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Abstract 

Hyperspectral unmixing is a vital process in hyperspectral imaging, aiming to estimate constituent 

endmembers and their fractional abundances within each pixel. Hyperspectral images are often 

marred by various noise sources. This research delves into the hyperspectral unmixing challenge in a 

general scenario that accounts for mixed noise, explicitly addressing Gaussian noise and sparse noise. 

The unmixing model is tailored to harness the joint sparsity of abundance maps, enabling the robust 

separation of endmembers and abundances from noise. Additionally, a total-variation-based 

regularization technique is incorporated to capture the smoothness of abundance maps, further 

enhancing the accuracy of the unmixing process in noisy hyperspectral images. 

Keywords: Hyperspectral Unmixing, Noise, Gaussian Noise, Sparse Noise, Joint Sparsity, Total 

Variation Regularization. 

1. Introduction 

Hyperspectral unmixing in remote sensing is a traditional, essential, and challenging topic. It is a 

challenge to classify endmembers and their fractions in a hyperspectral image at each pixel [1]. The 

word terminus refers to different materials that may be found in a hyperspectral frame directly or 

indirectly. The term direct refers to clear pixels being included and mixed pixels being indirectly 

included. In a satellite image, a pixel is the same as a large space area on earth. This area of space 

constitutes a single entity or numerous objects occupied by the pixel [2]. If the pixel surface forms a 

single object, then the mixed pixel is referred to as a pure pixel or mixed pixel. The term fractional 

excess refers to the proportion of the end element that is present in a pixel. Therefore, an abundance 

map indicates how a single endpiece is spread throughout an area [3]. There is a fractional abundance 

of pure pixels, while the fractional abundance of mixed pixels is between zero and one pixel. 

Hyperspectral unmixing is used in several fields, such as geology, agriculture, environmental 

sciences, biology and so on. Abundance maps are widely used as vectors for other hyperspectral 

image implementations in image analysis and pattern recognition [4]. Hyperspectral unmixing is also 

used in applications for de-noising, data fusion, and super-resolution. There are, however, some 

nonlinear models for hyperspectral unmixing based on the unmixing method of linear mixing. This 

statement could not always be valid, and thus it is not this assumption that depends on this work [5]. 

The use of existing spectral libraries as well as of others which aim to calculate endmember spectral 

signatures using techniques based on factorization of non-negative matrixes can be classified as the 

one using existing spectral libraries for several endmember categories including artificial, mineral, 

soil, etc [6]. This work is based on Vertical line stripes are typically seen on images collected by 

sensors of the push-broom type that record scene in the direction of flight. Some defective pixels are 

creating a shot noise. 

The unmixing of hyperspectral images is ideal, even if one or more of these sources of noise distort 

them [7]. A denoisers algorithm followed by unmixing algorithms will first be used to solve this 

problem of unmixing with mixed tone. This analysis varies both in the noise model and in the solution 

approach from those current methods [8]. This work uses the noise model that was later used to 
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denoise. This model enables one to formulate a linear hyperspectral unmixing problem which 

specifically takes Gaussian as well as sparse noise into account. It comprises stripes, noise from the 

shot as well as noise from impulse. There are tremendous members from various spectral libraries 

(e.g., USGS), but only a few of them are contained in the hyperspectral image [9]. The number of end 

members accessible is large. A subset of the end members is present at each pixel (present in the entire 

picture). The strong spatial similarity of natural pictures also means that there may be pixels with the 

same spectral signature in this area. This finding can be modelled on abundance maps as a total 

variance regularisation [10]. Our analysis enhances SR and its versions of total uncertainty spatial 

regularisation (SRTV) and collaborative SR (CLSR), focused on state-of- the art scarce regression 

(SR). 

Rest of the paper is organized as follows: Section 2 details about literature survey, section 3 details 

about the proposed methodology, section 4 details about the results with discussion, and section 5 

concludes article with references. 

2. Literature Survey  

Iordache, et al. (2010) [11] explored the applicability of new sparse algorithms to perform spectral 

unmixing of hyperspectral images using available spectral libraries instead of resorting to well-known 

end member extraction techniques widely available in the literature. Our main assumption is that it is 

unlikely to find pure pixels in real hyperspectral images due to available spatial resolution and mixing 

phenomena happening at different scales. Quintano, Carmen et al. (2012) [12] proposed satellite 

imagery which is formed by finite digital numbers representing a specific location of ground surface 

in which each matrix element is denominated as a picture element or pixel. The pixels represent the 

sensor measurements of spectral radiance. The radiance recorded in the satellite images is then an 

integrated sum of the radiances of all targets within the instantaneous field of view (IFOV) of the 

sensors. Jamshid Moghadam et al. (2020) [13] aims to give an overview of most nonlinear mixing 

models and methods used in hyperspectral image processing, and many recent developments in this 

field. Besides, several of the more popular nonlinear unmixing techniques are explained in detail. In 

this regard, nonlinear unmixing methods can be categorized into two groups: physics-based methods 

and data-driven techniques. The most important methods of these two groups are divided into bilinear 

and multi-linear models, intimate mineral mixture models, radiosity based approaches, ray tracing, 

neural network, kernel methods, manifold learning, and topology methods. Wang, Le et al. (2016) 

[14] proposed the incorporation of spatial information has drawn increasing attention in multispectral 

and hyperspectral data analysis. In particular, the property of spatial autocorrelation among pixels has 

shown great potential for improving understanding of remotely sensed imagery. He provided a 

comprehensive review of the state-of-the-art techniques in incorporating spatial information in image 

classification and spectral unmixing. Hong, Danfeng et al. (2018) [15] proposed the hyperspectral 

imagery collected from airborne or satellite sources inevitably suffers from spectral variability, 

making it difficult for spectral unmixing to accurately estimate abundance maps. The classical 

unmixing model, the linear mixing model (LMM), generally fails to handle this sticky issue 

effectively. To this end, they proposed a novel spectral mixture model, called the augmented LMM, to 

address spectral variability by applying a data-driven learning strategy in inverse problems of 

hyperspectral unmixing.  

Wan, Lulu, et al. (2021) [16] they presented a comprehensive survey of the NMF-based methods 

proposed for hyperspectral unmixing. Taking the NMF model as a baseline, they show how to 

improve NMF by utilizing the main properties of HSIs (e.g., spectral, spatial, and structural 

information). they categorize three important development directions, including constrained NMF, 

structured NMF, and generalized NMF. Halimi, Abderrahim, et al. (2016) [17] presented three 
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hyperspectral mixture models jointly with Bayesian algorithms for supervised hyperspectral 

unmixing. Based on the residual component analysis model, the proposed general formulation 

assumes the linear model to be corrupted by an additive term whose expression can be adapted to 

account for nonlinearities (NLs), endmember variability (EV), or mismodeling effects (MEs). He, 

Wei, et al. (2017) [18] have proposed the Blind hyperspectral unmixing (HU), which includes the 

estimation of endmembers and their corresponding fractional abundances, is an important task for 

hyperspectral analysis. Recently, nonnegative matrix factorization (NMF) and its extensions have 

been widely used in HU. Unfortunately, most of the NMF-based methods can easily lead to an 

unsuitable solution, due to the nonconvexity of the NMF model and the influence of noise. Zhao, Min 

et al. (2021) [19] have proposed the spectral unmixing which a widely used technique in hyperspectral 

image was processing and analysis. It aims to separate mixed pixels into the component materials and 

their corresponding abundances. Early solutions to spectral unmixing are performed independently on 

each pixel. Nowadays, investigating proper priors into the unmixing problem has been popular as it 

can significantly enhance the unmixing performance. Zhou, Lei, et al (2020) [20] Hyperspectral 

unmixing is a crucial task for hyperspectral images (HSIs) processing, which estimates the 

proportions of constituent materials of a mixed pixel. Usually, the mixed pixels can be approximated 

using a linear mixing model. Since each material only occurs in a few pixels in real HSI, sparse 

nonnegative matrix factorization (NMF), and its extensions are widely used as solutions.  

3. Proposed Methodology  

3.1 Problem description and formulation 

This section describes how linear unmixing problem can be mathematically formulated as sparse 

recovery problem followed by our proposed problem formulation. 

3.1.1 Notations  

Let 𝐼𝑛 represents identity matrix of size 𝑛 × 𝑛. The operation 𝑥 =  𝑣𝑒𝑐(𝑋) represents vectorization 

operation on matrix 𝑋 with columns appended whereas 𝑋 =  𝑚𝑎𝑡(𝑥) represents its inverse operation. 

A hyperspectral data cube of size 𝑚 × 𝑛 × 𝑏 can be represented as a matrix of size 𝑏 × 𝑝 where b is 

the total number of bands and 𝑝 =  𝑚 × 𝑛 is the total number of pixels in the image. 𝑀 ∈  ℝ𝑏×𝑒 

represents mixing matrix also called endmember matrix in which each column represents spectral 

signature of an endmember. Let ∇= (∇ℎ
∇𝑣

)  be total variation operator with ∇ℎ  and ∇𝑣  representing 

horizontal and vertical total-variation operators, respectively, with (∇ℎ𝑋)𝑖,𝑗 = 𝑋𝑖,𝑗+1 − 𝑋𝑖,𝑗  and 

(∇𝑣𝑋)𝑖,𝑗 = 𝑋𝑖+1,𝑗 − 𝑋𝑖,𝑗. The 𝑙2,1-norm of a matrix 𝐴 ∈  ℝ𝑀×𝑁 is defined as 

    (1) 

Whereas Frobenius norm and 𝑙1 −norm of a matrix is defined as follows: 

   (2) 

3.1.2 Problem Description 

The linear unmixing problem for a pixel in the presence of Gaussian noise is represented as 

constrained linear regression model. 
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    (3) 

where 𝑦 ∈ 𝑅𝑏 × 1 is a pixel vector in b spectral bands, 𝑀  is a mixing matrix with e number of 

endmembers as column vectors, 𝑎 ∈ 𝑅𝑒 × 1 is called abundance vector that represents the fraction of 

each endmember used in the formation of that pixel, and 𝑛 represents Gaussian noise which accounts 

for various external environmental factors. The constraint ‖𝑎‖1 = 1 represents abundance sum-to-one 

constraint to ensures that total contribution of each endmember in formation of a pixel is one. As it 

has been noticed in [7], [21], and [22], all the endmembers present in a real hyperspectral image may 

not be available in the spectral library. Therefore, abundance sum may not be exactly equal to one. 

Also, if this constraint of ‖𝑎‖1 = 1 is enforced then formulating the 𝑙1-norm minimization problem 

on a will be meaningless. Therefore, this work does not enforce this constraint in the problem 

formulation. The abundance nonnegativity constraint represents that contribution cannot be negative.  

Since mixing matrix is known for hundreds of most used materials. Therefore, generally 𝑒 > 𝑏 and 

eq. (3) is an underdetermined system of linear equations. In general, an underdetermined system has 

infinite solutions; therefore, we need additional constraints on the variable a to determine it uniquely. 

The observation that a pixel is mixture of very few endmembers as opposed to hundreds of available 

endmembers allow us to treat abundance vector a as sparse vector thus unmixing can be recast as 

compressed sensing [23], [24] problem. 

    (4) 

where 𝑘 is the sparsity of 𝑎, i.e., maximum number of nonzero elements of 𝑎. This is an NP-hard [25] 

problem whose solution can be approximated using greedy pursuit algorithms such as OMP [26], 

StOMP [27], CoSAMP [28], etc. It has been shown that under certain conditions solution of the NP-

hard problem eq. (4) can be approximated by solving its convex surrogate 𝑙1-norm minimization 

problem. 

     (3) 

This problem is a convex optimization problem, and various algorithms have been proposed in 

literature SPGL1 [29], FISTA [30], NESTA [31], Bregman Iteration [32], etc., to solve this problem. 

The unmixing model in eq. (3) can be extended for all the pixels as 

     (4) 

where 𝑌 ∈ ℝ𝑏×𝑝 is a matrix with p pixels as column vectors, 𝐴 ∈ ℝ𝑒×𝑝 is sparse abundance matrix, 

and 𝑁 is Gaussian noise. This unmixing model can be though of as specialization of image denoising 

model. 

𝑌 = 𝑋 + 𝑁     (5) 

where 𝑋 ∈ ℝ𝑏×𝑝 and 𝑋 =  𝑀𝐴 is clean hyperspectral image which imply that unmixing can lead to 

denoising provided that mixing matrix is known. 

3.1.3 Proposed Formulation 

A real hyperspectral image may contain a mixture of Gaussian and sparse noise; therefore, we 

consider the mixed noise model for unmixing and account for both types of noise. The usual unmixing 

model in eq. (4) can be extended as 
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    (6) 

here 𝑆 and 𝐺 represents sparse and Gaussian noise, respectively. The above noise model assumes both 

Gaussian and sparsenoise to be additive noise. Sparse noise accounts for horizontal or vertical line 

strips, shot noise and any impulse noise present in a hyperspectral image. All these kinds of noise are 

termed as sparse noise since they corrupt few pixels in a hyperspectral image. By utilizing this model, 

we can formulate the unmixing problem as 

  (7) 

Here, the first term is data fidelity term that is equivalent to minimizing the variance of Gaussian noise 

𝐺 =  𝑌 − 𝑀𝐴 − 𝑆. First regularization term is an 𝑙2,1-norm minimization term on abundance matrix 

𝐴 which is also called joint-sparse regularization term. This term is based on the observation that in 

most hyperspectral images, fewer endmembers are present compared to the available endmembers. 

This observation is mathematically modeled as joint-sparse regularization on matrix 𝐴  with few 

nonzero rows, but each nonzero row can be dense. The second regularization term corresponds to 

minimizing 𝑙1 -norm of sparse noise matrix 𝑆 . Here, 𝑙1 -norm is minimized due to modelling 

assumption that sparse noise affects few pixels in the image. As an alternative unmixing model, we 

can also exploit the fact that most natural images are piece-wise smooth, e.g., if there are some 

vegetation pixels in the image the nearby pixels are also likely to be vegetation pixels. Therefore, the 

abundance maps can be considered as piecewise smooth. The piecewise smoothness can be modeled 

as total-variation regularization [16]. 

   (8) 

Here, 𝛻  is two-dimensional (2-D) total-variation operator that applies total variation along both 

horizontal and vertical directions on a 2-D image. The operator 𝛻 is applied on 𝐴𝑇  because each 

abundance map is along rows of 𝐴. In this work, we propose to simultaneously exploit both the joint 

sparsity as well as spatial smoothness of the abundance maps in the light of generic noise model. 

Thus, the proposed hyperspectral unmixing problem formulation can be expressed as 

  (9) 

Here, 𝜆1, 𝜆2, and 𝜆3 are regularization parameters corresponding to total-variation term, joint-sparsity 

term, and sparse noise term, respectively. These three models in eq. (7)-(9) estimate 𝑋 = 𝑀𝐴 be the 

clean image then we can get denoised image �̂� = 𝑀�̂� where �̂� is the estimated abundance maps by 

solving eq. (9). Along with generic noise model eq. (6), we have exploited both joint sparsity as well 

as piecewise smoothness of abundance maps. We are not aware of any efficient algorithm to solve eq. 

(9); therefore, in the next section, we briefly describe how to solve this problem using the split-

Bregman [17] based technique. 

3.2 Proposed Algorithm 

This section describes how the split-Bregman [17] approach can be utilized to derive the algorithm for 

solving eq. (9). The split Bregman approach is suitable to solve eq. (8) because it has been designed to 

handle multiple regularization terms. The variable 𝐴 is not separable in eq. (9); therefore, we utilize 

auxiliary variables 𝑃 and 𝑄  to make the problem separable. Set 𝑃 = 𝛻𝐴𝑇  and 𝑄 = 𝐴, then we get 

following constrained problem: 
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  (10) 

This problem can be rewritten into unconstrained form by using two Bregman variables 𝐵1 and 𝐵2 to 

get 

  (11) 

Where 𝐵1 and 𝐵2 are updated as 

    (12) 

Above problem is separable in each variable therefore can be written into following subproblems as 

   (14) 

each of these problems can be solved iteratively by using Bregman iteration with Bregman variables 

updated in kth iteration as 

     (15) 

The problems P1 and P3 are of the form. 

     (16) 

which can be solved by using soft thresholding [33] operation 

    (17) 

The problem P2 can be solved by using the procedure as described in [15, Sec. 3.3.3]. This is a 𝑙2-

norm shrinkage operation on each row 𝑞(𝑖) ∀𝑖 = 1 ,2, . . . , 𝑒 , of matrix 𝑄 . The 𝑙2 -norm shrinkage 

problem is 

     (18) 

whose solution is given by 
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   (19) 

here ⊙ represent element by element multiplication operation with the assumption that 0 ×  
0

0
 = 0. 

The problem P4 is a differentiable convex optimization problem. After differentiating we get 

following linear system of equations with variable 𝐴: 

   (20) 

This equation can be rewritten as 

    (21) 

The above system of linear equations is large and sparse whose solution can be approximated using 

algorithms such as LSQR [34]. Algorithm 1 outlines the steps of proposed jointly sparse and total-

variation regularized hyperspectral unmixing algorithm using the split-Bregman approach. We use the 

acronym JSTV for the proposed joint sparsity and total variation-based unmixing method. By setting 

λ_1=0, we can derive the solution of eq. (15) which we refer as split-Bregman algorithm-based joint-

sparse regularized (SBJS) unmixing algorithm. Similarly, λ_2=0 results in an algorithm that solves eq. 

(16) which we refer as split-Bregman algorithm based total variation regularized (SBTV) unmixing 

algorithm. 

 

4. Results and Discussions 

This section describes the details of various experiments executed to validate the proposed method. 

Firstly, datasets used in the experiments are described followed by evaluation metrics. After that, 

various synthetic data experiments and real data experiments are detailed with analysis of results. 

A. Data Description  
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The existing USGS spectral library [35] was utilized in all the experiments. The library contains 

spectral signatures under six categories namely artificial, coatings, minerals, liquids, soil, and 

vegetation. We utilized endmembers from each of these categories in the experiments. We manually 

checked each endmember signature and removed some of the endmembers that had missing values for 

some wavelengths. Experiments were conducted with two synthetic and one real dataset. The first 

synthetic dataset has five abundance maps of 50×50 pixels with constant fraction value over a region. 

Each abundance map is composed of two or three endmembers as represented by the number of 

rectangular boxes inside a map. Dark blue background color represents zero-pixel value. Five 

endmembers were randomly selected to generate first synthetic image of dimension 50×50×224. The 

second synthetic dataset was generated using HYDRA toolbox [36]. Four abundance maps of size 

128×128 were generated using Legendre method. The second synthetic image of dimension 

128×128×224 was generated using four randomly selected endmembers from the spectral library. 

Both the datasets satisfy abundance sum to one constraint as well as abundance nonnegativity 

constraint. The experiments on the first synthetic image were conducted with the endmember matrix 

of dimension 𝑅224×269  such that angle between any two spectral signatures was at least 4◦. The 

experiments with second synthetic image do not make any such assumption and utilized endmember 

matrix of dimensions 𝑅224×889.  

 

Figure 1. Data description with end member’s diagram. 

Real data experiments were done with a portion of Jasper Ridge image [37] of size 112 × 118 × 224. 

A false color composite image is shown in Fig. 1. Several bands in this image are noisy bands. We had 

considered all 224 bands in real data experiments as opposed to many unmixing algorithms that 

remove noisy bands before doing unmixing. We did not have actual abundance maps for this real 

dataset; however, four major constituent endmembers can be easily recognized by visual 

interpretation. These four endmembers are roads, vegetation, soil, and water as indicated in Fig. 1. 
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Figure 2. Noisy image and reconstructed image. 

 PSNR of noisy image= 8.997199  

 Elapsed time is 21.914467 seconds. 

 Reconstructed Abundance PSNR=41.502979  

 Reconstructed Image PSNR= 43.661829 

5. Conclusion 

We suggested a new method for hyperspectral unmixing in this work. In the generalised noise model, 

which contributes for specifically sparse noise, the joint sparsity and partial smoothness of the 

cartoons are manipulated in this approach. The supremacy of the new method over existing methods is 

suggested by experimental studies. The combined use of both complete regularization of variants and 

Split regularisation is not redundant since these fulfil different goals. Smooth mapping has been 

explored by regularisation of total variation. Although joint sparsity exploits the fact that where 

present, an end member is present in the same region in different positions. The latest USGS spectral 

library for spectrary signatures has been used for this work. In the current library, the spectral 

signatures may be different from the spectral signatures in the image. True images may also have non-

spectral signature members of current libraries, so we expand the work to guide the hyperspectral 

image end signatures. 
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