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Abstract: This study develops the Runge-Kutta Like Method (RKLM), which uses Pontryagin's principle to solve optimal
control problems numerically using forward-backward sweep methods. It is based on the Patade and Bhalekar methodology. The
RKLM's stability properties and its convergence are examined. The Forward-backward sweep algorithm and the RKLM
algorithm are implemented using MATLAB code. Physical optimum control problems are solved with the RKLM. The first
problem's conclusion demonstrates that, when investment declines, the capital first grow to boost production before it depreciates.
The outcome of the second problem demonstrates that a larger weight parameter causes the harvesting rate to reach zero more
quickly and the total fish mass to reach its maximum level more quickly. The findings obtained demonstrate the effectiveness of
using RKLM in conjunction with forward-backward sweep methods to solve optimal control problems.
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1. Introduction

First order ordinary differential equations of initial value problems arise from a variety of physical problems
that exist in our surroundings nowadays (Alkali et al., 2023). Traditionally, analytical approaches have been used
to find solutions to these differential equations; however, certain differential equations have extremely difficult
solutions, if any exist at all, with the exception of an approximate solution found through the use of numerical
methods (Areo & Adeniyi, 2013). Numerous numerical techniques have been developed in response to the need to
acquire more precise approximate solutions to mathematical models that arise in the fields of engineering, sciences,
medical sciences, economics, and social sciences.

Finding the best control trajectory and related state trajectory for an Optimal Control (OC) problem aims to
optimize a user-specified performance measure while taking into account process restrictions and system dynamics
(Garrete, 2015; Andres-Martinez, 2022; Aduroja et al., 2024). A country's economy could be the dynamical system,
with the goal of minimizing unemployment; in this scenario, fiscal and monetary policy could be the control. Finding
the best answer might help you spot possible constraints that could be broken and cause harm or other unfavorable
outcomes (Lenhart & Workman, 2007; Adamu, 2023). OC has been used to tackle physical system problems in a
variety of sectors, including aerospace, science, engineering, economics, management, biology, and medicine
(Rodrigues et al., 2014; Adamu, 2023). The numerical solution to the optimal control model of actual investment
and fish management was presented in this research. Naeval (2002) explained how to solve continuous time optimal
control models using Microsoft Excel. Real investment and fishery management models are solved to show how
academics can use Excel's Solver Tool to tackle optimal control problems.

The Runge-Kutta (R-K) formulas represent a significant family of iterative techniques for the approximation
of ODE solutions (Odekunle, 2000; Odekunle et al., 2004) and are one of the most ancient schemes in numerical
analysis (Musa et al., 2010). Runge-Kutta techniques, which were initially examined by Carle Runge and Martin
Kutta (Hildebrand, 1974), are often single-step techniques with several phases in each step. The introduction of
Butcher tableau and John Butcher's improvements are largely responsible for modern advances. Other researchers,
such as (Odekunle et al., 2004), (Musa et al., 2010) explored Runge-Kutta methods, and (Usman et al., 2013), also
attempted to simplify the Runge-Kutta technique's derivation process or create an implicit Runge-Kutta approach
for solving initial value problems involving ordinary differential equations.

Forward Backward Sweep (FBS) is an iterative technique named based on the way the algorithm solves the
problem state and adjoint ODEs (Garret, 2015; Adamu, 2023). In order to solve optimal control problems using the
Classical Runge Kutta Method (CRKM) using Pontryagin's principle, (Garrete, 2015) and (Rodrigues et al., 2014)
employed Forward Backward Sweep approaches. Runge-Kutta methods struggle to solve issues when they grow
stiff and the development of CRKM is time-consuming and difficult. However, the classical Runge Kutta method
has become a prominent instrument for solving optimum control problems utilizing the Forward Backward Sweep
approach.
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In order to convert a single step trapezoidal approach into a three stage Runge Kutta type method with constant step
length for the solution of ordinary differential equations, (Patade & Bhalekar, 2015) applies the Daftardar-Gejji and
Jafari technique. The second-order techniques that have been developed have shown to be effective in solving
ordinary differential equations. In order to build a Runge-Kutta-like method that follows the Patade and Bhalekar
approach for the solution of optimal control problems utilizing the Forward Backward Sweep method via
Pontryagin's principle. Adamu et al. (2024) consider a single step method with hybrid point not taking at the middle
and developed four stage numerical method. This work considers a single step trapezoidal method with hybrid point
taking at the middle for the development of the method for solving some application problems.

The other sections are arranged as follows: Section 2 presents preliminary studies. Methodology is covered in
Section 3, while RKLM analysis is covered in Section 4. Section 5 presents numerical experiments, while Section
6 concludes the paper.

2. Preliminary Studies
Definition 2.1 A general single-step method can be written in the form

The function ¢ is called the increment function (Patade & Bhalekar, 2015).

Definition 2.2 (Patade & Bhalekar, 2015) A single step method defined in (2.1) is said to be consistent if
#(x,y,0)= f(x,y) (2.2)

Definition 2.3 A single step method defined in (2.1) is said to be regular if the function ¢(X, Y, h) is defined and

continuous in the domain a < X <b,—o0 < yj <mo,1=12,..,n,0<h<h, andif there exist a constant L such
that

[0,y =g,y )| < Ly -y, (2:3)

forevery X €[X,,b],y,y" €(~00,0), h e (0,h,) (Patade & Bhalekar, 2015).

Theorem 2.1 Suppose the single step method defined in (2.1) is regular. Then the relation (2.2) is a necessary and
sufficient condition for the convergence of the method.

Definition 2.4 A method is stable if the cumulative effect of all errors, including round-off error is bounded,
independent of the number of mesh points.

Definition 2.5 A Runge-Kutta method is said to be of order p if
N(y(x);h =0(h") (2.4)

And the local truncation error Tns1 at Xn+1 iS given by N(y(x); h).

Definition 2.6 (Butcher, 1996) For a method given by the tableau
c A
b

the stability fora Yy’ = qy is the set of points in the complex plane satisfying |R(Z] <1l

3. Methods
3.1 Development of Linear Multistep Method

Approximating the exact solution X(t) of a differential equation X'(t)= f(t,X(t)) on the partition
rla,b]l=[a=t, <t <...<t, <t
polynomials of the form

X(t) = iaan(t), (3.1)

where t €[a,b], a, € R are unknown parameters to be determined. To generate the collocation points, closed

1 <. <ty =D] of the integration interval [a,b] using first Boubaker
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Newton Cote's collocation point is considered as

t =a+hi, h=¥, i=012. (3.2)

First Boubaker polynomials satisfy the following recursive formula
B,(t)=1 B,(t)=t, B,(t)=t*+2, B,(t)=t° +1.

Interpolating and collocating (3.1) using the points

X(tn+j): Xn+j’ J :0, X,(tn+j): fn+j’ J :O’%!l

gives a system of equations

XA=U, (3.3)
where
3 2ttt ot
0 2 2t 3t
X = 1
0 2 2t., 3,
0 2 2t 3t?

n+1

A:[a01a1’a2’a3]T’U:an’ fn’ fn+i’ 1:n+1 '

Solving the system (3.3) for the unknown parameters and substitute the results into the approximate solution (3.1)
to get the continuous scheme

Xaw = o (X, + So (ONF, + B, (ONF L, + B (ONF,,, (3.4)
Where the coefficients «, (t), 5, (t), 5. (t), 5, (t) are:
a,(t) =1, 2
By (1) =t(2t? =3t +1),
(1) =t*(2-41),
A =t(Gt-3).

Evaluating equation (3.4) at point X_., gives the discrete scheme

n+l

Xog = X, +g(fn +4f ., + fn+1) (3.5)

3.2 Development of the Iterative Method
3.2.1 Runge-Kutta like method
Equation (3.5) can be written as

X =X +—f +—fF  +—f .. 3.6

n+1 n 6 n 6 n+; 6 n+l ( )
Let

X=Xn+l' (37)

h 4h ( )

Xo=F=x+=F(, x)+—flt ., X , 3.8

0 n 6 (n ) 6 n+d? Pnel ( )
and

h
N (Xn+1) = N (X) = g f (tn+1’ Xn+l)' (39)
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Using 3-terms solution of DJM series then,
X=X, +X +X,, (3.10)
X = X, + N(x, + N(x,)) (3.12)
Substituting (3.7) and (3.8) into (3.11) to get

h 4h
Xpg =X, +—= F(t,x,)+—Flt ., X
n+l n 6 (n ) 6 (

1y l)
I'H—2 n+2

+0f(t,,x,)+40 f(tn %,xm;)

) (3.12)
+N[+ N’(Xn +% f(t, x,) +4_6h f (tm“ Xn#))}

This can be simplified (by using equation 3.9) as

h 4h
Xog =X, +—= F(t,X)+—Fflt .,x .
n+l n 6 (n ) 6 (n+2 n+2)

hf[ tn+(,xn+%f(tn,xn)+4—6hf(tn+f,xn+;) J (3.13)

+— + ol X+, x) Rl X
Equation (3.13) reduces to
X, =X, +g(k1 +4k, +k,), (3.14)
where
kl = f (tnlxn)!
k= f (tm—l’ Xpet )

h 4h
k, = f(t X +Ekl+Fk2j'

n+l? “*n

h 4h h
k4 = f(tm_l,xn +Ek1 +Ek2 +Ek3j.

This is the required RKLM

Lemma 3.1 The RKLM (3.14) is not a Runge-Kutta method.
Proof To show that, the RKLM is not a Runge-Kutta method, Runge-Kutta properties are tested. The RKLM is
written as

X,y = X, +h(bk, +b,k, + bk, +b,k,),
while K; is written as
ki = F(t; + ¢ x; +h(@ak, +a,k, +a.k, +a,k,))i=1234

The following parameters are extracted from the RKLM

blzé,bzzg,baza b4:%;01:0,c2:%,c3:c4:1;
a, =8, =8; =3, =0,a, =a, =8, =a, =0,
azia:ﬂa:a =0,a, =a zla:gazo
31 6’ 32 6’ 33 34 y Agp 43 6’ 42 3’44 )

Thus the Butcher table for RKLM is
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c, la, a, a, a, 0|0 0 0 O
C, |8y 8p 8y ay % 0000
C; |ay @y a8y ay=1 % % 00
C, |ay a, 8y a8, 1 % % % 0

b, b, by b, % % 0 %

4
For Runge-Kutta method, it is necessary that Zaij =C; (Butcher,1996). From the parameters,
j=1

8y + a8y + 8y + a8y =2 # C,. This sufficiently shows that RKLM is not a Runge-Kutta method.

4 Analysis of the New Method
4.1 Order of the method

Theorem 4.1 The Runge-Kutta like method in (3.14) is of order four.
Proof We have

k, = f,. (4.1)
Using second order Taylor's series, we can write K,, K, and K, as
h h h? h? h?

k,=f +—f +—f +—f +—fFf +—fF  +.. 4.2
2 n 2 n,t 4 n,x 4 n,tt 4 n,tx 8 n, Xx ( )

h? h? h h?

ky = f, +hf,, S fo g fofo te ffo tog L0 P (4.3)
h? h
k,=f,+hf_, +? oo +Wy| hf o+ +Z L) PRV (4.4)

n

h 4h h h? h? h h?
W. = Ef +?(fn+7fn,t+Tfn,tt+Tfn,tx+Zfn,x+Tfn,xx)
3= h2 K2 2 W g2 ) )
+ hfn,t +7 fn,tt +T f fn,tx + hfn,x +T fn fn,xx

of (¢,
fo = x0), frr = ( fS; 2

)= Ca)

a*f(t,x) a%f(t,x) a%f (t,x)
foee = EFTT R N “oxZ y Jaex = FTE
(tnxn) (tnxn) (tnxn)

Using (4.1), (4.2), (4.3) and (4.4) in (3.14), we get

X — X +D fn +4(fn +% fn,t2+% fn,tt +% fn,tx +% fn,x +% fn,xx) (45)
+f, Hhf 0 W RE o+ f DT

n+l n
6 n 'n,xx
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RETEI fnxfnj
y 6 3

1 1 1 1 2 162 1 f£2
+h3 12 fn,xx +3 fn,tt +3% fn,tx +3 fn,xx fn +3% fn,x fn,tx +3 fn,x
1 1 1 2 1 2
+E fn,t fn,x +€ fn,tx fn +m fn,xx fn,x fn +§ fn,xx fn,x fn
1 f2 3,1 1 1
+h4 576 fn,xx fn +35 fn,xx fn,x +1 fn,t fn,tx +3 fn,x fn,tt
1 1 2 1 1 1
+ig fn,x fn,tx vy fn,xx fn,tx fn + fn,xx fn,t fn vy fn,xx fn,x fn +35 fn,x fn,tx fn
1 2 1 2 1
+h5 288 fn,xx fn + %7 fn,xx fn,tx fn + Tz fn,x>< fn,tx fn n
1 1 1 2 1 §2 1
to fofon tos foa foo o tais fonfo 35 fooe Tor oo f

72 'n,xx 'n,tx ntt 'nxx 'n T 216 n,tt ' n,tx

The Taylor's series expansion of exact value X(t) about t, is
1 1 1 1
X(t,,)=X,+hf +h?| = f +=f +=f> +=f f
2 7 6 7 6 7 6 "
+h3 % fn,xx +% fn,tt +% fn,tx +§ fn,xx fn2 +% fnz,X fn,tx +% fnz,X
SR RLIN PUNECE ) SUR FRTSE S VR U o SRR A

nxx 'n,x 'n nxx 'n,x 'n

(4.6)

J+O(h4)

The truncation error gives
Tn+l = Xi+l - X(ti+l)

1 1 1 1 2 1 ¢2 1 §2
+h3 12 fn,xx +7 fn,tt +3 fn,tx + 2 fn,xx fn +3 fn,x fn,t>< t3% fn,x
1 1 1 2 1 2
+i nt fn,x +€ fn,tx fn + 1z fn,xx fn,x fn +2 fn,xx fn,x fn
4.7)
1 2 3,1 1 1 (
+h4 576 fn,xx fn +35 fn,xx fn,x +1 fn,t fn,tx + 3 fn,x fn,tt
1 1 2 1 1 1
+i fn,x fn,tx + 1z fn,xx fn,tx fn +5 fn,xx fn,t fn + Tz fn,xx fn,x fn + 2 fn,x fn,tx fn
1 2 1 2 1
+h5 288 fn,xx fn + 51 fn,xx 1:n,tx fn + g fn,xx fn,tx fn
1 1 1 2 1 2 1
R LT I O O LTl R A B

n,xx ' n,tx ntt "n,xx 'n 216 n,tt "n,tx

Lf2 f 4 Lf f f24 L f f f
Tn+l — 5( . 288 n,Xi( n + 864 n, Xxx I"I,]I-X n2+ 144 I’IL,)(X 2I’],tX nl j_'_o(hﬁ) (48)
+ ot o fna Fo +mfnlmfn+%fw+§f f

n,xx ' n,tx ntt "n,xx 'n n,tt "n,tx

Hence, the new iterative method is of fourth order.

4.1.1 Convergence of the iterative methods

Theorem 4.2 An RKLM (3.14) is said to be convergent by Theorem 2.1 if the following results hold:
(i) Consistency holds
(ii) Regularity holds

Proof Consider the increment function in (3.14),
h 4h h j

¢(Xn,un,h):h_1(gkl +?k2 +€k
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0,00,0) = <+ 4, K, ) @9
If h=0, then
#(x,,u,,0)= f(t,x). (4.10)

Therefore, by Definition 2.2, the method (3.14) is consistent.
Proof Denote k; = f(t X*), k, = f(tm;, X:H;) ky = f(t Xy +%k1*) and

n?’“n n+l? *n

n+l? *n

(3.14). Since f (t, X) is Lipschitz, we have
Hkl_kl* ‘f(tn’xn)_f(tn’xrg:)
<L ,

(where L is the Lipschitz constant)

k, = f(t X, + 0k, +4k, +%k3*) for every (t,x), (t,x") €S and Kn (n=1,2,3,4) are defined in

X, — X,

sz—k; =|If tn+h,xn+D —f tn+h,x:+D :
2 2 2 2
< Lx, — x|,
. h 4h . h . 4h .,
ks —K; :Hf(tm,xn+gkl+gk2j—f(tn+1,xn+gkl+Ek2J,

*

X, = X,

< L(1+@Lj
6
= f(tn +h,x, +nkl+4—hk2 +Ek3j— f(tn +h,x; +Ek1* +4—th +Dk3*j
6 6 6 6 6

6
2|2
< L[l+ 3Lh+ 5L6h j
Now using equation (4.9)

¢(xn,un,h)—¢(xn,u:,h): %Q‘kl —k;

22
_ L(1+18Lh , 5L J

Hk4 - k:

X —X

n nil*

)

+ 4k, —k;

+ Hk4 —k;

X =X

n n

36 36
=L ’
where L = L1+ 150+ 22°)

Therefore, the increment ¢ satisfies a Lipschitz condition in X and hence, by Definition 2.3, the method (3.14) is
regular.

Xn_X;

Lemma 4.1 Suppose the function f(t, x) is defined and continuous in the strip S(|t — to| < a, ||x|| < ,a > 0)
and satisfy Lipschitz condition

If (& x) = fF(&x)I < Lllx —x7],
for every (t,X),(t,x") € S, where L is Lipschitz constant; then, method (3.14) is said to be convergent
Proof Since consistency and regularity holds for method (3.14), by Theorem 2.1, it is convergent.

161



Turkish Journal of Computer and Mathematics Education (TURCOMAT) Vol.15 No.2(2024),155-169

Research Article

412  Stability of the iterative methods
Theorem 4.3 For the iterative method (3.14) to be stable, we must have

2hA h2/12 h/13>
|(1+ 3+ + s

‘ (1_M+4hﬂz)

12

<1

Proof Using Definition 2.4. Applying the iterative method (3.14) to the test equation X' = AX, we obtain
k, = AX,,
K, =AX ..,

K, :/1(1+h—/1jxn +ﬂx i
6 6 n+2

K, _/1[ ht ihz/izjxn+4h—/1x !
3 36 3 "™

From (3.14), we can write

Xn+1:Xn+Ean+4_h/1X L+D/1 1+h_ﬂ'+ih2/12 Xn+ﬂx 1D
6 6 " 6 3 36 3 ™

( hi h2i h%ﬁj (4h/1 4h2ﬂ3j
Xpyg =| 1+ —+ + X, +| —+ X .-

1
2

i 3 18 216 6 18
Writing X, as 1(X,,, +X, ), then

hi h?2 h2e 1(4ha 4h?2?
X, =|1+—+ + X, + = ——+ (X,y + X, )
3 18 216 2\ 6 18

So that,

2h h2/12 h3/13)
(1+ 3 + + 216

( 4h/1 4h2/12) n

Now, for stability of RKLM and by Definition (2.6), we must have
2ha , h222 | K328
|(1+ Tt 7)

216
<1
Ay
12 36

4.2 Algorithm for Forward Backward Sweep Methods
4.2.1 Algorithm for FBS implementation for RKLM
Applying (3.14), the algorithms are given as
Algorithm 4.1 Forward algorithm

for n=1: N

k, = f(t,,%,,u,)

kz = f(tn 1h 1(X +Xn+l)’2(u +un+1))
k; = f(tn +h, x, + 2k, +4k,, uM)

k, = f(tn +h, x, + 2k, +4k, + ¢k, Un+1)
Xony = X, + 2 (k, + 4k, +Kk,)

Algorithm 4.2 Backward algorithm
for j=1: N
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N=N+2—]
kl = f(tn7xn’ﬂ“n’un)
K, = f(t, =303 06 + X, 0), 3 (A, +2,1), 3 (U, +U,4))

k3 = f(tn _h’ Xn—17ﬂ“n _%kl_4_6hk21un—1)

k, = f(t,—h,x A, -0k -4k, —k,,u, )

n 1 n-117"n

/1n—1 = ﬂn _%(kl +4k2 + k4)

5. Numerical Experiment
This section provide solution to optimal control model for real investment and fish management using RKLM. Let

Xy (t) and X(t) be the approximate and numerical solutions for the state respectively, then the absolute error of
the state is given by |XN t) - X(t)|. Let Uy (t) and u(t) be the approximate and numerical solutions for the

control respectively; then, the absolute error of the control is given by |uN - u(t)| . All numerical solutions are

given in figure and tabular forms. All computations in this section are done with the aid of a written MATLAB
codes, which were run on a Window 8.1 computer.

Table 1: Notations

Abbreviations Meaning
NM2 Naevdal (2002) Method
Err Absolute Error

Example 1 (Real Investment) A firm has a production Yy = X% . Here y isoutput and X is capital. The stock of
capital is assumed to be driven by the differential equation X' =U—JX. Here U is investment and O is the rate
of capital depreciation. Assume that the cost of investment is given by %uz and the market price of Yy is equal to
one. This leads to the following maximization problem
T
c _
max J(x,u)= j(xa ——uzje “dt,
u 2
0
subject to
X'=u-—,
x(0)=0.
Solving with the following weight parameters (the choice of the parameters implies that, the investment has a
constant rate of depreciation)

c=a=0=T=1r=0,
lead to optimal control with optimality solution
. 1 . 1 _
X'()=1-=e""+| Ze'-1le™",
2 2
u(t)=1-e*.
Source: (Naevdal, 2002).

Solution The optimality system of the problem is developed by first constructing the Hamiltonian
H= (xa —%uzje‘” + A(u— ).

The problem is a maximization problem as
%Zl;l =—ce" <O0.

The optimality condition
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Oza—H:Z—CU€7rt :>u=_——rt’
ou ce

and the adjoint equation is

ll — _8_H — /15_ aXa—le—rt
OX
Using the optimality system, the numerical code is generated, written in MATLAB R2018a. This problem is solved

with N =10: The results are shown in Figure 1, Figure 2, and Table 2.

State
°

0 01 02 03 04 05 06 07 08 09 1
Time

Control

0 01 02 03 04 05 06 07 08 09 1

Adjoint

0 01 02 03 04 05 06 07 08 09 1
Time

Figure 1: The optimal state, adjoint and control of RKLM for Example 1

0 0.1 0.2 0.3 0.4 05 0.6 07 0.8 0.9 1
Time

Control

4 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
Time

Adjoint

0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
Time

Figure 2: The optimal state, adjoint and control of NM2 for Example 1

Table 2: State and Control for Example 1

State Control
t Exact RKLMeg NM2g Exact RKLMegy NM2g
0 0 0 0 0.632 4.666e-05 7.666e-05
0.2 0.107 1.038e-05  2.353e-05 | 0.550 2.212e-05 7.491e-5
0.4 0.178 1.350e-05 5.422e-05 | 0.451 1.777e-06 6.862e-05
0.6 0.216 1.32e-05 6.291e-05 | 0.329 1.150e-06 5.5687e-05
0.8 0.223 4.802e-06  6.097e-05 | 0.181 1.382e-05 3.412e-05
1.0 0.199 6.007e-6 4.846e-6 0 0 0

To maximize productivity is the goal. As the investment progressively decreases in Figures 1 and 2, the capital X

first increases to boost production. Between t =0.7 and t = 0.8, capital accumulates. Then allowing capital to
degrade for the remaining time horizon. It is evident from a comparison of Figures 1 and 2 that RLKLM and NM2
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are identical. Table 2 demonstrates how capital increases as investment declines until it reaches its optimal level, at
which point it starts to decline. Additionally, Table 2 makes it quite evident that RKLM is more accurate than NM2.

Example 2 (Fish Harvesting) Suppose at some point, designated as t = 0, a fish population is introduced into a
fishery of some kind (for example, an artificial tank or a netted area in a body of water). Let X(t) be the population

level (scaled) at time t, where X(0) = X, > 0 is the initial concentration, as determined by the introduction.

Suppose that, when introduced, the fish are very small and that the average mass of the fish at time t=0 is
essentially O . Further, the average mass of the fish as a function of time is given by
kt
fmass (t) =T
t+1
where K is the maximum mass of this specie. We will assume the time interval [0, T], over which we are to

consider harvesting, is small enough that no reproduction will occur. Specifically, the population will have no
natural growth. Let U(t) be the harvest rate at time t and M be the natural death rate of the fish. We wish to

maximize the total mass harvested over the interval taking into account the cost of harvesting. So, the optimal control
problem can be stated as

max J(x,u):].Ati%x(t)u(t)—u(t)2 dt
subject to 0

X(t) =—(m+u(t))x(t). x(0)=x,

0<u(t) <M.

The upper bound M is added to take physical limitations of harvesting into account, and A is a nonnegative
weight parameter. Note, if U issetto 0, then X(t) = Xoe_mt which naturally decreases. Any positive control will

cause the state to decrease even more.
Source: (Lenhart & Workman, 2007)

Solution The optimality system of the problem is developed by first constructing the Hamiltonian
kt
H=A—" x(t)u(t)—u? + A(=(m+u(t))x(t))
+
The optimality condition is
0= oH 1

=~ =———(2u+ XA+ 2tu + tx 1 — Aktx),
ou t+1

I (XA +txA — AKtx).
2t+2

The adjoint equation is
, oH 1
At)=———=-—"-(mA+ui+mtl+tul— Aktu)
ox t+1
Using the optimality system, the numerical code is generated, written in MATLAB R2018a. This problem is solved
with N =1000 : The results are shown in Figure 3 to Figure 5, and Table 3 to Table 5. First considering the
parameters

A=5k=10,m=0.2,x,=04,M =1, and T =10
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Figure 3: The fish concentration and harvesting rate of RKLM for Example 2
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t

Fish concentration

Harvesting rate

Average weight

0

0.2
0.4
0.6
0.8
1.0

0.4000000000000000
0.141961458996662
0.032681251561386
0.011065553849465
0.004136441229281
0.001167497704697

0

0.641543817352862
0.353633034550845
0.179886503543253
0.084028905440520
0.026617744299209

0

0.666666666666667
8.000000000000000
8.571428571428571
8.888888888888889
9.090909090909092

Here, maximizing the overall mass of fish harvested while accounting for harvesting time is the goal. With the
species' maximum mass, K =10, and the weight parameter, A =15, Figure 3 illustrates how, in the absence of
early harvesting, the fish concentration first decreases extremely slowly. The total mass of fish harvested to this
point is zero. Fish concentration started to decline after harvesting got underway, and as week one, when harvesting
is happening at a fast pace, dwindled dramatically and average weight increased from zero to roughly five. The
average weight peaked at week 10 at about nine, and the harvesting rate decreased to nearly zero when the
concentration of fish approached zero.
Varying the parameters,

A=5k=15,m=0.2,x,=0.4,M =1, andT =10

Figure 4: The fish concentration and harvesting rate of RKLM for Example 2

Table 4: Sate and Control for Example 2

Fish concentration

Harvesting rate

Average weight

0.2
0.4

0.400000000000000
0.131130289853804
0.025066899041166

0
0.767736885244573
0.396627546025515

0
10.000000000000000
12.000000000000000

166



Turkish Journal of Computer and Mathematics Education (TURCOMAT) Vol.15 No.2(2024),155-169

Research Article

0.6 0.007521947106378 0.187081795142835 12.857142857142858
0.8 0.002334938847361 0.072837344661134 13.333333333333334
1.0 0.000196827505200 0.006602086784370 13.636363636363637

Figure 4 shows that the weight parameter stays at A =5, but the maximum mass of the species is raised to kK =15
. The main distinction from Figure 3 is that at week 9.5, the average weight reached its maximum of roughly 13,
and the harvesting rate decreased to zero as the fish concentration approached zero.

Now varying the parameter A to 10,

A=10,k =10,m=0.2,x, =0.4,M =1and T =10.
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Figure 5: The fish concentration and harvesting rate of RKLM for Example 2

Table 5: Sate and Control for Example 2

t

Fish concentration

Harvesting rate

Average weight

0 0.4000000000000000 0 0

0.2 0.123418956244941 0.869330790901199 6.666666666666667
0.4 0.020321085948559 0.427140131370255 8.000000000000000
0.6 0.005466509254597 0.187138329274792 8.571428571428571
0.8 0.001342538425360 0.057379813095424 8.888888888888888
1.0 0.000320569138487 1.69406589450e-21 9.090909090909092

Figure 5 shows that the weight parameter is changed to A =10 but the species' maximal mass, K =10, remains
constant. At week nine, the average weight reaches its peak of approximately nine, and the harvesting rate drops to
zero as the fish concentration approaches zero.

Tables 3 and 5 show that the fish concentration (state) was high at first (t = 0), but that it started to decline as soon
as heavy harvesting (control) was implemented. The state drops even more at t = (0.2 when the control is higher.
The state and the control both steadily decrease until they reach their lowest points at t =1. The control starts to
dosoatt=1.

As a result, examining Figures 3 through 5 and Tables 3 through 5 demonstrates the best harvesting approach. A
greater weight parameter causes the harvesting rate to reach zero more quickly and the total fish mass to reach its

maximum level more quickly. However, a change in the species’ maximum mass has no appreciable impact on the
overall mass of fish.

6. Conclusion

This study develops a Runge-Kutta-like method for solving optimum control problems, based on the Patade and
Bhalekar methodology. The developed RKLM is of order four, and it has been confirmed to be stable and
convergent, much like the conventional CRKM. When it comes to method development, the Runge Kutta method
is more complex to create than the RKLM, particularly when higher order methods are needed. Once more, it is
established that RKLM outperforms CRKM in terms of accuracy. For this reason, it is recommended to utilize
RKLM instead than CRKM. This research also demonstrates how well RKLM works with the forward-backward
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sweep method to address optimum control problems modeled in ordinary differential equations. MATLAB R2018a
is used to write codes for the RKLMSs' implementation.

This study will help fish farmers who have several fish pond and want to engage the costumers throughout the year.
It will guide the farmers to balance the rate of harvesting so that there will be sale continuously until the next pond
is ready. It will also help a real investor to know the right time to increase or decrease investment.
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