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Abstract.  In this paper, we prove common fixed-point theorems for two pairs of self-mappings on fuzzy 2-metric space using the 

property (E.A). Also, it is a generalization of a result of Sharma [10]. 
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1. Introduction. 

Using the concept of fuzzy sets given by Zadeh [12], Kramosil and Michalek [7] developed the concept of fuzzy metric 

spaces. George and Veeramani [4] improved the concept of fuzzy metric spaces using 𝑡 −norms. Gahler [3] introduced 

the concept of fuzzy 2-metric spaces. Further, Iseki et al [6] proved results for contractive type mappings in 2-metric 

spaces.  

Cho [11] and Kutukcu et al [8] proved common fixed-point theorems for three mappings in fuzzy 2-metric spaces. 

Many authors have studied common fixed point theorems in fuzzy metric spaces. Some of interesting papers are Cho [2], 

George and Veeramani [4], Grabiec [5], Kramosil and Michalek [7] and Sharma [10]. 

Cho [2] proved a common fixed point theorem for four mappings in fuzzy metric spaces and S. Sharma [10] proved a 

common fixed point theorem for three mappings in fuzzy 2-metric spaces. 

Aamri and Moutawakil [1] generalized the concepts of non-compatibility by defining the notion of (E.A) property and 

proved common fixed point theorems under strict contractive condition. 

In this paper we prove common fixed-point theorems for two pairs of self-mappings satisfying the property (E.A). Our 

theorems are extension of results of Cho [11] to fuzzy 2-metric spaces. 

 

2. Preliminaries. 

Definition 2.1. [9] A binary operation ∗: [0,1] × [0,1] → [0,1] is called a continuous 𝑡 −norm if ([0,1],∗) is an Abelian 

topological monoid with unit 1 such that 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1].  
 

Definition 2.2.[7] The 3-tuple (𝑋, 𝑀,∗) is called a fuzzy metric space if 𝑋 is an arbitrary set, ∗ is a continuous 𝑡-norm and 

𝑀 is a fuzzy set in 𝑋2 × [0, ∞) satisfying the following conditions for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 − 

(i) 𝑀(𝑥, 𝑦, 0) = 0, 

(ii) 𝑀(𝑥, 𝑦, 𝑡) = 1 for all 𝑡 > 0 if and only if 𝑥 = 𝑦, 
(iii) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡),  
(iv) 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) ≥ 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠), 
(v) 𝑀(𝑥, 𝑦, . ): [0, ∞] → [0,1] is left continuous. 
𝑀(𝑥, 𝑦, 𝑡) can be thought of as the degree of nearness between 𝑥 and 𝑦 with respect to 𝑡. 
 

Definition 2.3.  [10] The 3-tuple (𝑋, 𝑀,∗) is called a fuzzy 2-metric space if 𝑋 is an arbitrary set, ∗ is a continuous 𝑡-norm 

and 𝑀 is a fuzzy set in 𝑋2 × [0, ∞) satisfying the following conditions for all 𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋 and 𝑡1, 𝑡2, 𝑡3 > 0 − 

(i) 𝑀(𝑥, 𝑦, 𝑧, 0) = 0, 

(ii) 𝑀(𝑥, 𝑦, 𝑧, 𝑡) = 1 for all 𝑡 > 0 if and only if at least two of the three points are equal, 

(iii) 𝑀(𝑥, 𝑦, 𝑧, 𝑡) = 𝑀(𝑥, 𝑧, 𝑦, 𝑥, 𝑡) = 𝑀(𝑦, 𝑧, 𝑥, 𝑡), for all 𝑡 > 0, 
(iv) 𝑀(𝑥, 𝑦, 𝑧, 𝑡1 + 𝑡2 + 𝑡3) ≥ 𝑀(𝑥, 𝑦, 𝑢, 𝑡1) ∗ 𝑀(𝑥, 𝑢, 𝑧, 𝑡2) ∗ 𝑀(𝑢, 𝑦, 𝑧, 𝑡3) 

(v) 𝑀(𝑥, 𝑦, 𝑧, . ): [0,1] → [0,1] is left continuous. 

 

Definition 2.4.[1] A pair (𝑆, 𝑇) of self-mappings on a fuzzy 2-metric space (𝑋, 𝑀,∗) is said to satisfy the property (E.A) 

if there exists a sequence {𝑥𝑛} in 𝑋 such that- 

lim
𝑛→∞

𝑆𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = 𝑢 

for some 𝑢 ∈ 𝑋. 
Lemma 2.1. 𝑀(𝑝, 𝑞 , 𝑟,.) is non decreasing for all for all 𝑝, 𝑞, 𝑟 ∈ 𝑋. 
 

Lemma 2.2.  For fuzzy 2-metric space (𝑋, 𝑀,∗), if 𝑀(𝑥, 𝑦, 𝑧, 𝑘𝑡)  ≥  𝑀(𝑥, 𝑦, 𝑧, 𝑡), for all 𝑥 ≠ 𝑦 ≠  𝑧 ∈ 𝑋, 𝑘 ∈ [0,1], 𝑡 >
0, then 𝑥 equal to 𝑦. 
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3. Main Results. 

Theorem 3.1: Let 𝑃, 𝑄, 𝑅, 𝑆 be four self-mappings of a fuzzy 2 − metric space (𝑋, 𝑀,∗) with continuous 𝑡 − norm  𝑡 ∗ 𝑡 

>  𝑡, where 𝑡 ∈ [0,1] such that-  

(3.1.1) the pairs (𝑃, 𝑅) and (𝑄, 𝑆) satisfy property (E.A), 

(3.1.2) for all 𝑥, y, z ∈ X, 𝑘 ∈ (0,1) and 𝑡 >  0  

𝑀(𝑅𝑥, 𝑆𝑦, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑃𝑥, 𝑄𝑦, 𝑧, 𝑡), 𝑀(𝑃𝑥, 𝑅𝑥, 𝑧, 𝑡), 𝑀(𝑆𝑦, 𝑄𝑦, 𝑧, 𝑡), 𝑀(𝑅𝑥, 𝑄𝑦, 𝑧, 𝑡)}. 

Then 𝑃, 𝑄, 𝑅, 𝑆 have a unique common fixed point in 𝑋. 
 

Proof. Since the pairs (𝑃, 𝑅) and (𝑄, 𝑆) satisfy property (E.A), there exist sequences {𝑥𝑛} and {𝑦𝑛} in 𝑋 such that 

lim
𝑛→∞

𝑃𝑥𝑛 = lim
𝑛→∞

𝑅𝑥𝑛 = 𝑢 

lim
𝑛→∞

𝑄𝑦𝑛 = lim
𝑛→∞

𝑆𝑦𝑛 = 𝑣 

for some 𝑢, 𝑣 ∈ 𝑋 and all 𝑡 > 0. 
Therefore 

lim
𝑛→∞

𝑀(𝑃𝑅𝑥𝑛, 𝑅𝑅𝑥𝑛 , 𝑧, 𝑡) = 1 

which imply 𝑀(𝑃𝑢, 𝑅𝑢, 𝑧, 𝑡) = 1. 
Similarly,  

lim
𝑛→∞

𝑀(𝑄𝑆𝑦𝑛, 𝑆𝑆𝑦𝑛 , 𝑧, 𝑡) = 1 

which imply 𝑀(𝑄𝑣, 𝑆𝑣, 𝑧, 𝑡) = 1.  
Hence 

𝑃𝑢 = 𝑅𝑢, 𝑄𝑣 = 𝑆𝑣. 
Therefore 𝑢 is the coincidence point of 𝑃, 𝑅 and 𝑣 is the coincidence point of 𝑄, 𝑆. 
To show 𝑢 = 𝑣, using (3.1.2), 

𝑀(𝑅𝑥𝑛 , 𝑆𝑦𝑛, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑃𝑥𝑛 , 𝑄𝑦𝑛, 𝑧, 𝑡), 𝑀(𝑃𝑥𝑛 , 𝑅𝑥𝑛 , 𝑧, 𝑡), 𝑀(𝑆𝑦𝑛 , 𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑚(𝑅𝑥𝑛 , 𝑄𝑦𝑛, 𝑧, 𝑡)}. 

As 𝑛 → ∞, we get 

𝑀(𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑢, 𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑣, 𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑢, 𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  
Using Lemma 2.2, we get 𝑢 = 𝑣. Therefore 𝑃, 𝑄, 𝑅, 𝑆 have identical coincidence point in 𝑋. 
Now to show that  

𝑃𝑢 = 𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Put 𝑥 = 𝑢 and 𝑦 = 𝑦𝑛 in (3.1.2), we get 

𝑀(𝑅𝑢, 𝑆𝑦𝑛 , 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑃𝑢, 𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑃𝑢, 𝑅𝑢, 𝑧, 𝑡), 𝑀(𝑆𝑦𝑛, 𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞, we get 

𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑃𝑢, 𝑣, 𝑧, 𝑡), 𝑀(𝑃𝑢, 𝑅𝑢, 𝑧, 𝑡), 𝑀(𝑣, 𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.2, we get 𝑅𝑢 = 𝑣.   
Therefore 

𝑅𝑢 = 𝑃𝑢 = 𝑣. 
Put 𝑥 = 𝑥𝑛 and 𝑦 = 𝑣 in (3.1.2), we get 

𝑀(𝑅𝑥𝑛, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ 𝑚𝑖𝑛 {𝑀(𝑃𝑥𝑛, 𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑃𝑥𝑛 , 𝑅𝑥𝑛 , 𝑧, 𝑡), 𝑀(𝑆𝑣, 𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑥𝑛 , 𝑄𝑣, 𝑧, 𝑡)}. 
As 𝑛 → ∞, we get 

𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ 𝑚𝑖𝑛 {𝑀(𝑢, 𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑆𝑣, 𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑄𝑣, 𝑧, 𝑡)}. 
This implies 𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.2, we get 𝑆𝑣 = 𝑢.   
Therefore 

𝑆𝑣 = 𝑄𝑣 = 𝑢. 
Since 𝑢 = 𝑣, we get 

𝑃𝑢 = 𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Hence 𝑃, 𝑄, 𝑅, 𝑆 have a unique common fixed point in 𝑋. 
 

Theorem 3.2 Let 𝐴, 𝐵, 𝑃, 𝑄, 𝑅, 𝑆 be six self-mappings of a fuzzy 2 − metric space (𝑋, 𝑀,∗) with continuous 𝑡 − norm 𝑡 ∗
𝑡 >  𝑡, where 𝑡 ∈ [0,1] such that- 

(3.2.1) the pairs (𝐴𝑃, 𝑅) and (𝐵𝑄, 𝑆) satisfy property (E.A), 

(3.2.2) 𝑅𝐵 = 𝐵𝑅, 𝐴𝑃 = 𝑃𝐴, 𝑃𝐵 = 𝐵𝑃, 𝑅𝑄 = 𝑄𝑅, 𝐴𝑄 = 𝑄𝐴, 𝑃𝑄 = 𝑄𝑃, 
(3.2.3) for all 𝑥, y, z ∈ X, 𝑘 ∈ (0,1) and 𝑡 >  0  

𝑀(𝑅𝑥, 𝑆𝑦, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑥, 𝐵𝑄𝑦, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑥, 𝑅𝑥, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦, 𝑆𝑦, 𝑧, 𝑡), 𝑀(𝑅𝑥, 𝐵𝑄𝑦, 𝑧, 𝑡)}. 

Then 𝐴, 𝐵, 𝑃, 𝑄, 𝑅, 𝑆 have a unique common fixed point in 𝑋. 
Proof. Since the pairs (𝐴𝑃, 𝑅) and (𝐵𝑄, 𝑆) satisfy property (E.A), there exist sequences {𝑥𝑛} and {𝑦𝑛} in 𝑋 such that 

lim
𝑛→∞

𝐴𝑃𝑥𝑛 = lim
𝑛→∞

𝑅𝑥𝑛 = 𝑢 
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lim
𝑛→∞

𝐵𝑄𝑦𝑛 = lim
𝑛→∞

𝑆𝑦𝑛 = 𝑣 

for some 𝑢, 𝑣 ∈ 𝑋 and all 𝑡 > 0. 
Therefore 

lim
𝑛→∞

𝑀(𝐴𝑃𝑅𝑥𝑛 , 𝑅𝑅𝑥𝑛 , 𝑧, 𝑡) = 1 

which imply 𝑀(𝐴𝑃𝑢, 𝑅𝑢, 𝑧, 𝑡) = 1.  
Similarly,  

lim
𝑛→∞

𝑀(𝐵𝑄𝑆𝑦𝑛 , 𝑆𝑆𝑦𝑛 , 𝑧, 𝑡) = 1 

which imply 𝑀(𝐵𝑄𝑣, 𝑆𝑣, 𝑧, 𝑡) = 1. 
Hence 

𝐴𝑃𝑢 = 𝑅𝑢, 𝐵𝑄𝑣 = 𝑆𝑣. 
Therefore 𝑢 is the coincidence point of 𝐴𝑃, 𝑅 and 𝑣 is the coincidence point of 𝐵𝑄, 𝑆. 
To show 𝑢 = 𝑣, using (3.2.3), 

𝑀(𝑅𝑥𝑛 , 𝑆𝑦𝑛, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑥𝑛 , 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝐴𝑃𝑥𝑛 , 𝑅𝑥𝑛 , 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦𝑛 , 𝑆𝑦𝑛, 𝑧, 𝑡), 𝑀(𝑅𝑥𝑛 , 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞, we get 

𝑀(𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑢, 𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑣, 𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑢, 𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  
Using Lemma 2.2, we get 𝑢 = 𝑣. Therefore 𝐴𝑃, 𝑅 𝑎𝑛𝑑 𝐵𝑄, 𝑆 have identical coincidence point in 𝑋. 
Now to show that  

𝐴𝑢 = 𝐵𝑢 = 𝑃𝑢 = 𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Put 𝑥 = 𝑢 and 𝑦 = 𝑦𝑛 in (3.2.3), we get 

𝑀(𝑅𝑢, 𝑆𝑦𝑛 , 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑢, 𝐵𝑄𝑦𝑛, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑢, 𝑅𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦𝑛, 𝑆𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞, we get 

𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝑅𝑢, 𝑧, 𝑡), 𝑀(𝑣, 𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑅𝑢, 𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.2, we get 𝑅𝑢 = 𝑣.  Therefore 

𝑅𝑢 = 𝐴𝑃𝑢 = 𝑣. 
Put 𝑥 = 𝑥𝑛 and 𝑦 = 𝑣 in (3.2.3), we get 

𝑀(𝑅𝑥𝑛 , 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑥𝑛 , 𝐵𝑄𝑣, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑥𝑛 , 𝑅𝑥𝑛, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑣, 𝑆𝑣, 𝑧, 𝑡), 𝑀(𝑅𝑥𝑛 , 𝐵𝑄𝑣, 𝑧, 𝑡)}. 

As 𝑛 → ∞, using 𝐵𝑄𝑣 = 𝑆𝑣, we get 

𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑢, 𝐵𝑄𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑣, 𝑆𝑣, 𝑧, 𝑡), 𝑀(𝑢, 𝐵𝑄𝑣, 𝑧, 𝑡)}. 

This implies 𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑢, 𝑆𝑣, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.2, we get 𝑆𝑣 = 𝑢.  Therefore 

𝑆𝑣 = 𝐵𝑄𝑣 = 𝑢. 
Since 𝑢 = 𝑣, we get 

𝐴𝑃𝑢 = 𝐵𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Now we show 𝑄𝑢 = 𝐵𝑢 = 𝑢. 
Put  𝑥 = 𝐵𝑢, 𝑦 = 𝑦𝑛 in (3.2.3), we get 

𝑀(𝑅𝐵𝑢, 𝑆𝑦𝑛 , 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝐵𝑢, 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝐴𝑃𝐵𝑢, 𝑅𝐵𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦𝑛 , 𝑆𝑦𝑛, 𝑧, 𝑡), 𝑀(𝑅𝐵𝑢, 𝐵𝑄𝑦𝑛 , 𝑧, 𝑡)}. 

As 𝑛 → ∞,  

 𝑀(𝑅𝐵𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝐵𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐴𝑃𝐵𝑢, 𝑅𝐵𝑢, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑅𝐵𝑢, 𝑢, 𝑧, 𝑡)}. 

Since 𝑅𝐵 = 𝐵𝑅, 𝐴𝑃 = 𝑃𝐴, 𝑃𝐵 = 𝐵𝑃, we get 

𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑢, 𝐵𝑢, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑡)}. 

This implies 𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ 𝑀(𝐵𝑢, 𝑢, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.2, we get 𝐵𝑢 = 𝑢.   
Now put  

Put  𝑥 = 𝑄𝑢, 𝑦 = 𝑦𝑛 in (3.2.3), we get 

𝑀(𝑅𝑄𝑢, 𝑆𝑦𝑛, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑄𝑢, 𝐵𝑄𝑦𝑛, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑄𝑢, 𝑅𝑄𝑢, 𝑧, 𝑡), 𝑀(𝐵𝑄𝑦𝑛 , 𝑆𝑦𝑛 , 𝑧, 𝑡), 𝑀(𝑅𝑄𝑢, 𝐵𝑄𝑦𝑛, 𝑧, 𝑡)}. 

As 𝑛 → ∞,  

 𝑀(𝑅𝑄𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝐴𝑃𝑄𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝐴𝑃𝑄𝑢, 𝑅𝑄𝑢, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑅𝑄𝑢, 𝑢, 𝑧, 𝑡)}. 

Since 𝑅𝑄 = 𝑄𝑅, 𝐴𝑄 = 𝑄𝐴, 𝑃𝑄 = 𝑄𝑃, we get 

𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ min {𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑄𝑢, 𝑄𝑢, 𝑧, 𝑡), 𝑀(𝑢, 𝑢, 𝑧, 𝑡), 𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑡)}. 

This implies 𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑘𝑡) ≥ 𝑀(𝑄𝑢, 𝑢, 𝑧, 𝑡) for all 𝑡 > 0.  Using Lemma 2.2, we get 𝑄𝑢 = 𝑢.   
Therefore, we have 𝐵𝑢 = 𝑄𝑢 = 𝑆𝑢 = 𝑢. 
Similarly, we can show 𝑃𝑢 = 𝑢 by substituting 𝑥 = 𝑥𝑛 and 𝑦 = 𝑃𝑢 and  𝐴𝑢 = 𝑢, by substituting 𝑥 = 𝑥𝑛 and 𝑦 = 𝐴𝑢 in 

(3.2.3). 

Hence, we obtain  

𝐴𝑢 = 𝐵𝑢 = 𝑃𝑢 = 𝑄𝑢 = 𝑅𝑢 = 𝑆𝑢 = 𝑢. 
Hence 𝐴, 𝐵, 𝑃, 𝑄, 𝑅, 𝑆 have a unique common fixed point in 𝑋. 
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