
Turkish Journal of Computer and Mathematics Education    Vol.11 No.02 (2020), 650-653 

DOI:https://doi.org/10.17762/turcomat.v11i2.14275 

 

 

650 

 Research Article 

Fixed Point Theorems For Two Paired Mappings In Fuzzy 2-Metric Spaces 
 

Rohit Pathak* 

*Institute of Engineering & Technology, DAVV, Indore, M.P., India, E-Mail: rohitpathakres@yahoo.com 

 

Abstract.  In this paper, we prove common fixed-point theorems for two pairs of self-mappings on fuzzy 2-metric space using weaker 

condition of the compatibility of the maps. Our results improve and the results of Sharma [10] in the sense that the completeness of the 

fuzzy 2-metric space and continuity of the mappings have been dropped. Our results also extend the results of Cho [2] to fuzzy 2-metric 

spaces.  
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1. Introduction. 

 

Using the concept of fuzzy sets given by Zadeh [11], Kramosil and Michalek [7] developed the concept of fuzzy metric 

spaces. George and Veeramani [4] improved the concept of fuzzy metric spaces using 𝑡 −norms. Gahler [3] introduced 

the concept of fuzzy 2-metric spaces. Further, Iseki et al [6] proved results for contractive type mappings in 2-metric 

spaces.  

Cho [2] and Kutukcu et al [8] proved common fixed-point theorems for three mappings in fuzzy 2-metric spaces. 

Many authors have studied common fixed-point theorems in fuzzy metric spaces. Some of interesting papers are Cho [1], 

George and Veeramani [4], Grabiec [5], Kramosil and Michalek [7] and Sharma [10]. 

Cho [1] proved a common fixed-point theorem for four mappings in fuzzy metric spaces and Sharma [10] proved a 

common fixed-point theorem for three mappings in fuzzy 2-metric spaces. 

In this paper, we prove common fixed-point theorems for two pairs of compatible self-mappings. Our theorems improve 

the theorems of Sharma [10] and extend the results of Cho [2] to fuzzy 2-metric spaces. 

 

2. Preliminaries. 

 

Definition 2.1. [11] A binary operation ∗: [0,1] × [0,1] → [0,1] is called a continuous 𝑡 −norm if ∗ satisfies the following 

conditions for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1].  
(i) ∗ (𝑎, 0) = 0,∗ (𝑎, 1) = 𝑎, 

(ii) * is continuous, 

(iii) ∗ (𝑎, 𝑏) =∗ (𝑏, 𝑎), 
(iv) ∗ (𝑎, 𝑏) ≤∗ (𝑐, 𝑑) if 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑, 

(v) ∗ (∗ (𝑎, 𝑏), 𝑐) =∗ (𝑎,∗ (𝑏, 𝑐)), 

Examples of t-norms are 𝑎 ∗  𝑏 =  𝑎𝑏 and 𝑎 ∗  𝑏 =  min {𝑎, 𝑏}. 

 

Definition 2.2. [9] The 3-tuple (𝑋, 𝑀,∗) is called a fuzzy metric space if 𝑋 is an arbitrary set, ∗ is a continuous 𝑡-norm 

and 𝑀 is a fuzzy set in 𝑋2 × [0, ∞) satisfying the following conditions for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 − 

(i) 𝑀(𝑥, 𝑦, 0) = 0, 

(ii) 𝑀(𝑥, 𝑦, 𝑡) = 1 for all 𝑡 > 0 if and only if 𝑥 = 𝑦, 
(iii) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡),  
(iv) 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) ≥ 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠), 
(v) 𝑀(𝑥, 𝑦, . ): [0, ∞] → [0,1] is left continuous. 
𝑀(𝑥, 𝑦, 𝑡) can be thought of as the degree of nearness between 𝑥 and 𝑦 with respect to 𝑡.   
 

Definition 2.3. [3] Let 𝑋 be a nonempty set. A real valued function 𝑑: 𝑋 × 𝑋 × 𝑋 → 𝑅 is said to be a 2-metric on 𝑋 if- 

(i) given distinct elements 𝑥, 𝑦 ∈ 𝑋, there exists an element 𝑧 ∈ 𝑋 such that 𝑑(𝑥, 𝑦, 𝑧) ≠ 0, 
(ii) 𝑑(𝑥, 𝑦, 𝑧) = 0 if at least two of 𝑥, 𝑦 and 𝑧 are equal, 

(iii) 𝑑(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧, 𝑦) = 𝑑(𝑦, 𝑧, 𝑥) = 𝑑(𝑦, 𝑥, 𝑧) = 𝑑(𝑧, 𝑥, 𝑦) = 𝑑(𝑧, 𝑦, 𝑥) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, (Symmetry) 

(iv) 𝑑(𝑥, 𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑦, 𝑤) + 𝑑(𝑦, 𝑧, 𝑤) + 𝑑(𝑧, 𝑥, 𝑤) for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋, (Rectangle inequality) 

Then pair (𝑋, 𝑑) is called a 2-metric space. 

 

Example 2.1. Let 𝑋 = 𝑅3 and 𝑑(𝑥, 𝑦, 𝑧) = the area of the triangle spanned by 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) and 𝑧 =
(𝑧1, 𝑧2, 𝑧3) which may be given explicitly by 
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𝑑(𝑥, 𝑦, 𝑧) = |𝑥1(𝑦2𝑧3 − 𝑦3𝑧2) − 𝑥2(𝑦1𝑧3 − 𝑦3𝑧1) + 𝑥3(𝑦1𝑧2 − 𝑦2𝑧1) 

Then (𝑋, 𝑑) is a 2-metric space. 

 

Example 2.2 Let 𝑑: 𝑋 × 𝑋 × 𝑋 → 𝑅 be given by 𝑑(𝑥, 𝑦, 𝑧) = min{|𝑥 − 𝑦|, |𝑦 − 𝑧|, |𝑧 − 𝑥|}.  Then (𝑋, 𝑑) is a 2 −metric 

space. 

 

Definition 2.4 [9]. An operation ∗: [0,1] × [0,1] × [0,1] → [0,1] is called a continuous 𝑡 −norm if ∗ satisfies the following 

conditions for all 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ 𝑋 − 

(i) ∗ (𝑎, 0,0) = 𝑎,∗ (𝑎, 1,1) = 𝑎, 
(ii) * is continuous, 

(iii) ∗ (𝑎, 𝑏, 𝑐) =∗ (𝑏, 𝑎, 𝑐) =∗ (𝑎, 𝑐, 𝑏) =∗ (𝑐, 𝑎, 𝑏) =∗ (𝑏, 𝑐, 𝑎) =∗ (𝑐, 𝑏, 𝑎), 

(iv) ∗ (𝑎, 𝑏, 𝑐) ≤∗ (𝑑, 𝑒, 𝑓) whenever 𝑎 ≤ 𝑑, 𝑏 ≤ 𝑒, 𝑐 ≤ 𝑓, 
(v) ∗ (∗ (𝑎, 𝑏, 𝑐), 𝑑, 𝑒) =∗ (𝑎,∗ (𝑏, 𝑐, 𝑑)), 𝑒) =∗ (𝑎, 𝑏,∗ (𝑐, 𝑑, 𝑒))), 

 

Examples of t-norms are 𝑎 ∗  𝑏 ∗ 𝑐 =  𝑎𝑏𝑐 and 𝑎 ∗  𝑏 ∗ 𝑐 =  min {𝑎, 𝑏, 𝑐}. 

 

Definition 2.5.  [10] The 3-tuple (𝑋, 𝑀,∗) is called a fuzzy 2-metric space if 𝑋 is an arbitrary set, ∗ is a continuous 𝑡-norm 

and 𝑀 is a fuzzy set in 𝑋3 × [0, ∞) satisfying the following conditions for all 𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋 and 𝑡1, 𝑡2, 𝑡3 > 0 − 

(i) 𝑀(𝑥, 𝑦, 𝑧, 0) = 0, 

(ii) 𝑀(𝑥, 𝑦, 𝑧, 𝑡) = 1 for all 𝑡 > 0 if and only if at least two of the three points are equal, 

(iii) 𝑀(𝑥, 𝑦, 𝑧, 𝑡) = 𝑀(𝑥, 𝑧, 𝑦, 𝑡) = 𝑀(𝑦, 𝑧, 𝑥, 𝑡) = 𝑀(𝑦, 𝑥, 𝑧, 𝑡) = 𝑀(𝑧, 𝑦, 𝑥, 𝑡) = 𝑀(𝑧, 𝑥, 𝑦, 𝑡) for all 𝑡 > 0, 
(iv) 𝑀(𝑥, 𝑦, 𝑧, 𝑡1 + 𝑡2 + 𝑡3) ≥ 𝑀(𝑥, 𝑦, 𝑢, 𝑡1) ∗ 𝑀(𝑥, 𝑢, 𝑧, 𝑡2) ∗ 𝑀(𝑢, 𝑦, 𝑧, 𝑡3), 

(v) 𝑀(𝑥, 𝑦, 𝑧, . ): 𝑋3 × [0,1] → [0,1] is left continuous. 

 

Example 2.3.  Let (𝑋, 𝑑) be a 2-metric space and denote 𝑎 ∗ 𝑏 ∗ 𝑐 =  𝑎𝑏𝑐 (or min {𝑎, 𝑏, 𝑐}) for all 𝑎, 𝑏, 𝑐 ∈ [0,1]. For all 

𝑥, 𝑦, 𝑧 ∈  𝑋 and 𝑡 >  0, define 

𝑀(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡

𝑡 + 𝑑(𝑥, 𝑦, 𝑧)
 

Then (𝑋, 𝑀,∗) is a fuzzy 2 −metric space. 𝑀 is called the fuzzy metric induced by the 2-metric 𝑑. 
 

Definition 2.6. [10] Let (𝑋, 𝑀,∗) be a fuzzy 2-metric space. 

(1) A sequence {xn} in fuzzy 2-metric space X is said to be convergent to a point 𝑥 ∈ 𝑋 (denoted by 

lim
𝑛→∞

𝑥𝑛 = 𝑥  or  𝑥𝑛 → 𝑥) if  

lim
𝑛→∞

𝑀(𝑥𝑛 , 𝑥, 𝑎, 𝑡) = 1 for all 𝑎 ∈ 𝑋, 𝑡 > 0. 

(2) A sequence {𝑥𝑛} in fuzzy 2-metric space X is called a Cauchy sequence, if  

lim
𝑛→∞

𝑀(𝑥𝑛+𝑝, 𝑥𝑛 , 𝑎, 𝑡) = 1 for all 𝑎 ∈ 𝑋, 𝑡 > 0, 𝑝 > 0. 

 

(3) A fuzzy 2-metric space in which every Cauchy sequence is convergent is said to be complete. 

 

Definition 2.7. [9] Self mappings A and B of a fuzzy 2-metric space (𝑋, 𝑀,∗) are said to be compatible if  
lim

𝑛→∞
𝑀(𝐴𝐵𝑥𝑛, 𝐵𝐴𝑥𝑛 , 𝑎, 𝑡) = 1 

for all 𝑎 ∈ 𝑋 and 𝑡 > 0,  whenever {𝑥𝑛} is a sequence in 𝑋 such that- 

lim
𝑛→∞

𝐴𝑥𝑛 = lim
𝑛→∞

𝐵𝑥𝑛 = 𝑧 

for some 𝑧 ∈ 𝑋. 
 

Lemma 2.1. [10] For fuzzy 2-metric space (𝑋, 𝑀,∗), if 𝑀(𝑥, 𝑦, 𝑧, 𝑘𝑡)  ≥  𝑀(𝑥, 𝑦, 𝑧, 𝑡), for all 𝑥 ≠ 𝑦 ≠  𝑧 ∈ 𝑋, 𝑘 ∈
[0,1], 𝑡 > 0, then 𝑥 = 𝑦. 
 

3. Main Results. 

 

Theorem 3.1. Let 𝑃, 𝑄, 𝑅, 𝑆 be four self-mappings of a fuzzy 2 − metric space (𝑋, 𝑀,∗) such that-  

(3.1.1) the pairs (𝑃, 𝑅) and (𝑄, 𝑆) are compatible, 

(3.1.2) for all 𝑥, y, 𝑧 ∈ X, 𝑘 ∈ (0,1) and 𝑡 >  0  

𝑀(𝑅𝑥, 𝑆𝑦, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑃𝑥, 𝑄𝑦, 𝑧, 𝑡), 𝑀(𝑃𝑥, 𝑅𝑥, 𝑧, 𝑡), 𝑀(𝑆𝑦, 𝑄𝑦, 𝑧, 𝑡), 𝑀(𝑅𝑥, 𝑄𝑦, 𝑧, 𝑡)}. 
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Then 𝑃, 𝑄, 𝑅, 𝑆 have a unique common fixed point in 𝑋. 
Proof. Since the pairs (𝑃, 𝑅) and (𝑄, 𝑆) are compatible maps pairs, there exist sequences {𝑥𝑛} and {𝑦𝑛} in 𝑋 such that 

lim
𝑛→∞

𝑃𝑥𝑛 = lim
𝑛→∞

𝑅𝑥𝑛 = 𝑢 and lim
𝑛→∞

𝑄𝑦𝑛 = lim
𝑛→∞

𝑆𝑦𝑛 = 𝑣 

for some 𝑢, 𝑣 ∈ 𝑋, for all 𝑡 > 0 𝑎𝑛𝑑  
lim

𝑛→∞
𝑀(𝑃𝑅𝑥𝑛 , 𝑅𝑃𝑥𝑛 , 𝑎, 𝑡) = lim

𝑛→∞
𝑀(𝑃𝑢, 𝑅𝑢, 𝑎, 𝑡) = 1 

lim
𝑛→∞

𝑀(𝑄𝑆𝑦𝑛 , 𝑆𝑄𝑦𝑛 , 𝑎, 𝑡) = lim
𝑛→∞

𝑀(𝑄𝑣, 𝑆𝑣, 𝑎, 𝑡) = 1 

for all 𝑎 ∈ 𝑋.  Hence 

𝑃𝑢 = 𝑅𝑢, 𝑄𝑣 = 𝑆𝑣. 
Therefore 𝑢 is the coincidence point of 𝑃, 𝑅 and 𝑣 is the coincidence point of 𝑄, 𝑆. 
To show 𝑢 = 𝑣, using (3.1.2), 

𝑀(𝑅𝑥𝑛 , 𝑆𝑦𝑛, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑃𝑥𝑛 , 𝑄𝑦𝑛, 𝑧, 𝑡), 𝑀(𝑃𝑥𝑛 , 𝑅𝑥𝑛 , 𝑧, 𝑡), 𝑀(𝑆𝑦𝑛 , 𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑅𝑥𝑛 , 𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞, we get 

𝑀(𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑢, 𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑣, 𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑢, 𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  
Using Lemma 2.1, we get 𝑢 = 𝑣. Therefore 𝑃, 𝑄, 𝑅, 𝑆 have identical coincidence point in 𝑋. 
Now to show that  

𝑃𝑢 = 𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Put 𝑥 = 𝑢 and 𝑦 = 𝑦𝑛 in (3.1.2), we get 

𝑀(𝑅𝑢, 𝑆𝑦𝑛 , 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑃𝑢, 𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑃𝑢, 𝑅𝑢, 𝑧, 𝑡), 𝑀(𝑆𝑦𝑛, 𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞, we get 

𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑃𝑢, 𝑣, 𝑧, 𝑡), 𝑀(𝑃𝑢, 𝑅𝑢, 𝑧, 𝑡), 𝑀(𝑣, 𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.1, we get 𝑅𝑢 = 𝑣.   
Therefore 

𝑅𝑢 = 𝑃𝑢 = 𝑣. 
Put 𝑥 = 𝑥𝑛 and 𝑦 = 𝑣 in (3.1.2), we get 

𝑀(𝑅𝑥𝑛, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ 𝑚𝑖𝑛 {𝑀(𝑃𝑥𝑛, 𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑃𝑥𝑛 , 𝑅𝑥𝑛 , 𝑧, 𝑡), 𝑀(𝑆𝑣, 𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑥𝑛 , 𝑄𝑣, 𝑧, 𝑡)}. 
As 𝑛 → ∞, we get 

𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ 𝑚𝑖𝑛 {𝑀(𝑢, 𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑆𝑣, 𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑄𝑣, 𝑧, 𝑡)}. 
This implies 𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.1, we get 𝑆𝑣 = 𝑢.   
Therefore 

𝑆𝑣 = 𝑄𝑣 = 𝑢. 
Since 𝑢 = 𝑣, we get 

𝑃𝑢 = 𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Hence 𝑃, 𝑄, 𝑅, 𝑆 have a unique common fixed point in 𝑋. 
 

Theorem 3.2. Let 𝐴, 𝐵, 𝑃, 𝑄, 𝑅, 𝑆 be six self-mappings of a fuzzy 2 − metric space (𝑋, 𝑀,∗) such that- 

(3.2.1) the pairs (𝐴𝑃, 𝑅) and (𝐵𝑄, 𝑆) are compatible, 

(3.2.2) 𝑅𝐵 = 𝐵𝑅, 𝐴𝑃 = 𝑃𝐴, 𝑃𝐵 = 𝐵𝑃, 𝑅𝑄 = 𝑄𝑅, 𝐴𝑄 = 𝑄𝐴, 𝑃𝑄 = 𝑄𝑃, 
(3.2.3) for all 𝑥, y, 𝑧 ∈  𝑋, 𝑘 ∈  (0,1) and 𝑡 >  0  

𝑀(𝑅𝑥, 𝑆𝑦, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑥, 𝐵𝑄𝑦, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑥, 𝑅𝑥, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦, 𝑆𝑦, 𝑧, 𝑡), 𝑀(𝑅𝑥, 𝐵𝑄𝑦, 𝑧, 𝑡)}. 

Then 𝐴, 𝐵, 𝑃, 𝑄, 𝑅, 𝑆 have a unique common fixed point in 𝑋. 
Proof. Since the pairs (𝐴𝑃, 𝑅) and (𝐵𝑄, 𝑆) are compatible maps pairs, there exist sequences {𝑥𝑛} and {𝑦𝑛} in 𝑋 such that 

lim
𝑛→∞

𝐴𝑃𝑥𝑛 = lim
𝑛→∞

𝑅𝑥𝑛 = 𝑢 and lim
𝑛→∞

𝐵𝑄𝑦𝑛 = lim
𝑛→∞

𝑆𝑦𝑛 = 𝑣 

for some 𝑢, 𝑣 ∈ 𝑋 and all 𝑡 > 0 𝑎𝑛𝑑  
lim

𝑛→∞
𝑀(𝐵𝑄𝑆𝑦𝑛 , 𝑆𝐵𝑄𝑦𝑛 , 𝑎, 𝑡) = lim

𝑛→∞
𝑀(𝐵𝑄𝑣, 𝑆𝑣, 𝑎, 𝑡) = 1 

for all 𝑎 ∈ 𝑋. 
Hence 

𝐴𝑃𝑢 = 𝑅𝑢, 𝐵𝑄𝑣 = 𝑆𝑣. 
Therefore 𝑢 is the coincidence point of 𝐴𝑃, 𝑅 and 𝑣 is the coincidence point of 𝐵𝑄, 𝑆. 
To show 𝑢 = 𝑣, using (3.2.3), 

𝑀(𝑅𝑥𝑛 , 𝑆𝑦𝑛, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑥𝑛 , 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝐴𝑃𝑥𝑛 , 𝑅𝑥𝑛 , 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦𝑛 , 𝑆𝑦𝑛, 𝑧, 𝑡), 𝑀(𝑅𝑥𝑛 , 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞, we get 

𝑀(𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑢, 𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑣, 𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑢, 𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  
Using Lemma 2.1, we get 𝑢 = 𝑣. Therefore 𝐴𝑃, 𝑅 𝑎𝑛𝑑 𝐵𝑄, 𝑆 have identical coincidence point in 𝑋. 
Now to show that  
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𝐴𝑢 = 𝐵𝑢 = 𝑃𝑢 = 𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Put 𝑥 = 𝑢 and 𝑦 = 𝑦𝑛 in (3.2.3), we get 

𝑀(𝑅𝑢, 𝑆𝑦𝑛 , 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑢, 𝐵𝑄𝑦𝑛, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑢, 𝑅𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦𝑛, 𝑆𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞, we get 

𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝑅𝑢, 𝑧, 𝑡), 𝑀(𝑣, 𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.1, we get 𝑅𝑢 = 𝑣.  Therefore 

𝑅𝑢 = 𝐴𝑃𝑢 = 𝑣. 
Put 𝑥 = 𝑥𝑛 and 𝑦 = 𝑣 in (3.2.3), we get 

𝑀(𝑅𝑥𝑛 , 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑥𝑛 , 𝐵𝑄𝑣, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑥𝑛 , 𝑅𝑥𝑛, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑣, 𝑆𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑥𝑛 , 𝐵𝑄𝑣, 𝑧, 𝑡)}. 

As 𝑛 → ∞, using 𝐵𝑄𝑣 = 𝑆𝑣, we get 

𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑢, 𝐵𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑣, 𝑆𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝐵𝑄𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.1, we get 𝑆𝑣 = 𝑢.  Therefore 

𝑆𝑣 = 𝐵𝑄𝑣 = 𝑢. 
Since 𝑢 = 𝑣, we get 

𝐴𝑃𝑢 = 𝐵𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Now we show 𝑄𝑢 = 𝐵𝑢 = 𝑢. 
Put  𝑥 = 𝐵𝑢, 𝑦 = 𝑦𝑛 in (3.2.3), we get 

𝑀(𝑅𝐵𝑢, 𝑆𝑦𝑛 , 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝐵𝑢, 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝐴𝑃𝐵𝑢, 𝑅𝐵𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦𝑛 , 𝑆𝑦𝑛, 𝑧, 𝑡), 𝑀(𝑅𝐵𝑢, 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞,  

𝑀(𝑅𝐵𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝐵𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐴𝑃𝐵𝑢, 𝑅𝐵𝑢, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑅𝐵𝑢, 𝑢, 𝑧, 𝑡)}. 

Since 𝑅𝐵 = 𝐵𝑅, 𝐴𝑃 = 𝑃𝐴, 𝑃𝐵 = 𝐵𝑃, we get 

𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑢, 𝐵𝑢, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑡)}. 

This implies 𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ 𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.1, we get 𝐵𝑢 = 𝑢.   
Now put  𝑥 = 𝑄𝑢, 𝑦 = 𝑦𝑛 in (3.2.3), we get 

𝑀(𝑅𝑄𝑢, 𝑆𝑦𝑛, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑄𝑢, 𝐵𝑄𝑦𝑛, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑄𝑢, 𝑅𝑄𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦𝑛 , 𝑆𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑅𝑄𝑢, 𝐵𝑄𝑦𝑛, 𝑧, 𝑡)}. 

As 𝑛 → ∞,  

𝑀(𝑅𝑄𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑄𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑄𝑢, 𝑅𝑄𝑢, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑅𝑄𝑢, 𝑢, 𝑧, 𝑡)}. 

Since 𝑅𝑄 = 𝑄𝑅, 𝐴𝑄 = 𝑄𝐴, 𝑃𝑄 = 𝑄𝑃, we get 

𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑄𝑢, 𝑄𝑢, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑡)}. 

This implies 𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.1, we get 𝑄𝑢 = 𝑢.   
Therefore, we have 𝐵𝑢 = 𝑄𝑢 = 𝑆𝑢 = 𝑢. 
Similarly, we can show 𝑃𝑢 = 𝑢 by substituting 𝑥 = 𝑥𝑛 and 𝑦 = 𝑃𝑢 and  𝐴𝑢 = 𝑢, by substituting 𝑥 = 𝑥𝑛 and 𝑦 = 𝐴𝑢 in 

(3.2.3). 

Hence, we obtain  

𝐴𝑢 = 𝐵𝑢 = 𝑃𝑢 = 𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Hence 𝐴, 𝐵, 𝑃, 𝑄, 𝑅, 𝑆 have a unique common fixed point in 𝑋. 
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