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ABSTRACT: 

When it comes to the construction of hydraulic structures, the hydraulic performance and acoustic 

performance of centrifugal pumps are connected and conflicting. In order to find a solution to this issue, a 

technique for optimising the design of a volute that is based on a radial basis function (RBF) neural 

network and a genetic algorithm (GA) has been developed. The effectiveness of the centrifugal pump as 

well as the total amount of sound pressure level are employed as the targets for optimisation. The factors 

that are used for optimisation purposes are the installation angle of the volute tongue, the height of the 

volute diffuser tube, the installation angle of the volute tongue, and the diameter of the base circle. The 

Latin hyper-cube sampling (LHS) method is used to construct the sample space. The RBF neural network 

method is used to develop the agent model between the optimisation variables and goals. Finally, the GA 

method is utilised to do multi-objective optimisation. In order to do a comparative investigation of the 

hydraulic and acoustic performance of the persons in the Pareto solution set under a variety of different 

working situations, the initial individuals and two individuals from the set's extremes are chosen. The 

findings indicate that under the rated working conditions, the efficiency of the optimal individual of 

efficiency increases by 3.79%, while the internal noise of the optimal individual of sound pressure level 

decreases by 5.5% and the external noise decreases by 2.3%. The results also show that the initial 

individual had a lower level of efficiency than the optimal individual. 

Centrifugal pump, multi-objective optimisation, RBF neural network, and genetic algorithm are some of 

the keywords that should be used 

 

I.Introduction 

Energy shortages and environmental pollution 

are the primary problems faced by human 

society in sustain- able development.1 As a type 

of liquid conveying equipment, the centrifugal 

pump is widely used in pumped storage power 

generation and waste heat recovery of chemical 

equipment. The volute is one of the main flow 

passage components of the centrifugal pump, so 

its structural parameters are directly related to 

pump performance.2 Therefore, it is essential to 

improve efficiency and reduce noise by 

optimizing the volute structure. 

Because of the complex nonlinear relationship 

between the performance of the volute of the 

centrifugal pump and various parameter 

variables, the traditional 

empirical formula and agent model can only be 

used in single- and not multi-objective 

optimization design,3 hindering optimal volute 

design. In recent years, many scholars  have  

applied  artificial  neural  networks  and  

 

 

intelligent optimization algorithms in centrifugal 

pump optimization design,4–11 but those have 

slow learning speeds and poor convergence. 

Compared with back propagation (BP) neural 

net- works, radial basis function (RBF) neural 

networks have the advantage of fast learning and 

high approxi- mation ability.12 Lu et al.13 

established an alternative mixed flow pump head 

and efficiency model using an RBF neural 

network. They solved the optimal solution using 

a multi-island genetic algorithm (MIGA) to 

achieve multi-objective optimization. Du et al.14 

opti- mized the impeller parameters of the 

centrifugal pump using the design method 

combining RBF neural net- work and genetic 

algorithm (GA). The results revealed that the 

efficiency and head of the centrifugal pump 

under the same working conditions increased by 

3.87% and 4.25%. Wang et al.15 to improve the 

working effi- ciency of centrifugal pumps, 

modified heuristic algo- rithms are used to 
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optimize the diffuser of centrifugal pumps. The 

optimization improves the efficiency of the 

model and improves the internal unstable flow. 

Other studies examined the optimal design of 

centri- fugal pumps using artificial neural 

networks and intelli- gent optimization 

algorithms. However, they focus primarily on 

hydraulic performance and need to con- sider 

hydraulic and acoustic performance. In this 

study, the maximum efficiency and the lowest 

total acoustic pressure level of the centrifugal 

pump are the objec- tives, the sample space is 

established by Latin hyper- cube sampling 

(LHS), and the agent model between the 

optimization variables and objectives is built by 

the RBF neural network. The multi-objective 

optimization is performed based on the GA to 

achieve the synergistic optimization of hydraulic 

and acoustic performance. 

 

Numerical computation 

Basic parameters of the model Figure 1 

illustrates the pump structure, based on a single-

stage single-suction centrifugal pump with a 

spe- cific speed of 66 as the object. The main 

design para- meters are as follows: the flow rate 

(Qd)  is 12.5 m3/h, the head (Hd) is 20 m, the 

speed (n) is 2900 r/min, the axial pass frequency 

(APF) is 48.33 Hz, and the blade passing 

frequency (BPF) is 241.67 Hz. The main struc- 

tural parameters are presented in Table 1. 

Grid generation and boundary condition setting 

The grid division of the flow passage of the 

centrifugal pump is conducted using ICEM 

software. Because of the complexity of the 

internal structure of the centrifu- gal pump and 

the robust adaptability of the unstruc- tured 

grid,16,17 the entire flow passage is divided into 

an unstructured tetrahedral grid, and the critical 

parts  

 
Figure 1. Schematic of model pump structure.  

1. Pump body, 

2Sealing ring, 3. Impeller, 4. Pump cover, 5. 

Intermediate support parts, 6. Shaft, 7. 

Suspension parts 

Table 1. Main structural parameters of 

centrifugal pump 

 

 
Figure 2. Grid division of computational 

domain. 

 

are densified, as depicted in Figure 2. Given the 

influ- ence of the number of grids on the 

calculation results, the grid irrelevance 

verification was conducted with the centrifugal 

pump head as the comparison object; the results 

are depicted in Figure 3. The total number of 

grids in the calculation domain was 2.667 3 106. 

Three-dimensional unsteady numerical 

calculation is conducted using ANSYS CFX 

software. The inlet is set 

 
Figure 3.  Grid independence verification. 
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as the pressure inlet and the outlet as the mass 

flow outlet. The impeller calculation domain is 

placed in the rotating coordinate system for 

calculation, and other flow passage components 

are placed in the static coor- dinate system. The 

data exchange between  dynamic and static 

components is achieved through GGI grid 

connection technology. The unsteady calculation 

of the flow field uses the steady calculation 

result as the initial condition,  and  the   

convergence   accuracy  is  set   to 1 3 1025. The 

time step is 1.724 3 1024 s. The impeller rotates 

3° in each time step. After the unsteady flow 

field exhibits a stable periodic change, the 

pressure fluc- tuation information on the volute 

wall under four impeller rotation cycles is saved 

as the acoustic calcula- tion basis. 

The sound field is calculated using LMS Virtual. 

Lab software uses the boundary element  method 

(BEM) for the internal noise calculation and the 

finite structural element (FEM) coupled acoustic 

boundary element method for the external noise 

calculation. The acoustic boundary element 

surface grid is generated using ICEM software. 

The grid cell size should satisfy the principle 

that the number of grids in the unit wave- length 

is greater than 6. 

The calculation formula is defined in equation 

(1). 

The medium used in this study is 20°C clean 

water,monitoring position in the internal field of 

the centrifu- gal pump, and P0 is the pressure 

pulsation monitoring point at the volute tongue, 

as depicted in Figure 4.with the highest 

frequency of fmax = 3000 Hz. After cal- 

culation, the maximum grid unit length L is 

0.015 m. 

  

During the calculation of the internal sound field 

of the centrifugal pump, the inlet and outlet are 

set as the sound absorption property, and the 

front and rear cav- ities of the pump are set as 

the total reflective walls. The volute wall is 

defined as a fixed dipole sound source, and the 

blade wall is defined as a  rotating dipole sound 

source. Point S2 is defined as the noise 

 
Figure 4. Setting of boundary conditions for 

acoustic calculation of centrifugal pumps. 

 
Figure 5. External noise monitoring of 

centrifugal pump. 

 

monitoring position in the internal field of the 

centrifu- gal pump, and P0 is the pressure 

pulsation monitoring point at the volute tongue, 

as depicted in Figure 4. 

 
For monitoring the external noise of the 

centrifugal 

pump, 36 monitoring points were evenly 

arranged on the pump body’s x-y, x-z, and y-z 

planes, with an interval of 10°, and the distance 

between the monitoring points and the impeller 

rotation center was 1000 mm. The M monitoring 

point is located at the intersection of the x-y and 

x-z plane edges, as depicted in Figure 5. 
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Figure 6. Test bench. 1. Model pump, 2. 

Pressure sensor, 3. Torque power meter, 4. 

Noise data sampling analyzer, 5. Power cabinet, 

6. Water storage tank, 7. Flow control valve, 8. 

Electromagnetic flow meter, and 9. Hydrophone. 

 

Computational model validation 

A closed test bench was built to conduct 

performance tests on centrifugal pumps, as 

depicted in Figure 6, to verify the reliability of 

the numerical calculation meth- ods used. The 

head is calculated from the data mea- sured by 

the FTB-18 inlet and outlet pressure sensor, the 

AMF-50-104-1.6-100R-FOD electromagnetic 

flow- meter directly reads the flow, the HLT-

809 torque tach- ometer measures the torque and 

speed, and the RHC- 

10 hydrophone monitors the outlet sound  

pressure level. The installation position of the 

hydrophone is consistent with the noise 

numerical calculation process. During the test, 

the head of the hydrophone shall be flush with 

the pipe’s inner wall to prevent the fluid in 

the pipe from directly impacting the 

hydrophone. 

 
Figure 7(a) compares the hydraulic performance 

curve obtained by numerical calculation and the 

curve obtained by test. The trend of the 

corresponding com- parison curve of head and 

efficiency under the entire flow condition is the 

same, with the maximum relative error of 4.6% 

for head and 5% for efficiency. The overall 

coincidence is high, indicating that the flow field 

calculation method used has a certain reliability. 

Figure 7(b) compares the frequency response 

curve of the outlet sound pressure level obtained 

from the cal- culation and test of the internal 

field noise of the centri- fugal pump. In 

calculating the internal field noise of the 

centrifugal pump, the rotating blade dipole noise 

and the static volute dipole noise are calculated 

to verify the effectiveness of the noise 

calculation method. The cal- culated values of 

the two sound sources within 1500 Hz are lower 

than the measured values. At the blade pass- ing 

frequency and its octave, the calculated  values 

of the noise are close to the measured values, 

which is con- sistent with the law obtained by 

Liu et al.18 

The relative error increases with the increase in 

fre- quency. The primary reason for this  

phenomenon  is that the influence of pipe 

resonance, motor operation, cavitation, and 

backflow inside the pump has not been 

considered in calculating field noise inside the 

centrifu- gal pump. As depicted in Figure 7(b), 

the peak level of the blade rotating dipole noise 

is more consistent with the test value only at the 

blade passing frequency and twice the blade 

passing frequency. 

In contrast, the peak level of the volute 

stationary dipole noise is more consistent with 

the test value at more than twice the blade 

passing  frequency. Therefore, the internal field 

noise of two types of sound sources is 

superimposed on the corresponding fre- quency, 

and the superposition result is expressed by the 

total sound pressure level Lp, to improve the 

reliability of noise numerical calculation. The 

superposition for- mula is defined in equation 

(2). 

 
Figure 7(c) compares the noise superposition 

value of two types of sound sources and the test 

value. The trend of the two curves is the same, 

and the maximum sound pressure level appears 

at the blade passing. 

 
frequency, at which time the relative error is 

4.1%. The maximum relative error in the entire 

frequency range is 9.6%, satisfying the test error 

requirements. The com- parison result confirms 

that the noise  calculation method adopted can 

accurately reflect the noise level of centrifugal 

pumps. 

 Optimized design 
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Establishment of optimization parameters and 

sample space 

With many types of structural parameters of the 

centri- fugal pump’s volute, each parameter has 

different effects on performance—some 

parameters only have significant effects on 

specific performance. In this study, the relevant 

parameters are total sound pressure level (Lp) 

and efficiency (h). As an optimization goal, 

given the controllability of structural parameters 

in the spiral case modeling process and the 

existing conclu- sions in the reference 

literature,19 the influence para- meters and 

intervals of the spiral case structure are selected, 

as presented in Table 2. 

The selection of sample points is directly related 

to the construction accuracy of the approximate 

centrifu- gal pump model. Too many sample 

points will lead to an increase in workload and 

consumption of computing resources. As a 

standard test sampling design method,20 the 

LHS can fully reflect the essential characteristics 

of the sample space with fewer sampling times, 

which belongs to stratified sampling technology. 

The number of samples for training the RBF 

neural network should follow the n 3 10 

Principle. The number of samples should be 10 

times greater than the independent vari- able 

parameters of the input layer. Four volute struc- 

ture parameters were selected in this 

optimization process, and the number of sample 

points was deter- mined to be 41. Its distribution 

in the sample space is depicted in Figure 8, 

where the height of the volute dif- fuser tube L 

is distinguished by the color bar. 

The 41 samples generated by the LHS are used 

for numerical simulation calculation, and the 

results are presented in Table 3. The blade 

rotating dipole noise (Lp1) and volute static 

dipole noise (Lp2) are calculated for a more 

accurate noise calculation. The total sound 

pressure level (Lp) is obtained by noise 

superposition as defined in equation (2). 

 
Figure 8. Sample space distribution. 

 

 
Figure 9. Schematic of RBF neural network 

structure. 
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Construction of RBF neural network agent 

model 

The relationship between the hydraulic and 

acoustic performance of the centrifugal pump 

and the structural parameters of the volute is 

unknown and complex, and the traditional 

mathematical model has difficulty achieving 

dynamic expression. The RBF neural net- work 

is a feedforward neural network with a three- 

layer network structure: an input layer, a hidden 

layer, and an output layer.12 The formal 

transformation of sample data from the input 

layer to the hidden layer is nonlinear, while the 

transformation from the hidden layer to the 

output layer is linear. 

Figure 9 illustrates the structure of the RBF 

neural network, where x is the n-dimensional 

input vector, and ci is the center of the hidden 

layer node. qi is the output of the ith hidden 

layer node, fi(*) is the RBF function, 

||*|| is Euclidean norm, wkj is vector output 

direction, S 

is the linear weighted sum of the outputs of 

hidden cells, and y is the output vector. 

 
This study establishes the RBF neural network 

using the newrb function in MATLAB software. 

There are four input layer nodes and two output 

layer nodes. All 41 samples generated by the 

LHS method participate in the training of the 

RBF neural network. Under the pre- mise of 

fully guaranteeing the approximation  ability and 

generalization ability of the constructed RBF 

neural network, the maximum number of hidden 

layer neuron nodes is set to 40, the  number of  

iterations is the same as the number of samples, 

and the target error is 1024. The error change 

curve in the training process is depicted in 

Figure 10. When the number of iterations 

reaches 33, the RBF neural network training 

error is less than the target error, and the training 

is completed. Five groups of  test  data  are 

randomly  generated by the LHS method to test 

the prediction effect  of  the RBF neural 

network, as presented in Table 4. The pre- dicted 

value of the RBF neural network is compared 

with the calculated value of the CFX, as 

depicted in Figure 11. In contrast, Figure 11(a) 

illustrates the com- parison results of centrifugal 

pump efficiency, and Figure 11(b) illustrates the 

comparison of the total sound pressure level of 

the centrifugal pump. The maxi- mum error of 

efficiency is 2.05%, and the maximum error of 

total sound pressure level is 0.63%, both of 

which are within the allowable range of test 

error. Therefore, the trained RBF neural network 

can accu- rately predict the efficiency and total 

sound pressure level within the selected range of 

volute structure para- 

meters of the centrifugal pump. 

 

Global optimization based on GA 

GA is a computing model  based on natural 

selection and genetic mechanisms. It was first 

proposed by John Holland in 1975 and has been 

widely used in machine learning and 

optimization design research since its 

introduction in.21 In multi-objective  

optimization design, using GA to find the 

optimal solution can avoid the complex 

mathematical solution process. It must produce 

only the corresponding objective function and 

fitness function and modify the probability of 

the opti- mization population through genetic 

operators selec- tion, crossover, and mutation to 

obtain the optimal solution to the problem. The 

specific process is depicted in Figure 12. 
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In combination with this research content, GA is 

used in MATLAB to solve the RBF neural 

network proxy model constructed to obtain the 

Pareto optimal solution set of the two objective 

functions of maximum efficiency of centrifugal 

pump and minimum total sound pressure 

level.22 In the specific implementation process, 

the population fitness evaluation process is 

provided by the trained RBF neural network. 

The  

 

individual coding process uses actual encoding. 

The population size is set to 200, the Pareto 

front-end coef- ficient to 0.5, the crossover rate 

to 0.3, and the muta- tion rate to 0.2. 

Results and discussion 

Optimization results 

After iteration, the Pareto optimal frontier curves 

for the synergistic optimization of the 

centrifugal pump efficiency (h) and the total 

sound pressure level (Lp) were obtained, as 

depicted in Figure 13. The curve development is 

relatively smooth, indicating that the Pareto 

solution set is uniformly distributed. The high 

optimization performance is similar to the Pareto 

opti- mal frontier curve obtained by Shim et 

al.19 Table 5 presents the structural parameters 

and performance of  

 

 

 
the two extreme individuals of the Pareto 

solution set compared with the initial individual. 

Comparing the two optimized extreme 

individuals with the initial one, D3 and b3 of the 

optimal efficiency 
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individual have decreased, while f0 and L have 

increased. D3, b3, and f0 of the optimal total 

sound pressure level individual increased, while 

L decreased. 

Figure 14 illustrates the changes in the worm 

shell geo- metry before and after optimization. 

 
Comparison and analysis of hydraulic 

performance before and after optimization 

The two optimized extremal individuals are 

modeled, numerically calculated, and compared 

with the initial individuals. 

Figure 15 is a comparison chart of hydraulic 

perfor- mance curves. From the perspective of 

the working conditions of the entire flow point, 

the trend of the head and efficiency curves after 

optimization is the same as before optimization. 

The head curve distribu- tion of the individual 

with the best efficiency is lower than that of the 

initial individual at 0.6Qd,  and  the curve 

distribution of other flow points is higher than 

that of the initial individual. The head curve 

distribu- tion of the optimal individual of total 

sound pressure level is the same as that of the 

initial individual, and the efficiency curve is 

slightly higher than that of the initial individual 

when it is more significant than  0.8Qd. Under 

rated flow conditions, the head of the best effi- 

ciency individual increased by 1.79%, and the 

efficiency increased by 3.79% compared with 

the initial individ- ual. The head of the best 

individual of total sound pres- sure level does 

not noticeably change, and the efficiency 

increases by 1.1%. 

The  strength  of  turbulent  eddy  dissipation  

can closely reflect the hydraulic performance 

level of the centrifugal pump. Figure 16 

illustrates the distribution  

 
of turbulent eddy dissipation in the centrifugal 

pump’s impeller middle span under rated 

conditions. The tur- bulent eddy dissipation in 

the areas such as the impeller inlet, the interface 

between the impeller outlet and the volute, and 

close to the inner wall of the volute is rela- 

tively severe, indicating that the flow in these 

areas has certain instability, and the energy loss 

is relatively severe. The position of turbulent 

vortex dissipation is the same before and after 

optimization. 

The turbulent eddy dissipation at the impeller 

inlet and the interface between the impeller 

outlet and the volute do not change noticeably. 

The turbulent eddydissipation near the inner 

wall of the volute and the volute diffuser tube is 

significantly weaker than that of the initial 

individual, in which the best efficiency indi- 

vidual is the most obvious, followed by the best 

total sound pressure level individual. These 

results confirm that the energy loss in the 

optimized individual is smaller than in the initial 

individual. 

As depicted in Figure 15, the head and 
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span of the volute under high flow conditions. 

Before optimization, the streamline in the volute 

diffuser is dis-tributed predominantly on both 

sides of the pipe wall. After optimization, the 

streamline in the volute diffuser tube is evenly 

distributed, the flow rate is lower  than the initial 

individual, and the energy loss is slight. The 

optimal efficiency individual performs  best, 

followed by the optimum individual of the total 

sound pressure level. 

During the unsteady calculation of the flow field 

of the centrifugal pump, the pressure pulsation 

informa- tion at the volute tongue was 

monitored. The specific location of the 

monitoring point P0 is  depicted  in Figure 4. 

The time-domain information of pressure 

pulsation obtained from monitoring is converted 

into frequency-domain information using the 

Fourier trans- form, and the transient pressure is 

dimensionless pro- cessed, as defined by 

equation (3): 

 
where P is the transient pressure, P¯ is the 

average pres- 

sure throughout the cycle, and u is the 

circumferential velocity at the impeller outlet. 

Figure 18 illustrates the spectrum of pressure 

pulsa- tion monitored at the volute tongue. The 

peak value of pressure pulsation appears 

primarily at the shaft fre- quency, blade passing 

frequency, and multiple frequen- cies. The peak 

value at the blade passing frequency is the 

largest, and the peak value of pressure pulsation 

decreases with the increase in frequency. This 

indicates that the blade passing frequency is the 

central frequency of pressure pulsation at the 

volute tongue. Under the three specified working 

conditions, the peak pressure pulsation of the 

optimized individual at the blade. 

 

 

 
passing frequency is weakened to varying 

degrees compared with the initial individual. 

The rated working condition has the most 

significant drop, the optimal efficiency 

individual has a 4.4% drop, and the total sound 

passing frequency is weakened to varying 

degrees compared with the initial individual. 

The rated working condition has the most 

significant drop, the optimal efficiency 

individual has a 4.4% drop, and the total sound 

pressure level optimal individual has a 14% 

drop. Comparison and analysis of acoustic 

performance before and after optimization Based 
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on the flow field calculation of the centrifugal 

pump, the internal and external sound fields are 

calculated to explore the changes in acoustic 

performance of the centrifugal pump before and 

after optimization. Figure 19 illustrates the 

sound pressure level frequency response curves 

of the internal noise of the centrifugal pump. 

The development law of sound pressure level 

frequency response curves for each source term 

of the three individuals is similar, and the peak 

values occur primarily at the shaft frequency, 

blade passing frequency, and octave. The peak 

values decrease with the increase in frequency. 

The optimized individual’s sound pressure level 

frequency response curve is below the initial 

individual, and the noise reduction effect is 

significant. Table 6 presents the centrifugal 

pump infield noise’s sound pressure level values 

at the vane passing frequency for the three 

specified operating conditions. Under the rated 

working condition, compared with the initial 

individual, the total sound pressure level (Lp) of 

the optimal efficiency individual decreases by 

1.4%, and the total sound pressure level (Lp) of 

the optimum individual of the total sound 

pressure level decreases by 5.5%. Figure 20 

illustrates the frequency response curve of the 

sound pressure level monitored at point M 

during 

 
the calculation of the external noise of the 

centrifugal pump. Under the three specified 

working conditions, the trend of each curve is 

similar. The peak  value occurs primarily at the 

blade passing frequency and its octave. The peak 

value level gradually decreases with the increase 

of frequency, among which the peak value level 

is the highest at the blade passing frequency. 

The external noise radiation level under 

extensive flow con- ditions is higher than in 

other conditions. Compared with the initial 

individual, the noise radiation level of the 

optimized individual decreased in three specified 

working conditions, of which the effect is most 

evident in the rated working condition. At the 

blade passing frequency, the efficiency optimal 

individual decreases by 0.6%, and the sound 

pressure level optimal individ- ual decreases by 

2.3%. 

Figure 21 illustrates the directivity distribution 

at the passing frequency of the external noise 

blade of the cen- trifugal pump under the rated 

working condition. The directivity distribution 

shape of the external noise of each plane differs, 

caused primarily by the difference in the pump 

body structure and the relative sound source 

position of each plane. In the x-y and y-z planes, 

the external noise presents a characteristic dipole 

distribu- tion, while in the x-z plane, it differs. 

This is primarily because the x-z plane is located 

on the middle span of the volute, caused by the 

structure’s asymmetry and the fluid flow 

instability at the tongue diaphragm. The 

directional distribution range of the external 

noise  of the optimized individual in each plane 

is lower  than that of the initial individual the 

optimal individual of total sound pressure level 

has the best effect, followed by the optimal 

individual of efficiency. 

Conclusion 

In this study, an RBF neural network and GA 

are com- bined to optimize the volute to improve 

the hydraulic and acoustic performance of the 

centrifugal pump. The following conclusions are 

drawn: 

(1) The multi-objective optimization 

method com- bining RBF neural network and 

GA achieves the collaborative optimization of 

the hydraulic and acoustic performance of 

centrifugal pumps. The (D3) and (b3) of the 

optimal efficiency indi- 

vidual decreased compared with the initial indi- 

vidual, while (f0) and (L) increased. The (D3), 

(b3), and (f0) of the optimum individual of total 

sound pressure level increased compared with 

the initial individual, while (L) decreased. 

(2) The centrifugal pumps’ hydraulic and 

acoustic performance before and after 

optimization under different working conditions 

are compared and analyzed. The results confirm 

that under different working conditions, the 

hydraulic and acoustic performance of the 

optimized individual increases to varying 

degrees. Under rated conditions, com- pared 
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with the initial individual, the efficiency of the 

optimal individual increases by 3.79%, the head 

increased by 1.79%, the peak value of pres- sure 

pulsation at the blade passing frequency 

decreases by 4.4%, the internal noise decreases 

by 1.4%, and the external noise decreases by 

0.6%. The efficiency of the best individual of 

sound pressure level increased by 1.1%, the head 

does not noticeably change, the peak value of 

pressure pulsation at the blade passing frequency 

decreased by 14%, the internal noise decreased 

by 5.5%, and the external noise decreased by 

2.3%. 

(3) The multi-objective optimization  design 

method adopted in this study applies to the 

optimization design of the volute of the centri- 

fugal pump. However, whether  this  method can 

realize the simultaneous  optimization  of the 

impeller and volute requires further study. 
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