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ABSTRACT 

The burden of newborn illnesses continues to have an effect on the well-being of the people in 

Nepal, making neonatal death an important public health concern there. In order to predict 

mortality caused by newborn disorders in Nepal, this study used sophisticated time series 

analytic techniques, such as the ARIMA model. The research uses several diagnostic tools to 

guarantee the accuracy of the forecasting model, including the Augmented Dickey-Fuller (ADF) 

test, Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF), and Box-

Jenkins model. This study aims to aid policymakers and healthcare providers in Nepal by 

shedding light on the evolution of neonatal disorders. This, in turn, will allow for the creation of 

more effective interventions and better public health outcomes. 
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INTRODUCTION 

 

The high rate of infant mortality in Nepal, particularly that which can be ascribed to neonatal illnesses, 

is a serious challenge to the country's public health. In order to comprehend and productively manage 

this significant problem, it is necessary to not only conduct an exhaustive analysis of death rate patterns 

in the past, but also to be able to make accurate projections for rates of mortality in the years to come. In 

order to accomplish this goal, cutting-edge strategies for analyzing time series, such as the 

AutoRegressive Integrated Moving Average (ARIMA) model, have been implemented. This 

investigation explores the trends, patterns, and potential factors that may have an impact on neonatal 

disorder-related deaths in Nepal by combining the power of ARIMA forecasting with the rigor of 

diagnostic tests such as the Augmented Dickey-Fuller (ADF) test, Autocorrelation Function (ACF), 

Partial Autocorrelation Function (PACF), and the Box-Jenkins model. 

 

The neonatal mortality rate is an essential component of the entire healthcare landscape of a nation, and 

it is a measure of how effective healthcare services and public health strategies are. The Sustainable 

Development Goals (SDGs) set forth by the United Nations place a primary emphasis on lowering the 

death rate among newborn babies as a means of demonstrating the global community's dedication to 

enhancing the health of mothers and children. Within the scope of this discussion, Nepal's attempts to 

treat neonatal illnesses and lower the mortality rate among newborns are of the utmost significance. 

 

The purpose of this research is to make a contribution to these ongoing efforts by developing a 

comprehensive and data-driven framework for predicting the number of deaths that are caused by 
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newborn disorders. By doing so, we will be able to acquire insights into the possible future trajectories 

of newborn death in Nepal, identify major risk factors, and establish educated policies and measures to 

minimize this burden. The methods of analysis and forecasting that were used in this study are 

important tools that can assist decision-makers, healthcare authorities, and public health experts in their 

mission to improve newborn health outcomes and to promote the general well-being of the Nepalese 

people. This study was carried out in Nepal. 

 

Objective  
The primary objective of this study is to analyze the trends and patterns of neonatal disorder-related 

deaths in Nepal and develop a reliable forecasting model using the AutoRegressive Integrated Moving 

Average (ARIMA) technique. Specifically, the study aims to achieve the following objectives: 

1. Analyze the historical time series data on neonatal disorder-related deaths in Nepal to identify 

underlying trends, seasonality, and any other significant patterns. 

2. Conduct diagnostic tests, including the Augmented Dickey-Fuller (ADF) test, Autocorrelation 

Function (ACF), Partial Autocorrelation Function (PACF), and the Box-Jenkins model, to 

ensure the stationarity of the time series data and identify the appropriate ARIMA model for 

forecasting. 

3. Develop a robust ARIMA model that accurately captures the dynamics and fluctuations of 

neonatal disorder-related deaths in Nepal, considering the various parameters and components of 

the time series data. 

4. Generate reliable and precise forecasts for neonatal disorder-related deaths in Nepal for the 

coming years, taking into account the uncertainty and variability associated with the forecasted 

values. 

5. Provide valuable insights and recommendations for policymakers, healthcare practitioners, and 

public health professionals to formulate evidence-based strategies and interventions aimed at 

reducing neonatal mortality and improving overall public health outcomes in Nepal. 

 

Literature Review  
Aregawi, et al. (2014) Time series analysis of malaria cases and deaths in hospitals, 2001– 2011, 

Ethiopia, and the effect of antimalarial interventions. Since 2004, the Ethiopian government and its 

partners have been deploying artemisinin-based combination therapies (ACT) and long-lasting 

insecticidal nets (LLINs). Malaria interventions, as well as trends in malaria cases and deaths, were 

evaluated at hospitals in malaria transmission areas from 2001 to 2011. Malaria cases and deaths in 

Ethiopian hospitals decreased significantly between 2006 and 2011, as malaria interventions were 

scaled up. Changes in hospital visits, malaria diagnostic testing, or rainfall could not account for the 

decrease. Given Ethiopia’s history of variable malaria transmission, more data would be needed to rule 

out the possibility that the decrease is due to other factors. 

 

VarunKumar et al.(2014) Time Series Analysis of Delhi, India’s meteorological parameters can be used 

to forecast malaria cases. The goal of the study was to anticipate malaria incidences in Delhi, India, 

using meteorological characteristics as predictors. Malaria cases are declining overall each month. The 

data came from the record kept at the malaria clinic at the Rural Health Training Centre (RHTC), 

Najafgrah, Delhi, and covered the period from January 2006 to December 2013. Official sources were 

used to gather climate information, including monthly mean rainfall, relative humidity, and mean 

maximum temperature. An expert model of SPSS ver. 21 was employed at the Delhi Meteorological 
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Centre to analyse the time series data. Results integrated regression analysis The best-fitting model was 

the moving average, ARIMA (0,1,1) (0,1,0) The time series data’s 72.5 percent variability may be 

explained by this. were discovered to be reliable indicators of the spread of malaria in the study region. 

malaria cases’ seasonal adjusted factors (SAF) August and September are the busiest months for the 

shows. 

According to the findings of Saranyadevi and Kachi's study (2017), They evaluate the predicted 

performance of a time-series analytic method for paddy production trends in the state of Tamil Nadu, 

which is located in India. There was a study that looked at data on rice crop output from 1960 to 2015, 

and it made production predictions for the years 2016–2020 using models such as ARIMA (Autor 

Regressive Integrated Moving Average), basic exponential smoothing, brown exponential smoothing, 

and damped exponential smoothing. 

 

Methodology  

ARIMA Model (p,d,q): 
The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class 

of models for forecasting a time series. These models can be made to be "stationary" by differencing (if 

necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if 

necessary), and they can also be used to predict the future. When all of a random variable's statistical 

qualities remain the same across time, we refer to that random variable's time series as being stationary.  

A stationary series does not have a trend, the variations around its mean have a constant amplitude, and 

it wiggles in a consistent manner. This means that the short-term random temporal patterns of a 

stationary series always look the same in a statistical sense.  This last criterion means that it has 

maintained its autocorrelations (correlations with its own prior deviations from the mean) through time, 

which is equal to saying that it has maintained its power spectrum over time.  The signal, if there is one, 

may be a pattern of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, 

and it could also include a seasonal component. A random variable of this kind can be considered (as is 

typical) as a combination of signal and noise, and the signal, if there is one, could be any of these 

patterns.  The signal is then projected into the future to get forecasts, and an ARIMA model can be 

thought of as a "filter" that attempts to separate the signal from the noise in the data. 

 

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation 

in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.  That 

is: 
 

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or 

a weighted sum of one or more recent values of the errors. 

It is a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are 

lagging values of Y. An autoregressive model is essentially a special example of a regression model, 

and it may be fitted using software designed specifically for regression modeling.  For instance, a first-

order autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in 

which the independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphics 

and Y_LAG1 in RegressIt, respectively).  Because there is no method to designate "last period's error" 

as an independent variable, an ARIMA model is NOT the same as a linear regression model. When the 

model is fitted to the data, the errors have to be estimated on a period-to-period basis. If some of the 

predictors are lags of the errors, then an ARIMA model is NOT the same as a linear regression model.  

The fact that the model's predictions are not linear functions of the coefficients, despite the fact that the 

model's predictions are linear functions of the historical data, presents a challenge from a purely 
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technical point of view when employing lagging errors as predictors.  Instead of simply solving a 

system of equations, it is necessary to use nonlinear optimization methods (sometimes known as "hill-

climbing") in order to estimate the coefficients used in ARIMA models that incorporate lagging errors. 

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that 

must be differentiated to become stationary is a "integrated" version of a stationary series, whereas lags 

of the stationarized series in the forecasting equation are called "autoregressive" terms and lags of the 

prediction errors are called "moving average" terms. Special examples of ARIMA models include the 

random-walk and random-trend models, the autoregressive model, and the exponential smoothing 

model. 

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where: 

• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences needed for stationarity, and 
• q is the number of lagged forecast errors in the prediction equation. 

• The forecasting equation is constructed as follows.  First, let y denote the dth difference of Y, 

which means: 
• If d=0:     𝑦𝑡 = 𝑌𝑡 

• If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

• If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2  
• Note that the second difference of Y (the d=2 case) is not the difference from 2 periods 

ago.  Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a 

second derivative, i.e., the local acceleration of the series rather than its local trend. 
• In terms of y, the general forecasting equation is: 

• �̂�𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis 

technique used for forecasting data points based on the historical values of a given time series. It 

consists of three key components: AutoRegression (AR), Integration (I), and Moving Average (MA). 

 

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE 

FOLLOWING STEPS: 

 

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and 

variance of the series do not change over time. Stationarity is essential for ARIMA modeling. 

2. Differencing: If the data is not stationary, take the difference between consecutive observations to 

make it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number 

of differencing required to achieve stationarity. 

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and q, where p 

represents the number of autoregressive terms, d represents the degree of differencing, and q represents 

the number of moving average terms. 

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the 

coefficients of the model. 

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any 

remaining patterns or correlations, and ensuring that the model adequately captures the underlying 

patterns in the data. 

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the 
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time series. 

 

Analysis 
Birth defects are a major cause of morbidity and mortality in Nepal and a major strain on the country's 

healthcare system. From 1990 to 2019, the number of deaths associated with newborn disorders 

fluctuated, revealing a worrying trend. The data shows a declining trend, going from 25212 cases in 

1990 to 8397 cases in 2019. Developing effective measures to reduce newborn mortality and improve 

healthcare interventions in Nepal requires an in-depth knowledge of the causes and underlying trends of 

these conditions. 

 

We can learn more about the causes of the ups and downs in newborn disorder-related mortality by 

studying this time series data, as well as the obstacles and possibilities for resolving this urgent public 

health concern. In order to apply sophisticated forecasting methods like the AutoRegressive Integrated 

Moving Average (ARIMA) model and then to implement diagnostic tests to guarantee the accuracy and 

reliability of the forecasted values, it is necessary to first examine the historical trends. 

 

 
The stationarity of the time series data of newborn disorder-related deaths in Nepal was evaluated using 

the Augmented Dickey-Fuller (ADF) test. The p-value for the test was 0.8266, and the Dickey-Fuller 

value was -1.3389. The failure to reject the null hypothesis at the 5% level of significance indicates that 

the time series data is likely non-stationary. 

The presence of trends or seasonality within the time series, as shown by the data's non-stationarity, 

may have an impact on forecasting. In order to attain stationarity and use the proper time series models, 

further analysis, such as differencing or transformation techniques, may be required. 
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Time series data on mortality caused by newborn disorders in Nepal were analyzed using the auto.arima 

function with the Akaike Information Criterion (AIC) as the deciding factor. The results reveal that 

ARIMA(0,2,0) is the most appropriate model, implying that the data may need to be differentiated twice 

in order to achieve stationarity. All other models have AIC values in the range of 307.6036–309.2475, 

with the exception of ARIMA(2,2,2), which has an AIC of Inf, ARIMA(0,2,0)–307.6036, 

ARIMA(1,2,0)–309.2475, ARIMA(0,2,1)–310.3327, and ARIMA(1,2,1)–310.3327. 

ARIMA Model Metric 

ARIMA(2,2,2) Inf 

ARIMA(0,2,0) 307.6036 

ARIMA(1,2,0) 309.2475 

ARIMA(0,2,1) 309.4096 

ARIMA(1,2,1) 310.3327 

 

The possibility of a quadratic trend in the data raises additional questions and considerations during the 

modeling process, as suggested by the use of the ARIMA(0,2,0) model. This selection emphasizes the 

need to design a reliable forecasting model that takes into consideration the unique qualities and 

dynamics of the time series data. 

Time series data on newborn disorder-related mortality in Nepal led researchers to conclude that the 

ARIMA(0,2,0) model best describes the data. According to the parameters of the model, differencing 

the data twice was necessary to reach stationarity. The log probability is -152.8, and sigma squared is 

calculated to be 3266. The model's information criterion values are as follows: We get an AIC of 307.6, 

an AICc of 307.76, and a BIC of 308.94 when we use the Akaike Information Criterion and the 

Bayesian Information Criterion, respectively. 
Parameter Value 

Sigma^2 3266 

Log Likelihood -152.8 

AIC (Akaike Information Criterion) 307.6 

AICc (Corrected AIC) 307.76 

BIC (Bayesian Information Criterion) 308.94 
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From the ARIMA(0,2,0) model, we may extrapolate a decreasing trend in newborn disorder-related 

mortality in Nepal over the projection period (2020-2029). For 2020, the point estimates place the death 

toll at 7992, with a 95% confidence interval of 7879.993–8104.007. After that, it is expected that the 

annual death toll will decline gradually, from an anticipated 7587 in 2021 to an anticipated 7182 in 

2022, 6777 in 2023, and 6372 in 2024. Values are expected to drop further from here, from a high of 

5967 in 2024 to a low of 5562 in 2025, 5157 in 2026, 4752 in 2027, and 4347 in 2029. 

Year Point Forecast Lower 95% CI Upper 95% CI 

2020 7992 7879.993 8104.007 

2021 7587 7336.545 7837.455 

2022 7182 6762.909 7601.091 

2023 6777 6163.513 7390.487 

2024 6372 5541.335 7202.665 

2025 5967 4898.523 7035.477 

2026 5562 4236.717 6887.283 

2027 5157 3557.222 6756.778 

2028 4752 2861.107 6642.893 
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These projected values shed light on the likely future course of mortality from newborn illnesses in 

Nepal, providing a foundation for comprehending prospective future healthcare demands and the 

necessity of focused measures to lessen the burden of neonatal disorders. 

Using a lag of 5 and the "Ljung-Box" type, the Box-Ljung test was performed on the residuals 

generated from the predicted values of newborn disorder-related mortality in Nepal. The X-squared 

value was 5.5109 with 5 degrees of freedom and a p-value of 0.3567 from the test. 

The lack of evidence to reject the null hypothesis is reflected in the p-value, which is not statistically 

significant. This indicates that the projected values are properly capturing the underlying patterns and 

dynamics of the time series data, as there is no substantial autocorrelation in the residuals at the 5% 

significance level. The ARIMA(0,2,0) model's reliability and robustness in forecasting newborn 

disorder-related mortality in Nepal are confirmed by the lack of autocorrelation in the residuals. 

Conclusion 
In conclusion, the ARIMA modeling approach used to analyze deaths caused by newborn disorders in 

Nepal shed light on the dynamics and patterns of mortality in this field. The best model for forecasting 

was found to be the ARIMA(0,2,0) model, which calls for double differencing to reach stationarity. 

Predictions showed a declining trend in fatalities attributable to newborn disorders from 2020 to 2029. 

The Box-Ljung test results showed that the model was credible by ruling out the possibility of 

considerable autocorrelation in the residuals. 

These results highlight the need to use rigorous time series analysis methods to fully comprehend the 

patterns and dynamics of newborn mortality. 
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