial concentration, as determined by the introduction. 

Suppose that, when introduced, the fish are very small and that the average mass of the fish at time  0=t  is 

essentially 0 . Further, the average mass of the fish as a function of time is given by 

         ,
1

)(
+

=
t

kt
tfmass

 

where k  is the maximum mass of this specie. We will assume the time interval ],0[ T , over which we are to 

consider harvesting, is small enough that no reproduction will occur. Specifically, the population will have no 

natural growth. Let )(tu  be the harvest rate at time t  and m  be the natural death rate of the fish. We wish to 

maximize the total mass harvested over the interval taking into account the cost of harvesting. So, the optimal control 

problem can be stated as 

( ) ( ) ( ) ( ) dttututx
t

kt
AuxJ

T

u

2

0
1

, max −
+

=   

subject to  

( ) ( ) ( ) 00 ,)()( xxtxtumtx =+−=  

.)(0 Mtu   

The upper bound M  is added to take physical limitations of harvesting into account, and A  is a nonnegative 

weight parameter. Note, if u  is set to 0 , then 
mtextx −= 0)(  which naturally decreases. Any positive control will 

cause the state to decrease even more. 

Source: (Lenhart & Workman, 2007) 

 

 

Solution  The optimality system of the problem is developed by first constructing the Hamiltonian 

( ) ( ) ( ) ( )( ).)(
1

2 txtumututx
t

kt
AH +−+−

+
=   

The optimality condition is 
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 
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The adjoint equation is 

( ) ( )Aktutumtum
tx

H
t −+++

+
=




−= 

1

1
 

Using the optimality system, the numerical code is generated, written in MATLAB R2018a. This problem is solved 

with :1000=N  The results are shown in Figure 3 to Figure 5, and Table 3 to Table 5. First considering the 

parameters 

10 and ,1,4.0,2.0,10,5 0 ====== TMxmkA  
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Figure 3: The fish concentration and harvesting rate of RKLM for Example 2 

 

 

 

Table 3: Sate and Control for Example 2 

t Fish concentration Harvesting rate Average weight 

0 0.4000000000000000 0 0 

0.2 0.141961458996662 0.641543817352862 0.666666666666667 

0.4 0.032681251561386 0.353633034550845 8.000000000000000 

0.6 0.011065553849465 0.179886503543253 8.571428571428571 

0.8 0.004136441229281 0.084028905440520 8.888888888888889 

1.0 0.001167497704697 0.026617744299209 9.090909090909092 

 

Here, maximizing the overall mass of fish harvested while accounting for harvesting time is the goal. With the 

species' maximum mass, 10=k , and the weight parameter, 5=A , Figure 3 illustrates how, in the absence of 

early harvesting, the fish concentration first decreases extremely slowly. The total mass of fish harvested to this 

point is zero. Fish concentration started to decline after harvesting got underway, and as week one, when harvesting 

is happening at a fast pace, dwindled dramatically and average weight increased from zero to roughly five. The 

average weight peaked at week 10 at about nine, and the harvesting rate decreased to nearly zero when the 

concentration of fish approached zero. 

Varying the parameters, 

10 and ,1,4.0,2.0,15,5 0 ====== TMxmkA  
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Figure 4: The fish concentration and harvesting rate of RKLM for Example 2 

 

 

Table 4: Sate and Control for Example 2 

t Fish concentration Harvesting rate Average weight 

0 0.400000000000000 0 0 

0.2 0.131130289853804 0.767736885244573 10.000000000000000 

0.4 0.025066899041166 0.396627546025515 12.000000000000000 
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0.6 0.007521947106378 0.187081795142835 12.857142857142858 

0.8 0.002334938847361 0.072837344661134 13.333333333333334 

1.0 0.000196827505200 0.006602086784370 13.636363636363637 

 

Figure 4 shows that the weight parameter stays at 5=A , but the maximum mass of the species is raised to 15=k
. The main distinction from Figure 3 is that at week 9.5, the average weight reached its maximum of roughly 13, 

and the harvesting rate decreased to zero as the fish concentration approached zero. 

Now varying the parameter A  to 10, 

.10 and 1,4.0,2.0,10,10 0 ====== TMxmkA  
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Figure 5: The fish concentration and harvesting rate of RKLM for Example 2 

 

 

Table 5: Sate and Control for Example 2 

t Fish concentration Harvesting rate Average weight 

0 0.4000000000000000 0 0 

0.2 0.123418956244941 0.869330790901199 6.666666666666667 

0.4 0.020321085948559 0.427140131370255 8.000000000000000 

0.6 0.005466509254597 0.187138329274792 8.571428571428571 

0.8 0.001342538425360 0.057379813095424 8.888888888888888 

1.0 0.000320569138487 1.69406589450e-21 9.090909090909092 

 

Figure 5 shows that the weight parameter is changed to 10=A  but the species' maximal mass, 10=k , remains 

constant. At week nine, the average weight reaches its peak of approximately nine, and the harvesting rate drops to 

zero as the fish concentration approaches zero. 

Tables 3 and 5 show that the fish concentration (state) was high at first ( 0=t ), but that it started to decline as soon 

as heavy harvesting (control) was implemented. The state drops even more at 2.0=t  when the control is higher. 

The state and the control both steadily decrease until they reach their lowest points at 1=t . The control starts to 

do so at 1=t . 

As a result, examining Figures 3 through 5 and Tables 3 through 5 demonstrates the best harvesting approach. A 

greater weight parameter causes the harvesting rate to reach zero more quickly and the total fish mass to reach its 

maximum level more quickly. However, a change in the species' maximum mass has no appreciable impact on the 

overall mass of fish. 

 

6. Conclusion 

This study develops a Runge-Kutta-like method for solving optimum control problems, based on the Patade and 

Bhalekar methodology. The developed RKLM is of order four, and it has been confirmed to be stable and 

convergent, much like the conventional CRKM. When it comes to method development, the Runge Kutta method 

is more complex to create than the RKLM, particularly when higher order methods are needed. Once more, it is 

established that RKLM outperforms CRKM in terms of accuracy. For this reason, it is recommended to utilize 

RKLM instead than CRKM. This research also demonstrates how well RKLM works with the forward-backward 
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sweep method to address optimum control problems modeled in ordinary differential equations. MATLAB R2018a 

is used to write codes for the RKLMs' implementation. 

This study will help fish farmers who have several fish pond and want to engage the costumers throughout the year. 

It will guide the farmers to balance the rate of harvesting so that there will be sale continuously until the next pond 

is ready. It will also help a real investor to know the right time to increase or decrease investment. 
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