
Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1493

Research Article

Enhancing Cybersecurity: A Deep Learning CNN Approach to

Malware Detection

Venkata Ramana K
1
, Mounika Manchukonda

2
, Juttu Suresh

3

1
Professor, Department of Information Technology, Malla Reddy Engineering College and

Management Sciences, Hyderabad, Telangana.

2,3
Assistant Professor, Department of Information Technology, Malla Reddy Engineering College and

Management Sciences, Hyderabad, Telangana.

Abstract

Malicious software or malware continues to pose a major security concern in this digital age as

computer users, corporations, and governments witness an exponential growth in malware attacks.

Current malware detection solutions adopt Static and Dynamic analysis of malware signatures and

behaviour patterns that are time consuming and ineffective in identifying unknown malwares. Recent

malwares use polymorphic, metamorphic and other evasive techniques to change the malware

behaviours quickly and to generate large number of malwares. Since new malwares are predominantly

variants of existing malwares, machine learning algorithms (MLAs) are being employed recently to

conduct an effective malware analysis. This requires extensive feature engineering, feature learning

and feature representation. By using the advanced MLAs such as deep learning, the feature

engineering phase can be completely avoided. Though some recent research studies exist in this

direction, the performance of the algorithms is biased with the training data. There is a need to

mitigate bias and evaluate these methods independently in order to arrive at new enhanced methods

for effective zero-day malware detection. To fill the gap in literature, this work evaluates classical

MLAs and deep learning architectures for malware detection, classification and categorization with

both public and private datasets. The train and test splits of public and private datasets used in the

experimental analysis are disjoint to each other’s and collected in different timescales. In addition, we

propose a novel image processing technique with optimal parameters for deep learning convolutional

neural networks (DLCNN) architectures. Overall, this work proposes an effective visual detection of

malware using a scalable and hybrid deep learning framework for real-time deployments. The

visualization and deep learning architectures for static, dynamic and image processing-based hybrid

approach in a big data environment is a new enhanced method for effective zero-day malware

detection. Finally, the simulations revealed that the proposed DLCNN resulted in superior

performance as compared to existing models.

Keywords: Deep learning, robust intelligent malware detection, Machine learning algorithms

(MLAs).

1. INTRODUCTION

In this digital world of Industry 4.0, the rapid advancement of technologies has affected the daily

activities in businesses as well as in personal lives. Internet of Things (IoT) and applications have led

to the development of the modern concept of the information society. However, security concerns

pose a major challenge in realising the benefits of this industrial revolution as cyber criminal’s attack

individual PC’s and networks for stealing confidential data for financial gains and causing denial of

service to systems. Such attackers make use of malicious software or malware to cause serious threats

and vulnerability of systems [1]. A malware is a computer program with the purpose of causing harm

to the operating system (OS). A malware gets different names such as adware, spyware, virus, worm,

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1494

Research Article

trojan, rootkit, backdoor, ransomware and command and control (C&C) bot, based on its purpose and

behaviour. Detection and mitigation of malware is an evolving problem in the cyber security field. As

researchers develop new techniques, malware authors improve their ability to evade detection.

When Morris worm made its appearance as the first ever computer virus in 1988-89, antivirus

software programs were designed to detect the existence of such a malware by finding a match with

the virus definition database updated from time to time. This is called signature-based malware

detection, which can also perform a heuristic search to identify the behavior of malware. However,

the major challenge in such classical approaches is that new variants of malware use antivirus evasion

techniques such as code obfuscation and hence such signature-based approaches are unable to detect

zero-day malwares [2]. Signature-based malware detection system requires extensive domain level

knowledge to reverse engineer the malware using Static and dynamic analysis and to assign a

signature for that. Moreover, signature-based system requires larger time to reverse engineer the

malware and during that time an attacker would encroach into the system. In addition, signature-based

system fails to detect new types of malware. Security researchers have identified that hackers

predominantly use polymorphism and metamorphism as obfuscation techniques against signature-

based detection. In order to address this problem, software tools are used to manually unpack the

codes and analyse the application programming interface (API) calls.

Since this process is a resource intensive task, [3] presented an automated system to extract API calls

and analyse the malicious characteristics using a four step methodology. In step 1, the malware is

unpacked. In step 2, the binary executable is disassembled. Step 3 involves API call extraction. Step 4

involves API call mapping and statistical feature analysis. This was enhanced in [4] using a 5- step

methodology incorporating machine learning algorithm (MLA) such as SVM with n-gram features

extracted from large samples of both the benign and malicious executables with 10-fold cross

validations. Later, in [5] a comparative study of various classical machine learning classifiers for

malware detection was performed, and a framework for zero day malware detection was proposed. To

handle malicious code variants, the sequence of API calls and their frequency of appearance of API

calls passed into similarity based mining and machine learning methods [7]. The detailed

experimental analysis was done on very large data set and to extract the features from malware

binaries a unified framework proposed. In [8], API calls features and a hybrid of support vector

machine (SVM) and Maximum-Relevance Minimum Redundancy Filter (MRMRF) heuristics were

employed to present novel feature selection approaches for enhanced malware detection. Recently,

with the increase in unknown malware attacks, the detailed information on obfuscated malware is

discussed by [6] and many researchers are improving the MLAs for malware detection [9]. This forms

the motivation of this research work.

2. RELATED WORK

Machine learning algorithms (MLAs) rely on the feature engineering, feature selection and feature

representation methods. The set of features with a corresponding class is used to train a model in

order to create a separating plane between the benign and malwares. This separating plane helps to

detect a malware and categorize it into its corresponding malware family. Both feature engineering

and feature selection methods require domain level knowledge. The various features can be obtained

through Static and Dynamic analysis. Static analysis is a method that captures the information from

the binary program without executing. Dynamic analysis is the process of monitoring malware

behavior at run time in an isolated environment. The complexities and various issues of Dynamic

analysis are discussed in detail by [10]. Dynamic analysis can be an efficient long term solution for

malware detection system. The Dynamic analysis cannot be deployed in end-point real time malware

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1495

Research Article

detection due to the reason that it takes much time to analyze its behaviour, during which malicious

payload can get delivered. Malware detection methods based on Dynamic analysis are more robust to

obfuscation methods when compared to statically collected data. Most commonly, the commercial

anti-malware solutions use a hybrid of Static and Dynamic analysis approaches. The major issue with

the classical machine learning based malware detection system is that they rely on the feature

engineering, feature learning and feature representation techniques that require an extensive domain

level knowledge [11], [12], [13]. Moreover, once an attacker comes to know the features, the malware

detector can be evaded easily [14]. To be successful, MLAs require data with a variety of patterns of

malware. The publicly available benchmark data for malware analysis research is very less due to the

security and privacy concerns. Though few datasets exist, each of them has their own harsh criticisms

as most of them are outdated. Many of the published results of machine learning based malware

analysis have used their own datasets. Even though publicly available sources exist to crawl the

malware datasets, preparing a proper dataset for research is a daunting task. These issues are the main

drawbacks behind developing generic machine learning based malware analysis system that can be

deployed in real time. More importantly, the compelling issues in applying data science techniques

were discussed in detail by [15].

In recent days, deep learning, which is an improved model of neural networks has outperformed the

classical MLAs in many of the tasks which exist in the field of natural language processing (NLP),

computer vision, speech processing and many others [16]. During the training process, it tries to

capture higher level representation of features in deep hidden layers with the ability to learn from

mistakes. MLAs experience diminishing outputs as they see more and more data whereas deep

learning captures new patterns and establishes associations with the already captured pattern to

enhance the performance of tasks. There exists few research studies towards the application of deep

learning architectures for malware analysis to improve cyber security [13], [11], [12], [17], [18], [18]–

[24]. However, with Industry 4.0, the number of malwares is rapidly increasing in recent times. Since

the continuous collection of malwares in real time results in Big Data, the existing approaches are not

scalable with very high requirements for storage and time in making efficient decisions.

3. PROPOSED METHODOLOGY

Deep learning or deep neural networks (DNNs) takes inspiration from how the brain works and forms

a sub module of artificial intelligence. The main strength of deep learning architectures is the

capability to understand the meaning of data when it is in large amounts and to automatically tune the

derived meaning with new data without the need for a domain expert knowledge. Convolutional

neural networks (CNNs) and Recurrent neural networks (RNNs) are two types of deep learning

architectures predominantly applied in real-life scenarios. Generally, CNN architectures are used for

spatial data and RNN architectures are used for temporal data. The combination of CNN and LSTM is

used for spatial and temporal data analysis.

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1496

Research Article

Fig. 1. Proposed block diagram.

Figure 1 shows the block diagram of proposed method. Initially, MALIMG dataset is spitted into 80%

for training and 20% for testing. Then, dataset pre-processing operation is performed to normalize the

entire dataset. Further, DLCNN classifier is used for prediction of malware attack from test sample.

The performance evaluation is carried out to show supremacy of proposed method.

3.1 MALIMG dataset

CICDDoS2019 contains benign and the most up-to-date common DDoS attacks, which resembles the

true real-world data (PCAPs). It also includes the results of the network traffic analysis using

CICFlowMeter-V3 with labelled flows based on the time stamp, source, and destination IPs, source

and destination ports, protocols, and attack (CSV files). Generating realistic background traffic was

our top priority in building this dataset. We have used our proposed B-Profile system to profile the

abstract behaviour of human interactions and generates naturalistic benign background traffic in the

proposed testbed. For this dataset, we built the abstract behaviour of 25 users based on the HTTP,

HTTPS, FTP, SSH and email protocols.

3.2 Pre-processing

Data pre-processing is a process of preparing the raw data and making it suitable for a machine

learning model. It is the first and crucial step while creating a machine learning model. When creating

a machine learning project, it is not always a case that we come across the clean and formatted data.

And while doing any operation with data, it is mandatory to clean it and put in a formatted way. So,

for this, we use data pre-processing task.

3.3 Splitting the Dataset

In machine learning data pre-processing, we divide our dataset into a training set and test set. This is

one of the crucial steps of data pre-processing as by doing this, we can enhance the performance of

our machine learning model. Suppose if we have given training to our machine learning model by a

dataset and we test it by a completely different dataset. Then, it will create difficulties for our model

to understand the correlations between the models. If we train our model very well and its training

accuracy is also very high, but we provide a new dataset to it, then it will decrease the performance

3.4 DLCNN

A feed forward neural network (FFN) creates a directed graph in which a graph is composed of nodes

and edges. FFN passes information along edges from one node to another without formation of a

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1497

Research Article

cycle. Multi-layer perceptron (MLP) is a type of FFN that contains 3 or more layers, specifically one

input layer, one or more hidden layer and an output layer in which each layer has many neurons,

called as units in mathematical notation. The number of hidden layers is selected by following a hyper

parameter tuning approach. The information is transformed from one layer to another layer in forward

direction without considering the past values. Moreover, neurons in each layer are fully connected.

Convolutional network or convolutional neural network or CNN is supplement to the classical feed

forward network (FFN), primarily used in the field of data processing. It is shown in Figure 2, where

all connections and hidden layers and its units are not shown. Here, m denotes number of filters, ln

denotes number of input features and p denotes reduced feature dimension, it depends on pooling

length. In this work, CNN network composed of convolution 1D layer, pooling 1D layer and fully

connected layer. A CNN network can have more than one convolution 1D layer, pooling 1D layer and

fully connected layer. In convolutional 1D layer, the filters slide over the 1D sequence data and

extracts optimal features. The features that are extracted from each filter are grouped into a new

feature set called as feature map. The number of filters and the length are chosen by following a hyper

parameter tuning method. This in turn uses non-linear activation function, ReLU on each element.

Fig. 2. DNN architecture.

The dimensions of the optimal features are reduced using pooling 1D layer using either max pooling,

min pooling or average pooling. Since the maximum output within a selected region is selected in

max pooling, we adopt max pooling in this work. Finally, the DLCNN network contains fully

connected layer for classification. In fully connected layer, each neuron contains a connection to

every other neuron. Instead of passing the pooling 1D layer features into fully connected layer, it can

also be given to recurrent layer, LSTM to capture the sequence related information. Finally, the

LSTM features are passed into fully connected layer for classification.

Fig. 3. Architecture of DLCNN for malware detection.

Table 1. Layers description.

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1498

Research Article

Layer Names No. of filters Kernel size Feature size

Conv 2D +ReLU 32 3 x 3 62x62x32

Max pooling 2D - 3 x 3 31x31x32

Conv 2D+ReLU 32 3 x 3 29x29x32

Max pooling 2D - 3 x 3 14x14x32

Flatten - 1x6272 1x6272

Dense +ReLU 1 x 128 1 x 256

Dense + SoftMax 1 x 15 1 x 15

Convolutional neural networks are generally composed of three parts. Convolution layer for feature

extraction. The convergence layer, also known as the pooling layer, is mainly used for feature

selection. The number of parameters is reduced by reducing the number of features. The full

connection layer carries out the summary and output of the characteristics. A convolution layer is

consisting of a convolution process and a nonlinear activation function ReLU. A typical architecture

of CNN model for malware class recognition is shown in Figure 3.

The leftmost data is the input layer, which the computer understands as the input of several matrices.

Next is the convolution layer, the activation function of which uses ReLU. The pooling layer has no

activation function. The combination of convolution and pooling layers can be constructed many

times. The combination of convolution layer and convolution layer or convolution layer and pool

layer can be very flexibly, which is not limited when constructing the model. But the most common

CNN is a combination of several convolution layers and pooling layers. Finally, there is a full

connection layer, which acts as a classifier and maps the learned feature representation to the sample

label space.

It is assumed that the size of the input picture is 50 ∗ 50 ∗ 3. If placed in a fully connected

feedforward network, there are 7500 mutually independent links to the hidden layer. And each link

also corresponds to its unique weight parameter. With the increase of the number of layers, the size of

the parameters also increases significantly. On the one hand, it will easily lead to the occurrence of

over-fitting phenomenon. On the other hand, the neural network is too complex, which will seriously

affect the training efficiency. In convolutional neural networks, the parameter sharing mechanism

makes the same parameters used in multiple functions of a model, and each element of the

convolutional kernel will act on a specific position of each local input. The neural network only needs

to learn a set of parameters and does not need to optimize learning for each parameter of each

position.

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1499

Research Article

Data stability is the local invariant feature, which means that the natural data will not be affected by

the scaling, translation, and rotation of the data size. Because in deep learning, data enhancement is

generally needed to improve performance, and fully connected feedforward neural is difficult to

ensure the local invariance of the data. This problem can be solved by convolution operation in

convolutional neural network.

DLCNN Layers: According to the facts, training and testing of DLCNN involves in allowing every

source data via a succession of convolution layers by a kernel or filter, rectified linear unit (ReLU),

max pooling, fully connected layer and utilize SoftMax layer with classification layer to categorize

the objects with probabilistic values ranging from [].

Convolution layer as depicted in Figure 4 is the primary layer to extract the features from a source

data and maintains the relationship between pixels by learning the features of data by employing tiny

blocks of source data. It’s a mathematical function which considers two inputs like source data

 () where and denotes the spatial coordinates i.e., number of rows and columns. is

denoted as dimension of an data (here , since the source data is RGB) and a filter or kernel with

similar size of input data and can be denoted as ().

Fig.4. Representation of convolution layer process.

The output obtained from convolution process of input data and filter has a size of ((

) ()), which is referred as feature map. An example of convolution procedure is

demonstrated in Figure 5 (a). Let us assume an input data with a size of and the filter having the

size of . The feature map of input data is obtained by multiplying the input data values with the

filter values as given in Figure 5(b).

(a)

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1500

Research Article

(b)

Fig. 5. Example of convolution layer process (a) a data with size is convolving with

kernel (b) Convolved feature map

Generally, as seen in the above picture SoftMax function is added at the end of the output since it is

the place where the nodes are meet finally and thus, they can be classified. Here, X is the input of all

the models and the layers between X and Y are the hidden layers and the data is passed from X to all

the layers and Received by Y. Suppose, we have 10 classes, and we predict for which class the given

input belongs to. So, for this what we do is allot each class with a particular predicted output. Which

means that we have 10 outputs corresponding to 10 different class and predict the class by the highest

probability it has. In Figure 6, and we must predict what is the object that is present in the picture. In

the normal case, we predict whether the malware is A. But in this case, we must predict what is the

object that is present in the picture. This is the place where softmax comes in handy. As the model is

already trained on some data. So, as soon as the picture is given, the model processes the pictures,

send it to the hidden layers and then finally send to softmax for classifying the picture. The softmax

uses a One-Hot encoding Technique to calculate the cross-entropy loss and get the max. One-Hot

Encoding is the technique that is used to categorize the data. In the previous example, if softmax

predicts that the object is class A then the One-Hot Encoding for:

Fig.6. Malware class prediction using SoftMax classifier.

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1501

Research Article

Fig.7. Example of SoftMax classifier.

Class A will be [1 0 0]

Class B will be [0 1 0]

Class C will be [0 0 1]

From the Figure 7, we see that the predictions are occurred. But generally, we don’t know the

predictions. But the machine must choose the correct predicted object. So, for machine to identify an

object correctly, it uses a function called cross-entropy function. So, we choose more similar value by

using the below cross-entropy formula.

Fig.8. Example of SoftMax classifier with test data.

In the above Figure 8, we see that 0.462 is the loss of the function for class specific classifier. In the

same way, we find loss for remaining classifiers. The lowest the loss function, the better the

prediction is. The mathematical representation for loss function can be represented as: -

 (∗ ())

4. RESULTS

The dataset was formed by transforming malware binaries into a matrix. This matrix has 8-bit

unsigned integer. This matrix can be visualized as a grayscale image which contains values in the

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1502

Research Article

range of [0, 255], 0 represents black and 255 represents white. We converted the 2D matrix into 1D

vector form, resulting in a 1x1024 size array. L2 normalization is employed for newly formed data.

Next, the dataset was randomly divided into 70% training and 30% testing dataset with both these

datasets containing samples for each malware family.

We have prepared the datasets for conducting the experimental analysis using the following pre-

processing stages:

1) Ember: Using domain level knowledge, various features from parsed PE file as well as format-

agnostic features such as raw byte histogram, byte entropy histogram are taken from [27], and strings

are extracted and passed into the LightGBM model. Since the performance of LightGBM model is

good as compared to MalConv model, they use gradient boosted decision tree (GBDT) in LightGBM

with default parameters consisting of 100 trees and 31 leaves per tree. Following, in this work we

evaluate the performance of classical MLAs and DNNs for malware classification using the Ember

dataset.

2) MalConv: MalConv is an architecture proposed in [11] for malware detection which composed of 3

different sections are undergone, namely (1) pre-processing (2) convolution and (3) fully connected.

In the pre-processing section, the raw byte sequences from the binary files are passed into embedding

layer. The embedding layer contains 257 as the size of the dictionary of embeddings and 8 as the

embedding dimension. Embedding layer maps bytes into fixed length feature vector representation. In

convolution section, MalConv contains two convolution 1D layers. Each convolution 1D layer

contains 512 (kernel size 4, 128 filters) units and 500 strides. These convolution layers follow the

gated convolution approach. Convolution layer follows a temporal maxpooling which uses 4000 as

pooling length to reduce the dimension and to handle the information sparsity issue. Fully connected

section is composed of 2 fully connected layers: the first fully connected layer contains 128 units, and

the second fully connected layer contains 1 unit with sigmoid non-linear activation function. SVM is

used at the last layer for classification with LSTM.

3) Variants of MalConv: The slight variation to the strides, SELU nonlinear activation function of the

MalConv model and removed the DeConv regularization by [12]. The convolution section contains

two convolution layers, a maxpooling followed by another two convolution layers. The first two

convolution layers contain 32 units with strides 4 and the next two convolution layers contain 16 units

with strides of 8. The last two layers follow the global average pooling with 4 fully connected layers.

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1503

Research Article

Fig. 9. Performance comparison of accuracy and F-score obtained using existing and proposed

models.

Fig. 10. Performance comparison of recall and precision obtained using existing and proposed

models.

5. CONCLUSION

This paper proposed an efficient malware detection and designed a highly scalable framework to

detect, classify and categorize zero-day malwares. This framework applies DLCNN on the collected

malwares from end user hosts and follows a two-stage process for malware analysis. In the first stage,

a hybrid of static and dynamic analysis was applied for malware classification. In the second stage,

malwares were grouped into corresponding malware categories using image processing approaches.

Various experimental analysis conducted by applying variations in the models on publicly available

benchmark dataset and indicated the proposed model outperformed classical MLAs. The developed

framework is capable of analyzing large number of malwares in real-time and scaled out to analyse

even larger number of malwares by stacking a few more layers to the existing architectures. Future

research entails exploration of these variations with new features that could be added to the existing

data.

REFERENCES

[1] R. Anderson et al., ‘‘Measuring the cost of cybercrime,’’ in The Economics of Information

Security and Privacy. Berlin, Germany: Springer, 2013, pp. 265–300.

[2] B. Li, K. Roundy, C. Gates, and Y. Vorobeychik, ‘‘Large-scale identification of malicious

singleton files,’’ in Proc. 7th ACM Conf. Data Appl. Secur. Privacy. New York, NY, USA: ACM,

Mar. 2017, pp. 227–238.

[3] M. Alazab, S. Venkataraman, and P. Watters, ‘‘Towards understanding malware behaviour by the

extraction of API calls,’’ in Proc. 2nd Cybercrime Trustworthy Comput. Workshop, Jul. 2010, pp. 52–

59.

[4] M. Tang, M. Alazab, and Y. Luo, ‘‘Big data for cybersecurity: Vulnerability disclosure trends and

dependencies,’’ IEEE Trans. Big Data, to be published.

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1504

Research Article

[5] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, ‘‘Zero-day malware detection based on

supervised learning algorithms of API call signatures,’’ in Proc. 9th Australas. Data Mining Conf.,

vol. 121. Ballarat, Australia: Australian Computer Society, Dec. 2011, pp. 171–182.

[6] M. Alazab, S. Venkatraman, P. Watters, M. Alazab, and A. Alazab, ‘‘Cybercrime: The case of

obfuscated malware,’’ in Global Security, Safety and Sustainability & e-Democracy (Lecture Notes of

the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering), vol.

99, C. K. Georgiadis, H. Jahankhani, E. Pimenidis, R. Bashroush, and A. Al-Nemrat, Eds. Berlin,

Germany: Springer, 2012.

[7] M. Alazab, ‘‘Profiling and classifying the behavior of malicious codes,’’ J. Syst. Softw., vol. 100,

pp. 91–102, Feb. 2015.

[8] S. Huda, J. Abawajy, M. Alazab, M. Abdollalihian, R. Islam, and J. Yearwood, ‘‘Hybrids of

support vector machine wrapper and filter based framework for malware detection,’’ Future Gener.

Comput. Syst., vol. 55, pp. 376–390, Feb. 2016.

[9] E. Raff, J. Sylvester, and C. Nicholas, ‘‘Learning the PE header, malware detection with minimal

domain knowledge,’’ in Proc. 10th ACM Workshop Artif. Intell. Secur. New York, NY, USA: ACM,

Nov. 2017, pp. 121–132.

[10] C. Rossow, et al., ‘‘Prudent practices for designing malware experiments: Status quo and

outlook,’’ in Proc. IEEE Symp. Secur. Privacy (SP), Mar. 2012, pp. 65–79.

[11] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. (2017). ‘‘Malware

detection by eating a whole exe.’’ [Online]. Available: https://arxiv.org/abs/1710.09435

[12] M. Krcál, O. Švec, M. Bálek, and O. Jašek. (2018). Deep Convolutional Malware Classifiers Can

Learn from Raw Executables and Labels Only. [Online]. Available:

https://openreview.net/forum?id=HkHrmM1PM

[13] M. Rhode, P. Burnap, and K. Jones, ‘‘Early-stage malware prediction using recurrent neural

networks,’’ Comput. Secur., vol. 77, pp. 578–594, Aug. 2018.

[14] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, Evading Machine Learning malware

Detection. New York, NY, USA: Black Hat, 2017.

[15] R. Verma, ‘‘Security analytics: Adapting data science for security challenges,’’ in Proc. 4th

ACM Int. Workshop Secur. Privacy Anal. New York, NY, USA: ACM, Mar. 2018, pp. 40–41.

[16] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521, no. 7553, pp. 436–444,

2015.

[17] A. F. Agarap and F. J. H. Pepito. (2017). ‘‘Towards building an intelligent anti-malware system:

A deep learning approach using support vector machine (SVM) for malware classification.’’ [Online].

Available: https://arxiv.org/abs/1801.00318

[18] E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos, and P. de Geus, ‘‘Malicious

software classification using VGG16 deep neural network’s bottleneck features,’’ in Information

Technology-New Generations. Cham, Switzerland: Springer, 2018, pp. 51–59.

[19] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection using two dimensional

binary program features,’’ in Proc. 10th Int. Conf. Malicious Unwanted Softw. (Malware), Oct. 2015,

pp. 11–20.

https://arxiv.org/abs/1710.09435
https://openreview.net/forum?id=HkHrmM1PM

Turkish Journal of Computer and Mathematics Education Vol.13 No.03 (2022),1493- 1505

1505

Research Article

[20] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, ‘‘Malware detection with deep

neural network using process behavior,’’ in Proc. IEEE 40th Annu. Comput. Softw. Appl. Conf.

(COMPSAC), vol. 2, Jun. 2016, pp. 577–582.

[21] W. Huang, J. W. Stokes, ‘‘Mtnet: A multi-task neural network for dynamic malware

classification,’’ in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability Assessment, Cham,

Switzerland: Springer, Jul. 2016, pp. 399–418.

[22] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas, ‘‘Malware classification

with recurrent networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr.

2015, pp. 1916–1920.

[23] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada, ‘‘Efficient dynamic malware

analysis based on network behavior using deep learning,’’ in Proc. IEEE Global Commun. Conf.

(GLOBECOM), Dec. 2016, pp. 1–7.

[24] S. H. Ebenuwa, M. S. Sharif, M. Alazab, and A. Al-Nemrat, ‘‘Variance ranking attributes

selection techniques for binary classification problem in imbalance data,’’ IEEE Access, vol. 7, pp.

24649–24666, 2019.

[25] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware images: Visualization and

automatic classification,’’ in Proc. 8th Int. Symp. Vis. Cyber Secur. New York, NY, USA: ACM, Jul.

2011, p. 4.

[26] F. C. C. Garcia, and F. P. Muga, II, (2016). ‘‘Random forest for malware classification.’’

[Online]. Available: https://arxiv.org/abs/arXiv: 1609.07770

[27] H. S. Anderson and P. Roth. (2018). ‘‘EMBER: An open dataset for training static PE malware

machine learning models.’’ https://arxiv.org/ abs/1804.04637

