Fixed Point Theorems For Two Paired Mappings In Fuzzy 2-Metric Spaces

Rohit Pathak*
*Institute of Engineering \& Technology, DAVV, Indore, M.P., India, E-Mail: rohitpathakres@ yahoo.com

Abstract

In this paper, we prove common fixed-point theorems for two pairs of self-mappings on fuzzy 2-metric space using the property (E.A). Also, it is a generalization of a result of Sharma [10].

Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. Fuzzy metric space, coincidence point, common fixed point, property (E.A), t-norm.

1. Introduction.

Using the concept of fuzzy sets given by Zadeh [12], Kramosil and Michalek [7] developed the concept of fuzzy metric spaces. George and Veeramani [4] improved the concept of fuzzy metric spaces using t-norms. Gahler [3] introduced the concept of fuzzy 2-metric spaces. Further, Iseki et al [6] proved results for contractive type mappings in 2-metric spaces.
Cho [11] and Kutukcu et al [8] proved common fixed-point theorems for three mappings in fuzzy 2-metric spaces.
Many authors have studied common fixed point theorems in fuzzy metric spaces. Some of interesting papers are Cho [2], George and Veeramani [4], Grabiec [5], Kramosil and Michalek [7] and Sharma [10].
Cho [2] proved a common fixed point theorem for four mappings in fuzzy metric spaces and S. Sharma [10] proved a common fixed point theorem for three mappings in fuzzy 2 -metric spaces.
Aamri and Moutawakil [1] generalized the concepts of non-compatibility by defining the notion of (E.A) property and proved common fixed point theorems under strict contractive condition.
In this paper we prove common fixed-point theorems for two pairs of self-mappings satisfying the property (E.A). Our theorems are extension of results of Cho [11] to fuzzy 2-metric spaces.

2. Preliminaries.

Definition 2.1. [9] A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is called a continuous $t-$ norm if $([0,1], *)$ is an Abelian topological monoid with unit 1 such that $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$.

Definition 2.2.[7] The 3-tuple $(X, M, *)$ is called a fuzzy metric space if X is an arbitrary set, $*$ is a continuous t-norm and M is a fuzzy set in $X^{2} \times[0, \infty)$ satisfying the following conditions for all $x, y, z \in X-$
(i) $\quad M(x, y, 0)=0$,
(ii) $\quad M(x, y, t)=1$ for all $t>0$ if and only if $x=y$,
(iii) $\quad M(x, y, t)=M(y, x, t)$,
(iv) $\quad M(x, z, t+s) \geq M(x, y, t) * M(y, z, s)$,
(v) $\quad M(x, y,):.[0, \infty] \rightarrow[0,1]$ is left continuous.
$M(x, y, t)$ can be thought of as the degree of nearness between x and y with respect to t.
Definition 2.3. [10] The 3-tuple $(X, M, *)$ is called a fuzzy 2-metric space if X is an arbitrary set, $*$ is a continuous t-norm and M is a fuzzy set in $X^{2} \times[0, \infty)$ satisfying the following conditions for all $x, y, z, u \in X$ and $t_{1}, t_{2}, t_{3}>0-$
(i) $\quad M(x, y, z, 0)=0$,
(ii) $\quad M(x, y, z, t)=1$ for all $t>0$ if and only if at least two of the three points are equal,
(iii) $\quad M(x, y, z, t)=M(x, z, y, x, t)=M(y, z, x, t)$, for all $t>0$,
(iv) $\quad M\left(x, y, z, t_{1}+t_{2}+t_{3}\right) \geq M\left(x, y, u, t_{1}\right) * M\left(x, u, z, t_{2}\right) * M\left(u, y, z, t_{3}\right)$
(v) $M(x, y, z,):.[0,1] \rightarrow[0,1]$ is left continuous.

Definition 2.4.[1] A pair (S, T) of self-mappings on a fuzzy 2-metric space ($X, M, *$) is said to satisfy the property (E.A) if there exists a sequence $\left\{x_{n}\right\}$ in X such that-

$$
\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=u
$$

for some $u \in X$.
Lemma 2.1. $M(p, q, r,$.$) is non decreasing for all for all p, q, r \in X$.
Lemma 2.2. For fuzzy 2-metric space $(X, M, *)$, if $M(x, y, z, k t) \geq M(x, y, z, t)$, for all $x \neq y \neq z \in X, k \in[0,1], t>$ 0 , then x equal to y.

DOI:

3. Main Results.

Theorem 3.1: Let P, Q, R, S be four self-mappings of a fuzzy $2-$ metric space $(X, M, *)$ with continuous $t-\operatorname{norm} t * t$ $>t$, where $t \in[0,1]$ such that-
(3.1.1) the pairs (P, R) and (Q, S) satisfy property (E.A),
(3.1.2) for all $x, \mathrm{y}, \mathrm{z} \in \mathrm{X}, k \in(0,1)$ and $t>0$
$M(R x, S y, z, k t) \geq \min \{M(P x, Q y, z, t), M(P x, R x, z, t), M(S y, Q y, z, t), M(R x, Q y, z, t)\}$.
Then P, Q, R, S have a unique common fixed point in X.
Proof. Since the pairs (P, R) and (Q, S) satisfy property (E.A), there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P x_{n}=\lim _{n \rightarrow \infty} R x_{n}=u \\
& \lim _{n \rightarrow \infty} Q y_{n}=\lim _{n \rightarrow \infty} S y_{n}=v
\end{aligned}
$$

for some $u, v \in X$ and all $t>0$.
Therefore

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} M\left(P R x_{n}, R R x_{n}, z, t\right)=1 \\
& \lim _{n \rightarrow \infty} M\left(Q S y_{n}, S S y_{n}, z, t\right)=1
\end{aligned}
$$

which imply $M(P u, R u, z, t)=1$.
Similarly,
which imply $M(Q v, S v, z, t)=1$.

Hence

$$
P u=R u, Q v=S v .
$$

Therefore u is the coincidence point of P, R and v is the coincidence point of Q, S.
To show $u=v$, using (3.1.2),
$M\left(R x_{n}, S y_{n}, z, k t\right) \geq \min \left\{M\left(P x_{n}, Q y_{n}, z, t\right), M\left(P x_{n}, R x_{n}, z, t\right), M\left(S y_{n}, Q y_{n}, z, t\right), m\left(R x_{n}, Q y_{n}, z, t\right)\right\}$.
As $n \rightarrow \infty$, we get
$M(u, v, z, k t) \geq \min \{M(u, v, z, t), M(u, u, z, t), M(v, v, z, t), M(u, v, z, t)\}$.
This implies $M(u, v, z, k t) \geq M(u, v, z, t)$ for all $t>0$.
Using Lemma 2.2, we get $u=v$. Therefore P, Q, R, S have identical coincidence point in X.
Now to show that

$$
P u=Q u=R u=S u=u .
$$

Put $x=u$ and $y=y_{n}$ in (3.1.2), we get
$M\left(R u, S y_{n}, z, k t\right) \geq \min \left\{M\left(P u, Q y_{n}, z, t\right), M(P u, R u, z, t), M\left(S y_{n}, Q y_{n}, z, t\right), M\left(R u, Q y_{n}, z, t\right)\right\}$.
As $n \rightarrow \infty$, we get
$M(R u, v, z, k t) \geq \min \{M(P u, v, z, t), M(P u, R u, z, t), M(v, v, z, t), M(R u, v, z, t)\}$.
This implies $M(R u, v, z, k t) \geq M(R u, v, z, t)$ for all $t>0$. Using Lemma 2.2, we get $R u=v$.
Therefore

$$
R u=P u=v
$$

Put $x=x_{n}$ and $y=v$ in (3.1.2), we get

$$
M\left(R x_{n}, S v, z, k t\right) \geq \min \left\{M\left(P x_{n}, Q v, z, t\right), M\left(P x_{n}, R x_{n}, z, t\right), M(S v, Q v, z, t), M\left(R x_{n}, Q v, z, t\right)\right\}
$$

As $n \rightarrow \infty$, we get

$$
M(u, S v, z, k t) \geq \min \{M(u, Q v, z, t), M(u, u, z, t), M(S v, Q v, z, t), M(u, Q v, z, t)\}
$$

This implies $M(u, S v, z, k t) \geq M(u, S v, z, t)$ for all $t>0$. Using Lemma 2.2, we get $S v=u$.
Therefore
Since $u=v$, we get

$$
S v=Q v=u
$$

$$
P u=Q u=R u=S u=u
$$

Hence P, Q, R, S have a unique common fixed point in X.
Theorem 3.2 Let A, B, P, Q, R, S be six self-mappings of a fuzzy $2-$ metric space $(X, M, *)$ with continuous $t-\operatorname{norm} t *$ $t>t$, where $t \in[0,1]$ such that-
(3.2.1) the pairs $(A P, R)$ and $(B Q, S)$ satisfy property (E.A),
(3.2.2) $R B=B R, A P=P A, P B=B P, R Q=Q R, A Q=Q A, P Q=Q P$,
(3.2.3) for all $x, \mathrm{y}, \mathrm{z} \in \mathrm{X}, k \in(0,1)$ and $t>0$
$M(R x, S y, z, k t) \geq \min \{M(A P x, B Q y, z, t), M(A P x, R x, z, t), M(B Q y, S y, z, t), M(R x, B Q y, z, t)\}$.
Then A, B, P, Q, R, S have a unique common fixed point in X.
Proof. Since the pairs $(A P, R)$ and ($B Q, S$) satisfy property (E.A), there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\lim _{n \rightarrow \infty} A P x_{n}=\lim _{n \rightarrow \infty} R x_{n}=u
$$

DOI:
for some $u, v \in X$ and all $t>0$.
Therefore

$$
\lim _{n \rightarrow \infty} B Q y_{n}=\lim _{n \rightarrow \infty} S y_{n}=v
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} M\left(A P R x_{n}, R R x_{n}, z, t\right)=1 \\
& \lim _{n \rightarrow \infty} M\left(B Q S y_{n}, S S y_{n}, z, t\right)=1
\end{aligned}
$$

which imply $M(B Q v, S v, z, t)=1$.
Hence

$$
A P u=R u, B Q v=S v .
$$

Therefore u is the coincidence point of $A P, R$ and v is the coincidence point of $B Q, S$.
To show $u=v$, using (3.2.3),
$M\left(R x_{n}, S y_{n}, z, k t\right) \geq \min \left\{M\left(A P x_{n}, B Q y_{n}, z, t\right), M\left(A P x_{n}, R x_{n}, z, t\right), M\left(B Q y_{n}, S y_{n}, z, t\right), M\left(R x_{n}, B Q y_{n}, z, t\right)\right\}$.
As $n \rightarrow \infty$, we get
$M(u, v, z, k t) \geq \min \{M(u, v, z, t), M(u, u, z, t), M(v, v, z, t), M(u, v, z, t)\}$.
This implies $M(u, v, z, k t) \geq M(u, v, z, t)$ for all $t>0$.
Using Lemma 2.2, we get $u=v$. Therefore $A P, R$ and $B Q, S$ have identical coincidence point in X.
Now to show that

$$
A u=B u=P u=Q u=R u=S u=u .
$$

Put $x=u$ and $y=y_{n}$ in (3.2.3), we get
$M\left(R u, S y_{n}, z, k t\right) \geq \min \left\{M\left(A P u, B Q y_{n}, z, t\right), M(A P u, R u, z, t), M\left(B Q y_{n}, S y_{n}, z, t\right), M\left(R u, B Q y_{n}, z, t\right)\right\}$.
As $n \rightarrow \infty$, we get
$M(R u, v, z, k t) \geq \min \{M(R u, v, z, t), M(R u, R u, z, t), M(v, v, z, t), M(R u, v, z, t)\}$.
This implies $M(R u, v, z, k t) \geq M(R u, v, z, t)$ for all $t>0$. Using Lemma 2.2, we get $R u=v$. Therefore $R u=A P u=v$.
Put $x=x_{n}$ and $y=v$ in (3.2.3), we get
$M\left(R x_{n}, S v, z, k t\right) \geq \min \left\{M\left(A P x_{n}, B Q v, z, t\right), M\left(A P x_{n}, R x_{n}, z, t\right), M(B Q v, S v, z, t), M\left(R x_{n}, B Q v, z, t\right)\right\}$.
As $n \rightarrow \infty$, using $B Q v=S v$, we get
$M(u, S v, z, k t) \geq \min \{M(u, B Q v, z, t), M(u, u, z, t), M(B Q v, S v, z, t), M(u, B Q v, z, t)\}$.
This implies $M(u, S v, z, k t) \geq M(u, S v, z, t)$ for all $t>0$. Using Lemma 2.2, we get $S v=u$. Therefore $S v=B Q v=u$.
Since $u=v$, we get

$$
A P u=B Q u=R u=S u=u .
$$

Now we show $Q u=B u=u$.
Put $x=B u, y=y_{n}$ in (3.2.3), we get
$M\left(R B u, S y_{n}, z, k t\right) \geq \min \left\{M\left(A P B u, B Q y_{n}, z, t\right), M(A P B u, R B u, z, t), M\left(B Q y_{n}, S y_{n}, z, t\right), M\left(R B u, B Q y_{n}, z, t\right)\right\}$.
As $n \rightarrow \infty$,
$M(R B u, u, z, k t) \geq \min \{M(A P B u, u, z, t), M(A P B u, R B u, z, t), M(u, u, z, t), M(R B u, u, z, t)\}$.
Since $R B=B R, A P=P A, P B=B P$, we get
$M(B u, u, z, k t) \geq \min \{M(B u, u, z, t), M(B u, B u, z, t), M(u, u, z, t), M(B u, u, z, t)\}$.
This implies $M(B u, u, z, k t) \geq M(B u, u, z, t)$ for all $t>0$. Using Lemma 2.2, we get $B u=u$.
Now put
Put $x=Q u, y=y_{n}$ in (3.2.3), we get
$M\left(R Q u, S y_{n}, z, k t\right) \geq \min \left\{M\left(A P Q u, B Q y_{n}, z, t\right), M(A P Q u, R Q u, z, t), M\left(B Q y_{n}, S y_{n}, z, t\right), M\left(R Q u, B Q y_{n}, z, t\right)\right\}$.
As $n \rightarrow \infty$,
$M(R Q u, u, z, k t) \geq \min \{M(A P Q u, u, z, t), M(A P Q u, R Q u, z, t), M(u, u, z, t), M(R Q u, u, z, t)\}$.
Since $R Q=Q R, A Q=Q A, P Q=Q P$, we get
$M(Q u, u, z, k t) \geq \min \{M(Q u, u, z, t), M(Q u, Q u, z, t), M(u, u, z, t), M(Q u, u, z, t)\}$.
This implies $M(Q u, u, z, k t) \geq M(Q u, u, z, t)$ for all $t>0$. Using Lemma 2.2, we get $Q u=u$.
Therefore, we have $B u=Q u=S u=u$.
Similarly, we can show $P u=u$ by substituting $x=x_{n}$ and $y=P u$ and $A u=u$, by substituting $x=x_{n}$ and $y=A u$ in (3.2.3).

Hence, we obtain

$$
A u=B u=P u=Q u=R u=S u=u .
$$

Hence A, B, P, Q, R, S have a unique common fixed point in X.

DOI:

References

1. Amari and Moutawakil, "Some new common Fixed Point Theorem under strict contractive conditions," J. Math. Anal. Appl, vol. 20, pp. 181-188, 2002.
2. Cho, "Fixed points in fuzzy metric space," J. Fuzzy Math., vol. 4, no. 5, pp. 949-962, 1997.
3. Gahler, "2-metriche reume and ihre tapologishe structure," Math. Nauhr., vol. 26, pp. 115-148, 1963/64.
4. George and Veeramani, "On some results in fuzzy metric spaces," Fuzzy sets and system, vol. 64, pp. 395-399, 1997.
5. Grabiec, "Fixed points in fuzzy metric spaces," Fuzzy Sets and Systems, vol. 27, pp. 385-389, 1988.
6. Iseki, Sharma and Sharma, "Contractive type mapping on 2-metric space," Math Japonica, vol. 21, pp. 67-70, 1976.
7. Kramosil and Michalek, "Fuzzy metric and statistical metric spaces," Kybernatica, vol. 11, pp. 326-334, 1975.
8. Kutukcu, Sharma and Tokgoz, "A fixed point theorem in fuzzy metric spaces," Int. J. Math. Anal., vol. 1, no. 18, p. 861, 2007.
9. Schweizer and Sklar, "Statistical metric spaces," Pacific J. Math. , vol. 10, pp. 313-334, 1960.
10. Sharma, "On fuzzy metric spaces,," Southeast Asian Bull. of Math., vol. 26, no. 1, pp. 133-145, 2002.
11. S. H. Cho, "On common fixed points in fuzzy metric spaces," International mathematical forum, vol. 1, pp. 471479, 2006.
12. Zadeh, "Fuzzy sets," Inform and Control, vol. 89, pp. 338-353, 1965.
