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           Abstract 

The focus of this study is the dynamics of interaction between commensal and host species in an 

aquatic ecological system with harvesting, and stochastic attributes. The progress and the stability of 

the system, as well as the dynamics of the commensal host relationship are examined. The stabilities 

at steady states are also examined. We discuss the possible harvesting strategies described by the 

various attributes. The possibility of existence of bio-economic equilibrium with optimal scheme is 

being discussed. We provided the analytical estimates of the population intensities of fluctuations by 

Fourier transform methods through stochastic perturbation. Some numerical simulations are also 

carried out to make lawful the analysis. 
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1. Introduction:   

Ecology is the study of relationships between living organisms and their environment. 

Investigations in the discipline of theoretical ecology were initiated by Lotka [1] and by 

Volterra [2], several researchers contributed to the enlargement of this area of acquaintance 

has been expansively accounted in the dissertations of Meyer [3], Kushing [4], Paul 

colinvaux [5], Kapur [6,7] etc,. The biological dealings can be generally classified as Prey – 

predation, competition, commensalism, Ammensalism, Neutralism and so on.  

The present investigation is devoted to the analytical study of commensalism between two 

species. A two species Commensalism is an ecological relation ship between two species 

where one species derives a benefit from the other which does not get affected by it. S1   may 

be referred as the commensal species while S2 the host. Some examples are Cattle Egret, 

Anemonetish, Barnacles etc.  

The host species (S2) supports the commensal species (S1) which has a natural death rate in 

spite of a support other than from S1. The commensal species (S1) is assumed to be 

constitutionally so weak that it would not flourish, in fact it declines in spite of the support 

extended by the host (S2).The present model is characterized by a coupled pair of first order 

non-linear differential equations. In all three equilibrium points of the system are identified 

and the stability analysis is carried out. It is noticed that the state in which host survives and  

the commensals are washed out and the co-existent state are stable states that too under the 

conditions, stated there in. The first equilibrium state is unstable. The linearised perturbed 

equations are solved and the trajectories are illustrated. 
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2. Basic Mathematical Model: 

Consider a three species prey-predator-competitor model  

 1
1 1 11 1 12 2 1 1

N
N a N N q E

dt
 


                                                                           (2.1) 

 2
2 2 22 2 2 2

N
N a N q E

dt



                                                     (2.2) 

where  1 1 ,N N x t represents the biomass density of commensal species 
1S , 

 2 2 ,N N x t represents the biomass density of host species 
2S , x denotes the space variable 

t denotes the time variable. 
1

a  represents the death rates of 
1S ,

2
a  represents the natural 

growth rates of
2S  ,

11   represents the rate of decrease of 
1S  due to limitations of natural 

resources, 12 : increase rate of the Commensal due to inhibition by the Host ,
 1q  represents 

the catch ability coefficient of 1S species, 2q  represents the catch ability coefficient of 

2S species 
1E  represents the effort applied to harvest the 

1S species, 
2E  represents the effort 

applied to harvest the 
2S species. We are assuming that 2 2 2 0a q E  .  

3. Stability and equilibrium analysis: 

The model equations of the structure with 0; 1,2iD i 
 
are symbolized as set of three non linear 

differential equations as follows: 

2

1 1 1 11 1 12 1 2 1 1 1N a N N N N q E N                                           (3.1)               

2

2 2 2 22 2 2 2 2N a N N q E N                                                     (3.2) 

The possible equilibrium points are  1 0,0E ,  2 1 ,0E N 
,  3 20,E N 

and  4 1 2,E N N  . 

Case (i):  1 0,0E : This equilibrium point always exist. 

Case (ii) :  2 1 ,0E N 
 (In the absence of host species): If 1N 

 is the positive solution of  
'

1 0N  , 

then  1 11 1 1 1(1/ )N a q E     provided 1 1 1 0a q E  . But this is not possible. Since all 

parameters are assumed to be positive, therefore, 1 1 1a q E never be negative. Hence this 

equilibrium point does not exist. 

Case(iii):  3 20,E N 
(In the absence of commensal species): If 2N 

 is the positive solution of  

'

2 0N  , then  2 22 2 2 2(1/ )N a q E    . This point is said to be positive, if 2 2 2q E a  that is the 

product of the catchability coefficient and effort applied to harvest the host species must be greater 

than their natural growth rate. 



Turkish Journal of Computer and Mathematics Education   Vol.11 No.03 (2020),2474- 2483 

 

2476 

 

 
 

Research Article  

Case (iv):  4 1 2,E N N  : (The interior equilibrium): If 
1N  and 

2N   are positive solutions 

of '

1 0N  and '

2 0N  ,then   1 11 1 1 1 12 22 2 2 2(1/ ) ( ) ( / )N a q E a q E        , and 

 2 22 2 2 2(1/ )N a q E    . 
1N 

is said to be positive, if 12 2 2 2 22 1 1 1( ) ( )a q E a q E     

4. Swot of Local Stability: 

To ascertain the local steadiness character of the interior equilibrium  2 1 2,E N N  , we work 

out the variational matrix about 
2E    11 1 12 1

1 2

22 2

,
0

N N
J N N

N

 



 



 
  

 
                              (4.1) 

The characteristic equation of the given ecological scheme at the interior 

equilibrium  4 1 2,E N N   is            2

11 1 22 2 11 22 1 2 0N N N N                       (4.2) 

The sum and product of roots of (4.2) are  1 2 11 1 22 2 0N N          and  

1 2 11 22 1 2 0N N        respectively. Hence the steady state is stable.  2 1 2,E N N  is locally 

asymptotically stable. 

5. Testing of Global Stability: 

Theorem: The equilibrium point  2 1 2,E N N   is globally asymptotically stable. 

Proof: Let us consider the subsequent Lyapunov function  

* * * * * *

1 2 1 1 1 1 1 1 2 2 2 2 2( , ) ( ) ln( / ) ( ) ln( / )V N N N N N N N l N N N N N                         (5.1)

   

where 1l is the positive constant. 

* *

1 1 1 2 2 2
1

1 2

( ) ( )N N dN N N dNdV
l

dt N dt N dt

    
    
         

   * * * * *

1 1 11 1 12 2 11 1 12 2 1 2 2 22 2 22 2( ) ( )
dV

N N N N N N l N N N N
dt

              

   
2 2

* *12 12
11 1 1 1 22 2 2

2 2

dV
N N l N N

dt

 
 
   

         
   

 

0
dV

dt
   provided    12

1 22 0
2

l


    and 12
11 0

2


    

The equilibrium point  2 1 2,E N N    is globally asymptotically stable  

6. Bionomic equilibrium 

The bionomic equilibrium is not anything but which is the grouping of the perceptions of 

biological as well as economic equilibriums. A biological equilibrium is given by 
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1 0N   ;
2 0N   . The economic equilibrium is said to be accomplished when the total income 

acquired by selling the harvested biomass equals the total cost for the effort devoted to 

harvesting. Let
1c ,

2c be harvesting cost per unit effort of the prey and predator respectively. 

Let 
1 1,p p  be price per unit biomass of the commensal and host respectively. Consequently, 

net income or financial rent at any time given by
1,2

i

i

M M


 .Where ( )i i i i i iM p q N c E   are 

the net economic revenue for the commensal and host at any time t. The bionomic 

equilibrium     1 2 1 2( ) , ( ) , ,N N E E   
 is given by the subsequent equations 

1 11 1 12 2 1 1 0a N N q E     
                                      

(6.1) 

2 22 2 2 2 0a N q E      
     

                                                   (6.2) 

 
1,2

i i i i i

i

M p q N c E


                                                    (6.3) 

With the intention of establishing the bionomic equilibrium we come across the subsequent 

cases. 

Case (a): If 1 1 1 1c p q N , 
2 2 2 2c p q N  then the cost is greater than revenues for both the 

species and the whole system will be closed. 

Case (b):  If for the host, harvesting cost is greater than the revenue  2 2 2 2c p q N , and then 

harvesting of host is not practicable. Hence harvesting of commensal population remains 

operational  1 1 1 1c p q N .  Thus, when  2 0E    and   1 1 1 1c p q N  we have  

  1
1

1 1

c
N

p q
 , 1

2 1 11 1 1

12 1 1

1
( )

c
N a q E

p q





 
   

 
                          (6.4) 

Case (c):  If the cost is greater than the revenue in the commensal harvesting, then the 

commensal harvesting will be closed (i.e. 1E = 0).Only host harvesting remains operational.  

  2
2

2 2

c
N

p q
 ,      1 2 2 2

22

1
( )N a q E


                              (6.5) 

Case (iv):  If  1 1 1 1c p q N  , 2 2 2 2c p q N , then  the revenues for both the species being  

positive, then the whole system will be in operation. In this case     1
1

1 1

c
N

p q
            (6.6)  

and                       2
2

2 2

c
N

p q
                             (6.7)                                                                                       

Substitute (6.6) and (6.7) in (6.1), (6.2) we get                                      
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  1 2
1 1 11 12

1 1 1 2 2

1 c c
E a

q p q p q
 



 
    

 
                           (6.8)                                 

  2
2 2 22

2 2 2

1 c
E a

q p q




 
  

 
                            (6.9)                                                             

 1 0E

        if          2 1

12 1 11

2 2 1 1

c c
a

p q p q
 

 
  
 

                                  (6.10)   

 2 0E

       if          2

2 22

2 2

c
a

p q
                                     (6.11)                                            

The Non-trivial Bionomic equilibrium point     1 2 1 2( ) , ( ) , ,N N E E   
 exists, if (6.10) and 

(6.11) must hold. 

7. Analysis of environmental fluctuations: 

The primary idea that leads us to widen the deterministic model (2.1)-(2.2) to a stochastic 

identical part is that it is practical to imagine the open system as noisy surrounding. There are 

a number of ways in which the located ‘noise’ may be included in the system (2.1)-(2.2). This 

reminds that the environmental noise should be distinguished from internal noise, for which 

the variation over time is due. External noise may arise either from random fluctuations of 

one or more model parameters around some known mean values or from stochastic 

fluctuations of the population densities around some constant values. In this part, we work 

out the population intensities of fluctuations (variances) around the positive equilibrium 

4E due to noise, according to the method introduced by R.M.Nisbet and W.S.C.Gurney [8] in 

1982. Later many authors [8-9] studied about the effects of environmental fluctuations of  

various ecological models.Now we assume the presence of a randomly fluctuating driving 

force on the deterministic growth of the species 1S and 2S (commensal species with mortality 

rate and host species with intrinsic growth rate) at time t , so that the system (3.1)-(3.2) results 

in the stochastic system with ‘additive noise’ as follows: 

21
1 1 11 1 12 1 2 1 1 1 1 1( )

dN
a N N N N q E N t

dt
        

                         
(7.1) 

22
2 2 22 2 2 2 2 2 2 ( )

dN
a N N q E N t

dt
     

       
                                  (7.2) 

where 1 2,   are real constants and     1 2( ), ( )t t t    is a two dimensional Gaussian White 

noise process agreeable   0; 1,2iE t i     ;      ; 1,2i j ijE t t t t i j           . 

where  ij  is the Kronecker symbol;   is the delta-dirac function. In this analysis, we focus 

on the dynamics of the model (7.1)-(7.2) at the equilibrium point only. So we compute the 

population variances around  4 1 2,E N N  .Let *

1 1( ) ( ) ;N t u t S  *

2 2( ) ( ) ;N t u t P  then we 

centre the system (7.1)-(7.2) on  4 1 2,E N N   and consider only the linear terms, so that we 

consider only the consequence of linear stochastic perturbations. Hence the model (7.1)-(7.2) 

reduces to the following linear system               
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* *1
11 1 12 2 1 1

( )
( ) ( ) ( )

du t
u t S u t S t

dt
                                                                      (7.3) 

            *2
22 2 2 2

( )
( ) ( )

du t
u t P t

dt
                                                                            (7.4)                                   

 Taking the Fourier transform on both sides of (7.3) and (7.4) we get, 

 * *

1 1 11 1 12 2( ) ( ) ( )i S u S u                                           (7.5) 

 *

2 2 22 2( ) ( )i P u                                   (7.6) 

The matrix form of (7.5) and (7.6) is       M u                                        (7.7) 

where   
( ) ( )

( ) ( )

A B
M

C D

 


 

 
  
 

 ;    1

2

( )

( )

u
u

u






 
  
 

 ;    
 

 

1 1

2 2

  
 

  

 
  
  

; 

* * *

11 12 22( ) ; ( ) ; ( ) 0; ( )A i S B S C D i P                                           (7.8) 

Hence the solution of (7.7) is given by       
1

u M   


     

where  
1

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

D B

M M
K M

C A

M M

 

 
 

 

 



 
 

      
 

 

                                                            (7.9) 

we now describe the some of the fundamental results of random population function. If the 

function ( )Y t  has a zero mean value, then the fluctuation intensity (variance) of its 

components in the frequency interval  , d    is ( )YS d  , where ( )YS  is spectral 

density of Y  and is defined as  
 

2

( ) limY
T

Y
S

T





                                   (7.10) 

If  Y  has a zero mean value, the inverse transform of ( )YS  is the auto covariance function  

 
1

( )
2

i

Y YC S e d  






                             (7.11) 

The related variance of fluctuations in ( )Y t  is 2 1
(0) ( )

2
Y Y YC S d  







                     (7.12) 

and the auto correlation function is the normalized auto covariance 
( )

( )
(0)

Y
Y

Y

C
P

C


           (7.13) 
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For a Gaussian white noise process, it is  
   

ˆ
lim

ˆi j

i j

T

E
S

T
 

   




 
   

   
'

ˆ ˆ

2 2
' ( ) '

ˆ
ˆ ˆ

2 2

1
lim

ˆ

T T

i t t

i j
T

T T

E t t e dt dt
T

   



 

 
    

ij                                     (7.14) 

From (7.9), we have       
2

1

; 1,2i ij j

j

u K i   


                                    (7.15) 

From (7.10) we have     
2

2

1

; 1,2
iu j ij

j

S K i  


                                               (7.16) 

Hence by (7.12) and (7.16), the intensities of fluctuations in the variable ; 1,2iu i   are given 

by   
2

2
2

1

1
( ) ; 1,2

2iu j ij

j

K d i   




 

                                                              (7.17) 

and by (7.9), we obtain  
1

2 2

2

1 2

1 ( ) ( )

2 ( ) ( )
u

D B
d d

M M

 
    

  

 

 

 
 

  
  
   

                            
2

2 2

2

1 2

1 ( ) ( )

2 ( ) ( )
u

A C
d d

M M

 
    

  

 

 

 
 

  
  
                        (7.18) 

where ( ) ( ) ( )M R iI                                                         (7.19) 

Real part of    2 * *

11 22( )M R S P                                                                  (7.20) 

Imaginary part of  2 * *

11 22( ) ( )M I S P                                       (7.21)    

Finally from (7.8), we get 

 
2 2 2 22 * 2 * 2 2 * 2

11 12 22( ) ( ) ; ( ) ( ) ; ( ) 0; ( ) ( )A S B S C D P                             (7.22) 

 
1

2 2 * 2 * 2

1 22 2 122 2

1 1
( ) ( )

2 ( ) ( )
u P S d

R I
      

  





         
                                   (7.23) 

 
2

2 2 * 2

1 112 2

1 1
( )

2 ( ) ( )
u S d

R I
    

  





        
                                              (7.24) 
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If we are interested in the dynamics of system (7.1)-(7.2) with either 1 0   or 2 0   then 

the population variances are   
1

* 2
2 2 12

2 2

( ) 1

2 ( ) ( )
u

S
d

R I

 
 

  






 ; 

2

2 0u   if  1 0           (7.25)   

and  
1

2 2 * 21
222 2

1
( )

2 ( ) ( )
u P d

R I


   

  





     ; 
2

2 2 * 21
112 2

1
( )

2 ( ) ( )
u S d

R I


   

  





    (7.26) 

if 2 0  .                                  

The population variances given in (7.18) point out the stability of population for smaller 

values of mean square fluctuations, while the larger values of population variances indicate 

the instability of the populations. The integrals in (7.18) can be evaluated both analytically 

and numerically. 

9. Computer simulations: 

Evaluation of integrals in (7.18) is very complex, but it can establish numerically for 
diverse set of parameters. The three variances in (7.23-7.24) stand for the mean 
square fluctuations of the population. When the variances are very not as much of, it 
can be easily observed that the system is stable, otherwise unstable. We visualized 
these results in the computer simulation. The exclusive of numerical authentication 
of the outcomes in view of stochastic (fig: 1-5), are portrayed for the given set of 
parameters. 

     

                             Figure (1) 

           a1=3.5;a11=0.01;a12=0.5;q1=0.02;E1=25;omga=2.5; 
              a2=1.75;a22=0.5;q2=0.02;E2=20;gama=1.75; 

       

                             Figure (2) 

           a1=4.5;a11=0.1;a12=0.5;q1=0.02;E1=25;omga=2.5; 
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              a2=1.5;a22=0.05;q2=0.02;E2=20;gama=1.75; 

 

 

          
                               Figure (3) 

             a1=1.5;a11=0.1;a12=1.5;q1=0.02;E1=25;omga=2.5; 
                 a2=1.5;a22=0.5;q2=0.2;E2=20;gama=1.75; 
  

  
 
                             Figure (4) 

           a1=1.5;a11=0.1;a12=1.5;q1=0.02;E1=25;omga=2.5; 
               a2=1.5;a22=0.5;q2=0.2;E2=20;gama=1.75; 

        

                               Figure (5) 

            a1=1.5;a11=0.1;a12=1.5;q1=0.02;E1=25;omga=1.5; 
                a2=1.5;a22=0.5;q2=0.2;E2=20;gama=2.5; 
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