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1 Introduction 

Polish mathematician Banach published his contraction Principle in1922. In 1928, Menger [21] introduced semi-

metric space as a generalization of metric space. In 1976, Cicchese [6] introduced the notion of a contractive mapping in 
semi-metric space and proved the first fixed point theorem for this class of spaces. Hicks and Rhoades [12] generalized 

Banach contraction principle in semi-metric space. Jungck [18] introduced the concept of compatible mappings in metric 

spaces. This concept has been frequently used to prove the existence of theorem in common fixed-point theory. However, 

the study of common fixed-point theorems for non-compatible mappings has also become an interesting concept. Pant et 

al. [22] initially proved some common fixed-point theorems for non-compatible mappings. Aamri et al. [3] gave a notion 

of E.A. property and established some common fixed-point theorems for non-compatible mappings under contractive 

conditions. Cho and Kim [4] generalized the paper of M. Aamri and Moutawakil by replacing W4 property by C.C 

property with different contractive conditions. Cho et al. [5] proved some common fixed-point theorems for weakly 

compatible mappings in symmetric spaces and gave some counter examples. Among various types of compatible 

mappings, Singh and Singh [26] introduced the concept of compatible mappings of type (E). Jungck and Rhoades [19] 

introduced the notion of weakly compatible mappings and showed that compatible mappings are weakly compatible but 

not conversely. Jungck and Rhoades [20] introduced occasionally weakly compatible mappings which is more general 
among the commutativity concepts. Jungck and Rhoades [20] obtained several common fixed-point theorems using the 

idea of occasionally weakly compatible mappings. Several interesting and elegant results have been obtained by 

various authors in this direction. There have been interesting generalized and formulated results in semi- metric space 

initiated by Frechet [9], Menger [21] and Wilson [27]. In this paper, we prove common fixed-point theorem for three pairs 

of self-mappings by using compatible mapping of type (E) and occasionally weakly compatible(owc) mapping in semi-

metric space that extends the results of Rajopadhyaya et al. [23,25], Aamri and Moutawakil [2] and other similar results 

in semi-metric space. We also prove a common fixed-point theorem for three pairs of self-mappings using occasionally 

weakly compatible mappings which improves and extends similar known results in the literature. 

2 Basic Definitions 

 

Definition 2.1. Let  be a non-empty set. A symmetric (semi-metric) on a set  is a non-negative real valued function  

on  such that 

(i)  if and only if  for .  

(ii) , for . 

Example 2.1. Consider  be the set of all real numbers. Let a function  be defined as follows. 

  

Then,  is a symmetric (semi-metric) space but not a metric space because the property of triangle inequality is not 

satisfied by . 

Example 2.2. Consider  Let a function  be defined by . Then,  is a symmetric (semi-

metric) space but not a metric space because the property of triangle inequality is not satisfied by .  
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Let d be a symmetric on a set X and for  and any , let . A topology 

 on X is given by if and only if for each   for some . A symmetric d is a semi-metric 

if for each  and each ,  is a neighborhood of x in the topology . Note that if and 

only if    in the topology . 

The difference between symmetric and metric space occurring due to triangle inequality. To obtain fixed point 

theorems in a symmetric (semi-metric) space, we require some additional axioms. 

The following two axioms were given by Wilson [27]. 

 Let  be a symmetric space.  

(W3)  Given a sequence ,  and  in ,  and  implies . 

(W4)  Given sequences  ,  and  in ,  and  implies that 

. 

 It is easy to see that for a semi-metric , if  is a Hausdorff, then (W3) holds.  

The following axiom was given by Aamri et al. [2]. 

Let  be a symmetric space.  

(H.E) for given sequences { }, { } and x in X,   and  implies 

. 

Preposition 2.1. For axioms in symmetric space ,  

(a)   

Proof: Let  be a sequence in  and  such that  and  

By substituting  for each , we get . By using (W4) we get, 

. 

In the sequel  be a function satisfying . 

Example 2.3. Let . Consider 

  

Thus,  is a symmetric space which satisfies (W4) but does not satisfy (H.E) for .  

Example 2.4. Let . Consider 

  

and . 

Thus,  is a symmetric space which satisfies (H.E). Let   

Then,   but . Therefore, symmetric space  does not satisfy (W3).   

Example 2.5.  

(i) Every metric space  satisfies property (H.E). 

(ii) Let with the symmetric function d defined by .Clearly, symmetric space  

satisfies property (H.E). 

Definition 2.2. Let  be a non-empty set and  be an arbitrary mapping. A point  is called a coincidence 

point of  and  if and only if . 

Example 2.6. Let  and  be two self-maps on  defined by  and . Here  

this implies, . Hence  is a coincidence point of  and . 
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Definition 2.3. Let S and T be two self-mappings of a symmetric space . S and T are said to be compatible if 

0, 

whenever { } is a sequence in X such that  

Definition 2.4. Two self-mappings S and T of a symmetric space  will be non-compatible if there exist at least one 

sequence { } in X such that . but is either 

non-zero or does not exist. Therefore, two non-compatible self-mapping of a symmetric space  satisfy the property 

(E.A).  

Definition 2.5. Two self-mappings S and T of a symmetric space  are said to be weakly compatible if they commute 

at their coincidence points. 

Definition 2.6. Let S and T be two self-mappings of a symmetric space . We say that S and T satisfy the property 

(E.A) if there exist a sequence {xn} such that.  

. 

Example 2.7. Let . Let d be a symmetric on X defined by  for all x, y in X. Define 

as follows: 

 for all . 

Here function d is not a metric. Consider the sequence ,  

Clearly   

Then S and T satisfy property (E.A). 

Definition 2.8. A subset  of a symmetric space  is said to be closed if for a sequence  in  and a point 

,  implies . For a symmetric space  , closedness implies closedness. 

Definition 2.9. Let  and  be two self-mappings of a semi-metric space . Then  and  are said to be compatible 

mapping of type (E) if 

 and  

, 

whenever  is a sequence in  such that  

 for some   

Example 2.8. Let  with usual-metric space . We define a self-maps A and S as 

, for  

  for  and  

 for . Clearly A and S are not continuous at  

Suppose that  for all . 

Then, we have  and . Also, we have  

  

  and , 

  

Therefore,  is compatible of type . 

Example 2.9. Let  and .  
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 ,   

Take a sequence  such that ,  for all . Then  

  (say) 

  

  

Pair  is not compatible mapping of type . 

Preposition 2.2. Let  and  be two compatible mappings of type (E). If one of the mappings is continuous, then 

(a)  and  

where,   and  

If there exists  such that , then .  

Definition2.10. Let A and B be two self-mappings of a semi-metric space . Then, A and B are said to be 

occasionally weakly compatible (owc) if there is a point  which is coincidence point of A and B at which A and 

B commute. 

Example2.10. Let us consider with the semi-metric space  defined by    . Define 

a self-map  A and B by 

 and  for  

,  for  and  for . 

Now, , besides  , is another coincidence point of A and B. 

but , Therefore A and B are owc but not weakly compatible. 

Hence weakly compatible mappings are owc but not conversely. 

Lemma 2.1.  Let  be a semi-metric space. If the self-mappings A and B on X have a unique point of coincidence 

, then w is the unique common fixed point of A and B. 

3. Main Results 

We establish a common fixed point theorem in symmetric space with compatible mapping of type (E) which 

improves and extends similar known results in the literature. 

Theorem 3.1. Let  be a symmetric (semi-metric) space that satisfy (W4) and (H.E.). Let A, B, S, T, I and J be self-

mappings of X such that  

(i)   and  … (3.1) 

(ii) the pair (ST, I) satisfies properties E.A. (resp. (AB,J) satisfy property E.A)                                       … (3.2) 

(iii)  for all                           … (3.3)          

where  be a function satisfying  

(iv) J(X) is a d-closed ( -closed) subset of X (resp. I(X) is a d-closed (  –closed) subset of X).       … (3.4) 
 

Then, the pair as well as have a coincidence point. 

Moreover, if the pairs and are compatible mapping of type (E) and one of the mappings AB, ST, 

I and J is continuous then AB, ST, I and J have a unique common fixed point. 

Further, if , , , ,  and ,  then the mappings A, B, S, T, I and J 

have a unique common fixed point. 

Proof:  In view of (3.2), the pair satisfies the property E.A therefore, there exists a sequence { }in X and a point 

 such that  

 
From (3.1), since  there exists a sequence { } in X such that  

 .  

Hence,  

By using property (H.E), we get 

  and  
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From (3.4), since J(X) is a d-closed subset of X, hence  

 . Therefore, there exists a point  such that .  

Also, we have  

  

Now, we assert that .  

From condition (3.3), we have  

  

By taking , we have  

  

By using property (W4), 

  

 
This implies that  

[By using (W3), 

 ] 

This shows that  is a coincidence point of pair . 

Again, , there exists a point  such that . This implies that . 

We assert that .  

On using condition (3.3), we get 

       

  

  

  

or, , which is a contradiction.  

Hence, we get .  

This shows that w is a coincidence point of pair . Consequently,  

  

which shows that the pairs  and  have a coincidence point v and w respectively. 
 For the existence of a common fixed point for four mappings of a semi-metric space, we apply compatible 

mapping of type (E). 

 Let us suppose that  is continuous and the pair  is compatible mapping of type (E), then by proposition 

(2.2), we have  

  then .  

Now, we have .  

We show that  is a common fixed point of AB and J.  

If possible, .  

On using condition (3.3), we get, 

      

 ,  

  

or, , which is a contradiction.  

Hence, we get , which implies that  

 .  

Therefore,  is a common fixed point of AB and J. 

 Let us assume that I is continuous and is compatible mapping of  type (E), then we have 

  then  

Now, we have  

We show that STw is a common fixed point of ST and I, if possible . 

Using condition (3.3), we have 

  

                                            
                                                 

                                                 

                                                                                             

                                                , which is a contradiction. 
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Hence we have , which implies that  

 . 

Therefore, STw is a common fixed point of ST and I.  

Since, ,  is a common fixed point of AB, ST, I and J. 

 To prove that  is unique, let z be another common fixed point of AB, ST, I and J,  such that 

.  

By using condition (2.7), we get 

   

  

  

  

or,  , which is a contradiction.  

Hence, we get . Therefore, AB, ST, I and J have a unique common fixed point. 

Now, we claim that z is also a common fixed point of mappings A, B, S, T, I and J and let both the pairs  

and (  have a unique common fixed point z. Then, 

  

  

  

  

which implies that  has a common fixed point which are Az and Bz.  

We get thereby , by virtue of uniqueness of common fixed point of pair .  

Similarly, on using ,  and ,  can be shown.  

Now, we require to show that , a common fixed point of both the pairs  and .  

We have, 

    

  

 , 

  

  

  

 , which is a contradiction.  

Hence, . Similarly,  can be shown. Thus,  is a unique common fixed point of A, B, S, T, I and J. 

 Our first corollary is obtained by putting , ,  and  in main Theorem (3.1). 

Corollary 3.1. 

 Let  be a symmetric (semi-metric) space that satisfies (W4) and (H.E). Let A, B, T and S be self-mappings 

of X such that 

(i)   and   

(ii) the pair (B, T) satisfies properties E.A (resp. (A, S) satisfy property E.A) 

(iii)  for all   

(iv) S(X) is d-closed ( -closed) subset of X (resp. T(X) is a d-closed ( -closed) subset of X. 

Then, the pair (A, S) and (B, T) have a coincidence point. 

Moreover, if the pairs (B, T) and (A, S) are compatible mapping of type (E) and one of the mappings A, B, T and 

S is continuous then A, B, T and S have a unique common fixed point. 

The above Corollary (3.1) shows the result of Rajopadhyaya et al. [23].  

 Our next corollary is obtained by putting  and  in Theorem (3.1) which generalizes the 

result of Aamri et al. [2] in semi-metric space with compatible mapping of type E. 

Corollary 3.2. Let  be a symmetric (semi-metric) space that satisfy (W4) and (H.E) and let A and T be self-mappings 

of X such that  

(i)  

(ii) The pair (A, T) satisfies E.A property. 

(iii)  for all  

(iv) T(X) is a d-closed ( -closed) subset of X  
(v)        The pair (A, T) are compatible mapping of type (E). 

If one of the mappings A and T is continuous then A and T have a unique common fixed point. 
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Example 3.1. Let  with semi-metric space  defined by . Define a self-maps A, B, S, T, 

I and J as  

  

Then A, B, S, T, I and J satisfy all the conditions of the theorem (31) and have a unique common fixed point at . 

Now we establish a common fixed point theorem in symmetric space with occasionally weakly compatible(owc) mapping 

which improves and extends similar known results in the literature.  

Theorem 3.2:  Let  be a symmetric (semi-metric) space that satisfy (W4) and (H.E.). Let A, B, S, T, P and Q be 

self-mappings of X such that  

(i)   and  are occasionally weakly compatible (owc),                      … (3.5) 

(ii)  

for all , where  be a function satisfying                        … (3.6)    

  

Then AB, ST, P and 𝑄 have a unique common fixed point. Furthermore, if AB  and ST ,then A, B, S, T, 

P and 𝑄 have a unique common fixed point. 

Proof: Since   and  are occasionally weakly compatible (owc), then there exists  such 

that ,where  and , where .We claim that . Using 

condition (ii), we get 

  

                

           

                 

         

which is contradiction. So, . Therefore,  

AB  .  … (3.7) 

Moreover, if there is another point of coincidence 𝑧 such that . We claim that . Using condition 

(ii), we get 

   d   

                

           

                 

          

which is contradiction. So, . Therefore,  

 .                                                                                                                                       … (3.8) 

Similarly, if there is another point of coincidence v such that . It can be easily seen that . 

Therefore 

. 

Also, from (3.7) and (3.8), it follows that . This implies that . Hence, , for 

, is the unique point of coincidence of 𝐴𝐵 and 𝑃. By   Lemma 2.1, w is the unique common fixed point of 𝐴𝐵 and 

𝑃. Hence . Similarly, there is a unique common fixed point  such that .  

Suppose that .Then using condition (ii), we get. 

 

           

          

         

        

       

This is contradiction. Therefore, we have .. Hence, w is the unique common fixed point of AB, TS, P and 

𝑄. Finally, we need to show that w is only the common fixed point of mappings 𝐴, 𝐵, 𝑇, 𝑆, 𝑃 and 𝑄.  
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Let both the pairs  and  have a unique common fixed point . 

AB  ,then for this, we can write 

       ,  

 and   ,   

which implies that  has common fixed points which are  and . We get thereby . 

 Similarly, using the commutativity of , 

 can be shown. 

Hence A, B, T, S, P and 𝑄 have a unique common fixed point. 

Example 3.2. Consider  with the semi-metric space  defined by . Define self-

mappings A, B, T, S, P and Q as , , , ,  and . Also, the 

mappings satisfy all the conditions of above Theorem 2.1 and hence have a unique common fixed point 𝑥 = 1. 

On the basis of above Theorem 3.2, we have the following corollary. 

Corollary 3.3: Let  be a symmetric (semi-metric) space that satisfy (W4) and (H.E.). Let A, B, S, T, P and Q be self-

mappings of X such that  

(i)   and  are occasionally weakly compatible (owc),  

(ii)  

 for all , where  be a function satisfying  

Then AB, ST, P and 𝑄 have a unique common fixed point. Furthermore, if AB  and ST ,then A, B, S, T, P and 𝑄 

have a unique common fixed point. 

In the above Theorem 3.2, if we take  , then we have the following corollary. This is the result of G. 

Jungck and B.E. Rhoades [20]. 

Corollary 3.4: Let  be a symmetric (semi-metric) space that satisfy (W4) and (H.E.). Let A, S, P and Q be self-mappings 

of X such that  

(i)   and  are occasionally weakly compatible (owc),  

(ii)  

 for all , where  be a function satisfying   

Then A, S, P and 𝑄 have a unique common fixed point 

In Corollary 3.4, if we take , then we have the following   corollary 

Corollary 3.5: Let  be a symmetric (semi-metric) space that satisfy (W4) and (H.E.). Let A, S and P be self-mappings 

of X such that  

(i)   and  are occasionally weakly compatible (owc),  

(ii)  

 for all , where  be a function satisfying    

Then A, S and P have a unique common fixed point.  

In Corollary 3.4, if we take ,  then we have the following   corollary. 

Corollary 3.6: Let  be a symmetric (semi-metric) space that satisfy (W4) and (H.E.). Let A and P be self-mappings of 

X such that  

(i) P and  are occasionally weakly compatible (owc),  

(ii)  

 for all , where  be a function satisfying    

Then A and P have a unique common fixed point.  

 

4 CONCLUSION  

Menger [21] introduced the notion of symmetric space as a generalization of metric space. In metric space, if the triangle 

inequality property is eliminated then the metric space reduces into symmetric space. However, triangle inequality 

property is very important for convergence criteria to obtain a fixed point. In symmetric space, without using triangle 

inequality property, the establishment of fixed-point results is a challenging task. So, we will use associated useful 

properties in symmetric space to establish fixed point theorems as partial replacement of triangle inequality. The properties 

W3, W4 and W5 were introduced by Wilson [27], H.E by Aamri and Moutawakil [2] and C.C by Cho et al. [5]. In this 
paper, we prove a common fixed-point theorem for three pairs of self-mappings by using compatible mapping of type (E) 

in semi-metric space that extends the results of Rajopadhyaya et al. [23,25], Aamri and Moutawakil [2] and other similar 

results in semi-metric space. We also prove a common fixed-point theorem for three pairs of self-mappings using 

occasionally weakly compatible mappings which improves and extends similar known results in the literature. 
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