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ABSTRACT  

  

In contrast to conventional models, fuzzy graphs offer an enhanced level of precision and adaptability for systems. 

These graphs provide a numerical representation of a molecule’s structural graph through topological indices. In the realm 

of graph theory, numerous topological indices can be applied to the domain of fuzzy graphs. This paper elucidates the 

utilization of fuzzy graph theory indices within interconnection networks. The scope of this analysis encompasses the 

derivation of analytical results for the fuzzy Zagreb index and its practical applications in interconnecting companies within 

the field of financial mathematics.  

Additionally, we leverage fuzzy graph modeling to investigate a significant approach to designing efficient investment 

strategies, harnessing the power of the fuzzy Zagreb index as a key tool in this endeavor.  
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1. INTRODUCTION  

  

In a general context, graphs serve as a fundamental framework for representing the connections among various entities 

and data-driven relationships. They provide a concise means to articulate the underlying structure, facilitating 

comprehension and analysis of the behaviors inherent to the studied concepts. In graph theory, two essential components 

are the vertex set, representing objects within the context, and the edge set, signifying relationships between vertices. When 

uncertainties surround the characterization of both vertices and edges, the concept of fuzzy graphs becomes indispensable.  

Within the realm of structural molecular graphs, numerical measures known as topological indices play a pivotal role. 

These indices find applications across diverse fields, including engineering, pharmacology, graph theory, and mathematics. 

Notably, I. Gutman introduced the first Zagreb index in 1972 [1], and the Randic index, pioneered by Randic [2], marked 

the inception of topological indices. Various experts, including I. Gutman and Eliasi et al., have explored the development 

of multiple Zagreb and Randic indices [3]. Fuzzy graphs emphasize the significance of vertices, edges, and their associated 

fuzzy membership values.  

The foundational work by Zadeh in 1965 introduced the concept of fuzzy relations and sets [4]. Recent research delves 

into the Wiener index of fuzzy networks and explores the correlations between the connectivity index and the fuzzy graph 

of Wiener index [5]. Fuzzy Zagreb indices have been introduced, and bounds for fuzzy Zagreb energy have been 

investigated [6], along with discussions on bounds for the fuzzy Zagreb Estrada index [7]. Recent studies have also 

addressed topics such as Hamiltonian fuzzy graphs, transitive blocks, and applications in fuzzy interconnection networks 

[8, 9]. Hayat and Imran have contributed to the field by exploring the topological features of specific networks [10].  

With advancements in large-scale integrated circuit technology, complex interconnectivity networks have become 

more feasible to construct. Graph theory serves as the primary tool for the construction and analysis of such networks. 

These interconnected subjects find clearer elucidation through the lens of graph theory and connectivity networks [10, 11]. 

The advantage of employing fuzzy graphs lies in their capacity to represent intricate relationships and uncertainties, 

especially when the strength of connections remains imprecise or ambiguous. The dissociation of vertex memberships and 

edge membership values provides a flexible framework for modeling and analyzing diverse real-world scenarios. For 

instance, a fuzzy graph can effectively depict the design of an interconnected network of industries, with nodes representing 

various companies and edges signifying correlated relationships among them.  

The global financial landscape is an intricate network where businesses, institutions, and markets are intricately 

interwoven in the pursuit of economic growth and stability. This intricate interconnection has given rise to a dynamic 

ecosystem characterized by complex relationships and dependencies that extend well beyond individual entities. In this 
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context, comprehending the structure and dynamics of these interconnections is of utmost significance for financial 

mathematics researchers and practitioners.  

The study of network theory and its associated metrics has become a potent tool for dissecting and analyzing the 

intricacies of financial systems. Network analysis allows us to model and explore the relationships among financial entities, 

providing valuable insights into risk assessment, systemic stability, portfolio optimization, and other vital aspects of 

financial mathematics.  

Among the various network metrics, the ‘Zagreb Index’ has gained attention for its capability to quantify the 

topological characteristics of networks. Originally rooted in chemical graph theory, the Zagreb Index calculates the degree-

based connectivity of nodes within a network. However, interconnection networks in the financial sector often involve 

fuzzy and uncertain relationships. These uncertainties arise from factors like market volatility, regulatory changes, and 

shifting investor sentiment. To address these complexities, there is a growing demand for network metrics capable of 

accommodating fuzzy relationships and imprecise data.  

In this research paper, we delve into the application of a novel adaptation of the Zagreb Index, known as the ‘Fuzzy 

Zagreb Index,’ within the realm of financial interconnection networks. The Fuzzy Zagreb Index extends the traditional 

Zagreb Index by incorporating the concept of fuzziness, enabling a more nuanced representation of network connectivity. 

By embracing fuzziness, we acknowledge the inherent uncertainty surrounding financial interconnections, providing a 

more realistic and adaptable framework for analysis.  

Our primary objective is to explore how the Fuzzy Zagreb Index can serve as a robust tool for quantifying the 

connectivity and risk profiles within the interconnection networks of financial companies. We aim to demonstrate its 

potential to capture the dynamic and often uncertain nature of relationships between financial entities, thereby offering 

practitioners and researchers a more comprehensive understanding of systemic risk and financial stability.  

Throughout this paper, we will establish the theoretical foundations of the Fuzzy Zagreb Index, discuss its advantages 

in the context of financial networks, and provide practical examples and case studies to illustrate its applicability. Our 

research seeks to bridge the gap between network theory and financial mathematics, providing a unique perspective on the 

analysis and management of interconnection networks in the financial sector.  

In subsequent sections, we will continue with an exploration of relevant literature, a formal definition of the Fuzzy 

Zagreb Index, and a presentation of our research methodology, results, and discussions. Our ultimate goal is to contribute 

to the growing body of knowledge in financial mathematics and network analysis, empowering stakeholders in the financial 

industry to make informed decisions and navigate the intricate web of interconnections with greater precision and 

confidence.  

 

2. PRELIMINARIES  

In this section, we will review key definitions related to fuzzy Zagreb indices and fundamental concepts in fuzzy graph 

theory, as they constitute a foundational framework for our subsequent discussions in this research paper. For a 

comprehensive understanding of the Zagreb indices, readers are encouraged to refer to [12] and [3], which provide an in-

depth exploration of these metrics. Additionally, those seeking a solid grasp of graph theory and fuzzy graphs can find 

valuable resources in [13] and [14]. Furthermore, we will discuss the precise definitions and mathematical formulations of 

the fuzzy Zagreb first index, the associated fuzzy Zagreb matrix, and the concept of fuzzy Zagreb energy. These definitions 

are instrumental in our subsequent analyses and discussions and can be found in [6] and [7]. By establishing a clear 

foundation through these references, we aim to provide readers with the necessary background to comprehend the intricate 

nuances and applications of fuzzy Zagreb indices in our research.  

  

DEFINITION 2.1. A fuzzy graph 𝐺(𝑉, 𝜎, 𝜇); which also can simply be denoted by 𝐺(𝜎, 𝜇), is a graph with a vertex-

membership function 𝜎: 𝑉 → [0,1]  and edge-membership function : [0,1]V V  →  . The corresponding crisp graph is 

denoted by 𝐺(𝜎∗, 𝜇∗).  

Also, we denote the strength of vertex u by µ(u), it represents the minimum strengths of edges incident to the vertex u  

𝜇(𝑢) = ∧
𝑢𝑣𝑖∈𝜇∗

𝜇(𝑢, 𝑣𝑖) 

With the provided definition, it is important to emphasize that there exist no constraints or prerequisites regarding the 

interdependence of vertex membership values and edge membership values. These two sets of values remain entirely 

autonomous, permitting their definition based on distinct criteria or considerations. This inherent flexibility opens up a 

wide spectrum of applications and modeling scenarios in which relationships among elements can be effectively 

represented with varying degrees of uncertainty and fuzziness.  
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To illustrate this versatility, let us consider the application of fuzzy graphs to the representation of a social network. In 

this context, the membership values assigned to vertices could capture the extent to which individuals belong to various 

social groups or communities. Conversely, the membership values assigned to edges could signify the intensity of social 

connections between individuals, influenced by factors such as the frequency of interaction, shared interests, or geographic 

proximity.  

Importantly, it is not mandatory for a direct correlation to exist between an individual’s membership in a particular 

social group and the strength of their connections to other individuals within the same group. The inherent adaptability of 

fuzzy graphs allows for the modeling of intricate relationships and uncertainties. In such models, the membership values 

associated with vertices and edges can be determined independently, taking into account different facets and aspects of the 

complex system under consideration.  

This flexibility empowers researchers and practitioners to embrace a comprehensive approach to modeling real-world 

systems, where multifaceted and nuanced relationships can be accurately represented. By permitting the independent 

definition of membership values for vertices and edges, fuzzy graphs provide a powerful framework for capturing the 

intricate dynamics of systems characterized by uncertainty, fuzziness, and diverse criteria for assessing relationships. 

 

DEFINITION 2.2. The fuzzy Zagreb first index of 𝐺(𝜎, 𝜇) is defined as  

𝐹𝑀1(𝐺) = ∑ [𝜎(𝑢)𝜇(𝑢) + 𝜎(𝑣)𝜇(𝑣)]

𝑢𝑣∈𝜇∗

 

Equivalently, the index can also be defined as  

𝐹𝑀1(𝐺) = ∑ [𝜎(𝑢)𝜇(𝑢)𝑑𝑢]

𝑢∈𝜎∗

 

DEFINITION 2.3. If 𝐺(𝜎, 𝜇) is a fuzzy graph and 𝜎∗ = {𝑢1, 𝑢2, … , 𝑢𝑛} then first fuzzy Zagreb matrix is defined as 𝐹𝑍(1) =

(𝑓𝑧(1))𝑖,𝑗 where  

(𝑓𝑧(1))𝑖,𝑗 = {
𝜎(𝑢𝑖)𝜇(𝑢𝑖) + 𝜎(𝑢𝑗)𝜇(𝑢𝑗)

0                                                 

0                                                 

      , if    𝑖 ≠ 𝑗     and    𝑢𝑖. 𝑢𝑗 ∈ 𝜇∗

, if    𝑢𝑖. 𝑢𝑗 ∉ 𝜇∗                     

, if    𝑖 = 𝑗                                

 

 

DEFINITION 2.4. If 𝐺(𝜎, 𝜇) is a fuzzy graph and 𝜎∗ = {𝑢1, 𝑢2, … , 𝑢𝑛}, if 𝐹𝑍(1) is the first fuzzy Zagreb matrix with its 

eigen values 𝜉1
(1)

,  𝜉2
(1)

,  . . . ,  𝜉𝑛
(1)

 then the first fuzzy Zagreb energy is defined as  

𝐹𝑍𝐸(1) = ∑ | 𝜉𝑖
(1)

|

𝑛

𝑖=1

 

  

3. FINANCIAL PARAMETERS  

  

In the intricate landscape of financial investments, the process of selecting shares or stocks necessitates a meticulous 

examination of various financial parameters. These parameters act as guiding principles, steering investors toward prudent 

decisions amidst the complex array of investment options. This section offers an extensive analysis of the multifaceted 

world of investment decision parameters and their pivotal role in the evaluation of risks and opportunities.   

  

INVESTMENT DECISION PARAMETERS:  

  

Company Fundamentals: A cornerstone of investment decision-making is the comprehensive evaluation of a 

company’s financial health. Investors scrutinize a range of factors, including revenue growth, earnings per share (EPS), 

profit margins, debt levels, and cash flow, to assess the overall performance and stability of the company in question.  

Valuation metrics: Valuation metrics provide insights into whether a stock is overvalued or undervalued. Common metrics 

include the Price-to-Earnings ratio (P/E), Price-to-Book ratio (P/B), Price-to-Sales ratio (P/S), and Dividend Yield, offering 

investors a framework to gauge a stock’s pricing relative to its intrinsic worth.  

Dividends and income: For investors seeking a steady income stream, dividend-paying stocks hold particular appeal. 

Considerations such as dividend yield and a company’s history of dividend payments play a crucial role in the decision-

making process for those aiming to derive income from their investments.  
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 INTERCONNECTION BETWEEN INVESTMENT DECIDING PARAMETERS:  

  

Company fundamentals and value metrics: The financial robustness of a company, as reflected in key metrics like 

revenue growth and profitability, directly influences valuation metrics, notably the Price-to-Earnings (P/E) ratio. 

Companies characterized by strong fundamentals and growth potential often command higher P/E ratios, signaling that 

they are relatively more expensive compared to their earnings. Conversely, companies with weaker fundamentals may 

exhibit lower P/E ratios, indicating potential undervaluation.  

Market trends and industry analysis: Broader market trends, whether categorized as bullish or bearish, wield substantial 

influence over individual industries. In a bullish market, most sectors typically perform favorably, while during bearish 

phases, defensive sectors such as utilities and consumer staples may exhibit greater resilience. Understanding these 

overarching market trends empowers investors to identify sectors with growth potential or stability.  

Company fundamentals and management quality: Strong company fundamentals often stem from competent and effective 

management. Companies guided by capable leadership are more likely to demonstrate superior financial performance, 

strategic growth initiatives, and prudent decision-making factors that instill investor confidence.  

In the complex fabric of investment decisions, these financial parameters serve as guiding stars, illuminating the path 

to well-informed choices. Recognizing the intricate web of interconnections among these parameters empowers investors 

to navigate the complexities of the financial realm, facilitating the formulation of more discerning investment strategies 

and decisions. These insights, in turn, foster a deeper understanding of the financial landscape, assisting investors in 

harnessing opportunities and effectively managing risks.  

   

4. SECTOR ANALYSIS  

In this phase of our research, we employ multidimensional fuzzy graphs to conduct a comprehensive sector analysis. 

When constructing fuzzy graphs to investigate the intricate interconnections within this complex network, we meticulously 

consider nine critical parameters. These parameters include dividend paid (p1), return on capital employed (ROCE) (p2), 

earnings per share (EPS) (p3), profit growth (p4), debt-to-equity ratio (p5), price-to-book ratio (P/B) (p6), earning yield (p7), 

operating profit margin (OPM) (p8), and price-to-earnings ratio (P/E) (p9). Our analysis focuses on the top five companies 

in various sectors, classified by market capitalization. These sectors serve as the nodes within our graph, and their collective 

market capitalization percentages serve as the edge membership values. The sectors under consideration encompass 

Banking, IT (software industries), Electronics, Metal, and FMCG.  

It is worth noting that our analysis is grounded in real-time market data, which is readily accessible through open-

source financial platforms.  

4.a INVESTIGATING THE BANKING SECTOR:  
We present the vertex and edge membership values for various banks along with the corresponding parameters p1, p2, 

..., p9 in the tables below:  

Table 4.a.1: Edge memberships 

 Market Cap.(in Cr.)  u1 u2 u3 u4 u5 

HDFC Bank (u1)  1248837  0.62 0.57 0.52 0.50 

ICICI Bank (u2)  685093 0.62  0.38 0.34 0.32 

SBI (u3) 507007 0.57 0.38  0.28 0.26 

Kotak M. Bank (u4)  364661 0.52 0.34 0.28  0.21 

Axis Bank (u5)  292850 0.50 0.32 0.26 0.21  

 

Table 4.a.2: Vertex memberships    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

u1 0.012 0.062 0.874 0.229 0.074 0.032 0.048 0.627 0.256 

u2 0.008 0.068 0.534 0.345 0.069 0.037 0.061 0.298 0.183 

u3 0.020 0.052 0.749 0.650 0.139 0.014 0.057 0.428 0.758 

u4 0.008 0.069 0.822 0.252 0.037 0.033 0.051 0.141 0.224 

u5 0.001 0.062 0.407 0.414 0.089 0.022 0.061 0.640 0.128 

FM1 0.06 0.38 4.24 2.13 0.49 0.17 0.33 2.74 1.83 
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Fig. 4.a.3: Fuzzy Graph of Banking Sector 

 
 

Hence, the fuzzy Zagreb index FM1 (Banking Sector) = 12.37.  

  
4.b EXPLORING THE IT SECTOR   

In the subsequent tables, we provide the vertex and edge membership values for different companies with the IT sector, 

categorised under various parameters p1, p2, ..., p9.  
Table 4.b.1: Edge memberships 

 Market Cap.(in Cr.)  v1 v2 v3 v4 v5 

TCS (v1)  1270019   0.73 0.62 0.59 0.56 

Infosys (v2)  577063 0.73   0.35 0.32 0.29 

HCL Tech (v3) 309656 0.62 0.35   0.21 0.18 

Wipro (v4)  228612 0.59 0.32 0.21   0.15 

LTI Mindtree (v5)  150474 0.56 0.29 0.18 0.15   

 

Table 4.b.2: Vertex memberships    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

v1 0.014 0.591 1.000 0.128 0.001 0.014 0.047 0.262 0.290 

v2 0.025 0.407 0.590 0.108 0.001 0.078 0.061 0.242 0.234 

v3 0.042 0.283 0.557 0.112 0.001 0.047 0.068 0.221 0.205 

v4 0.002 0.177 0.212 0.087 0.002 0.029 0.069 0.187 0.196 

v5 0.002 0.377 1.000 0.533 0.000 0.091 0.041 0.183 0.338 

FM1 0.09 2.33 4.05 0.86 0.01 0.23 0.29 1.25 1.39 
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Hence, the fuzzy Zagreb index FM1 (I.T. Sector) = 10.50.  

 

4.c EXPLORATION OF THE ELECTRONICS SECTOR  

The tables below present the vertex and edge membership values for various companies within the Electronics sector, 

categorized according to different parameters p1, p2, ..., p9.  

Table 4.c.1: Edge memberships 

 Market Cap.(in Cr.)  w1 w2 w3 w4 w5 

Bharat Electronics (w1)  94405   0.85 0.68 0.66 0.63 

Honeywell Auto. (w2)  37264 0.85   0.31 0.30 0.26 

Data Pattern (w3)  11372 0.68 0.31   0.13 0.09 

Syrma SGS Tech (w4)  8410 0.66 0.30 0.13   0.08 

Shivalik Bimetal (w5)  3318 0.63 0.26 0.09 0.08   

 

Table 4.c.2: Vertex memberships    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

w1 0.014 0.300 0.043 0.152 0.000 0.068 0.048 0.234 0.299 

w2 0.002 0.195 1.000 0.292 0.000 0.117 0.017 0.151 0.851 

w3 0.002 0.196 0.250 0.387 0.000 0.097 0.017 0.376 0.839 

w4 0.000 0.148 0.075 1.000 0.002 0.055 0.025 0.084 0.637 

w5 0.001 0.377 0.132 0.315 0.002 0.130 0.032 0.251 0.436 

FM1 0.04 1.20 1.31 1.25 0.00 0.39 0.16 0.99 2.28 

 

Hence, the fuzzy Zagreb index FM1 (Electronics Sector) = 7.61.  

  
4.d EXPLORING THE METAL SECTOR  

In the subsequent tables, we provide the vertex and edge membership values for diverse companies within the Metal 

sector, classified under various parameters p1, p2, ..., p9. 

 Table 4.d.1: Edge memberships 

 Market Cap.(in Cr.)  x1 x2 x3 x4 x5 

Adani ENT (x1)  282098   0.59 0.53 0.47 0.46 

JSW steel (x2)  193691 0.59   0.42 0.36 0.35 

TATA steel (x3)  144397 0.53 0.42   0.30 0.29 

Hindalco (x4)  102192 0.47 0.36 0.30   0.24 

Vedal (x5)  89231 0.46 0.35 0.29 0.24   

 

Table 4.d.2: Vertex memberships    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

x1 0.001 0.101 0.235 1.000 0.016 0.085 0.025 0.079 1.000 

x2 0.004 0.084 0.234 0.000 0.001 0.030 0.058 0.124 0.370 

x3 0.031 0.128 0.013 0.000 0.008 0.014 0.069 0.093 0.705 

x4 0.066 0.113 0.375 0.000 0.006 0.018 0.097 0.091 0.121 

x5 0.420 0.238 0.237 0.000 0.017 0.023 0.155 0.215 0.120 

FM1 0.51 0.79 1.36 1.84 0.06 0.25 0.45 0.72 3.41 

 

Hence, the fuzzy Zagreb index FM1 (Metal Sector) = 9.39.  
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 4.e EXPLORING THE FMCG SECTOR  
Below, we present the vertex and edge membership values for a range of companies within the Fast-Moving Consumer 

Goods (FMCG) sector, categorized under various parameters p1, p2, ..., p9. 

   
Table 4.e.1: Edge memberships 

 Market Cap.(in Cr.)  y1 y2 y3 y4 y5 

Hindustan Unilever (y1)  602869   0.74 0.52 0.45 0.43 

ITC (y2)  563847 0.74   0.50 0.43 0.41 

Nestle India (y3)  214324 0.52 0.50   0.21 0.19 

Britannia (y4)  110928 0.45 0.43 0.21   0.12 

TATA Consumers (y5)  78729 0.43 0.41 0.19 0.12   

 

Table 4.e.2: Vertex memberships    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

y1 0.015 0.266 0.438 0.129 0.000 0.120 0.023 0.235 0.582 

y2 0.028 0.392 0.154 0.259 0.000 0.081 0.046 0.362 0.295 

y3 0.010 1.000 1.000 0.196 0.001 0.750 0.018 0.225 0.787 

y4 0.016 0.488 1.000 0.455 0.085 0.314 0.026 0.182 0.520 

y5 0.010 0.099 0.136 0.086 0.001 0.048 0.024 0.137 0.687 

FM1 0.09 2.14 2.31 1.06 0.04 1.08 0.15 1.32 2.66 

 

 Hence, the fuzzy Zagreb index FM1 (FMCG Sector) = 10.86.  

  

 
 

Based on the aforementioned analysis, it can be inferred that, given the current financial indicators, the banking sector 

exhibits favorable prospects for investment.  

In the subsequent section, we investigate the banking sector further to identify specific companies with promising  

investment potential.  

  

5. COMPANY ANALYSIS  

  

Having identified the banking sector as the focal point for investment in Section 4, our current focus shifts towards the 

analysis of fuzzy graphs within different banks. Our objective is to calculate the Fuzzy Zagreb indices, ultimately aiding 

in the selection of the ideal company for investment.  
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In this phase, we construct fuzzy graphs for various companies within the banking sector, thereby completing the 

company analysis. When forming these fuzzy graphs to visualize the interconnectivity network of the banking sector, we 

consider nine distinct parameters p1, p2, ..., p9  as nodes within the graph. The values of these parameters for each bank 

serve as the vertex memberships, while we also incorporate potential edge membership values based on hypothetical 

relationships. These relationships are derived by calculating the rank correlation coefficient between the parameters, and 

we base our considerations on the following factors 

Dividend yield and EPS: Companies displaying both a high dividend yield, indicating a substantial payout of earnings 

as dividends, and a high EPS, receive a moderate to high edge membership value between the ‘Dividend Yield’ and ‘EPS’ 

vertices.  

EPS and ROCE: Firms with high EPS and a robust Return on Capital Employed (ROCE), signifying efficient capital 

utilization, are assigned a moderate to high edge membership value connecting the ‘EPS’ and ‘ROCE’ vertices.  

Debt-to-Equity Ratio and ROCE: Companies burdened with a high Debt-to-Equity ratio and a low ROCE, suggestive 

of potential difficulties in covering debt obligations, are linked with a moderate to high edge membership value between 

the ‘Debt-to-Equity Ratio’ and ‘ROCE’ vertices.  

P/B ratio and ROCE: Companies with a high P/B ratio and strong ROCE are linked with a moderate to high edge 

membership value, illustrating the correlation between elevated market valuation and efficient capital management.  

Earning Yield and P/E Ratio: A high earning yield, indicative of a more substantial return on investment based on 

current earnings, is associated with a relatively lower P/E ratio. Thus, a moderate to high edge membership value connects 

the ‘Earning Yield’ and ‘P/E Ratio’ vertices.  

EPS and OPM: A moderate to high edge membership value is assigned to represent the correlation between EPS and 

Operating Profit Margin (OPM). This signifies that a higher profit margin can translate into improved earnings per share. 

Debt-to-equity ratio and P/E ratio: A lower edge membership value suggests that the company’s debt-to-equity ratio 

has a weak correlation with its price-to-earnings (P/E) ratio, implying that factors beyond debt structure influence the P/E 

ratio.  

P/E and P/B ratio: A moderate to high correlation between the P/E and P/B ratios is reflected in a moderate to high 

edge membership value connecting the ‘P/E Ratio’ and ‘P/B Ratio’ vertices.  

P/B ratio and dividend yield: In cases where no significant correlation exists between the P/B ratio and dividend yield, 

a low edge membership value is assigned to signify a weak relationship between these two parameters.  

It is imperative to note that the assignment of edge membership values involves subjectivity and relies on domain 

expertise, data analysis, and expert judgment. The aim is to encapsulate the relationships between diverse parameters while 

accounting for the inherent uncertainty and vagueness within these relationships. The Fuzzy Zagreb index serves as a 

valuable tool for comprehending and interpreting the intricate interactions that define various aspects of a company’s 

performance.  

  

5.a ANALYSIS OF HDFC BANK  

 Vertex and edge membership values for the HDFC bank with vertices p1, p2, ..., p9 are given in the following table.  

 

Table 5.a.1:    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

u1 0.012 0.062 0.874 0.229 0.074 0.032 0.048 0.627 0.256 

p1   0.7 0.9 0.5 0.7 0.7 0.5 0.8 0.5 

p2 0.7   0.8 0.4 0.6 0.6 0.4 0.7 0.4 

p3 0.9 0.8   0.6 0.8 0.8 0.6 0.9 0.6 

p4 0.5 0.4 0.6   0.4 0.4 0.2 0.5 0.2 

p5 0.7 0.6 0.8 0.4   0.6 0.4 0.7 0.4 

p6 0.7 0.6 0.8 0.4 0.6   0.4 0.7 0.4 

p7 0.5 0.4 0.6 0.2 0.4 0.4   0.5 0.2 

p8 0.8 0.7 0.9 0.5 0.7 0.7 0.5   0.5 

p9 0.5 0.4 0.6 0.2 0.4 0.4 0.2 0.5   

FM1(HDFC Bank) = 8.14 
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Fig. 5.a.2: Fuzzy Graph of HDFC Bank 

 

 
 

5.b ANALYSIS OF ICICI BANK  
Vertex and edge membership values for the ICICI bank with vertices p1, p2, ..., p9 are given in the following table.  

Table 5.b.1:    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

u2 0.008 0.068 0.534 0.345 0.069 0.037 0.061 0.298 0.183 

p1   0.7 0.5 0.6 0.7 0.8 0.8 0.5 0.6 

p2 0.7   0.6 0.7 0.8 0.9 0.9 0.6 0.7 

p3 0.5 0.6   0.5 0.6 0.7 0.7 0.4 0.5 

p4 0.6 0.7 0.5   0.7 0.8 0.8 0.5 0.6 

p5 0.7 0.8 0.6 0.7   0.9 0.9 0.6 0.7 

p6 0.8 0.9 0.7 0.8 0.9   1 0.7 0.8 

p7 0.8 0.9 0.7 0.8 0.9 1   0.7 0.8 

p8 0.5 0.6 0.4 0.5 0.6 0.7 0.7   0.5 

p9 0.6 0.7 0.5 0.6 0.7 0.8 0.8 0.5   

FM1(ICICI Bank) = 6.01 
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5.c ANALYSIS OF SBI BANK    

 Vertex and edge membership values for the SBI bank with vertices p1, p2, ..., p9  are given in the following table.  

Table 5.c.1:    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

u3 0.020 0.052 0.749 0.650 0.139 0.014 0.057 0.428 0.758 

p1  0.6 0.8 1 0.6 0.6 0.8 0.8 1 

p2 0.6  0.4 0.6 0.2 0.2 0.4 0.4 0.6 

p3 0.8 0.4  0.8 0.4 0.4 0.6 0.6 0.8 

p4 1 0.6 0.8  0.6 0.6 0.8 0.8 1 

p5 0.6 0.2 0.4 0.6  0.2 0.4 0.4 0.6 

p6 0.6 0.2 0.4 0.6 0.2  0.4 0.4 0.6 

p7 0.8 0.4 0.6 0.8 0.4 0.4  0.6 0.8 

p8 0.8 0.4 0.6 0.8 0.4 0.4 0.6  0.8 

p9 1 0.6 0.8 1 0.6 0.6 0.8 0.8  

FM1(SBI Bank) = 11.13 

5.d ANALYSIS OF KOTAK BANK  

Vertex and edge membership values for the Kotak bank with vertices p1, p2, ..., p9 are given in the following table.  

Table 5.d.1:    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

u4 0.008 0.069 0.822 0.252 0.037 0.033 0.051 0.141 0.224 

p1   0.6 0.5 0.3 0.6 0.5 0.3 0.2 0.3 

p2 0.6   0.9 0.7 1 0.9 0.7 0.6 0.7 

p3 0.5 0.9   0.6 0.9 0.8 0.6 0.5 0.6 

p4 0.3 0.7 0.6   0.7 0.6 0.4 0.3 0.4 

p5 0.6 1 0.9 0.7   0.9 0.7 0.6 0.7 

p6 0.5 0.9 0.8 0.6 0.9   0.6 0.5 0.6 

p7 0.3 0.7 0.6 0.4 0.7 0.6   0.3 0.4 

p8 0.2 0.6 0.5 0.3 0.6 0.5 0.3   0.3 

p9 0.3 0.7 0.6 0.4 0.7 0.6 0.4 0.3   

FM1(Kotak Bank) = 5.43 

5.e ANALYSIS OF AXIS BANK   

Vertex and edge membership values for the Axis bank with vertices p1, p2, ..., p9  are given in the following table.  

Table 5.e.1:    

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

u5 0.001 0.062 0.407 0.414 0.089 0.022 0.061 0.640 0.128 

p1   0.4 0.3 0.6 0.4 0.4 0.6 0.7 0.6 

p2 0.4   0.3 0.6 0.4 0.4 0.6 0.7 0.6 

p3 0.3 0.3   0.5 0.3 0.3 0.5 0.6 0.5 

p4 0.6 0.6 0.5   0.6 0.6 0.8 0.9 0.9 

p5 0.4 0.4 0.3 0.6   0.4 0.6 0.7 0.6 

p6 0.4 0.4 0.3 0.6 0.4   0.6 0.7 0.6 

p7 0.6 0.6 0.5 0.8 0.6 0.6   0.9 0.8 

p8 0.7 0.7 0.6 0.9 0.7 0.7 0.9   0.9 

p9 0.6 0.6 0.5 0.9 0.6 0.6 0.8 0.9   

FM1(Axis Bank) = 6.88 
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Based on the preceding analysis, we draw the conclusion that, taking into account the current financial factors, 

‘State Bank of India’ (SBI) presents a favorable investment opportunity within the Indian financial markets.  

Given the expansive scope of applied fuzzy graphs, it is noteworthy that fuzzy topological indices hold potential 

applicability to various other interconnected graph networks, which we intend to explore in our forthcoming research 

endeavors.  
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