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Abstract: The present paper describes the analytical limitations of the complex growth rate          of a randomly 

oscillating movement with an increasing amplitude in Maxwell ferromagnetic convection in a densely packed porous medium 

for the case of free-free and rigid-rigid boundaries. The eigen value problem is derived from the governing equations by 

employing normal mode analysis and linearized stability theory. It is found that, for free-free boundaries, the growth rate of 

disturbances must lie within a semicircle in the right half plane-      of  , with its center located at origin and  radius is   
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} . On the other hand, the upper bound for rigid-rigid boundaries is obtained as   

 | | |  |
     {  (

 

   
 

   

  
)
 
 (

 

   
)
 
}, where    is real part of       is imaginary part of  ,    denotes the magnetic 

number,   is Rayleigh number,   is stress relaxation parameter,    is Prandtl number,   denotes the medium porosity and    

represents the medium permeability. The previous results are also recovered as special cases for classical ferromagnetic fluid 
flow. 
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1. Introduction 

Ferromagnetic fluids consist of magnetic nanosized particles dispersed in a carrier liquid, forming colloidal 

suspensions commonly known as magnetic fluids. These fluids respond to magnetic fields, generating distinct 

patterns and structures. To minimize agglomeration and increase stability, these nano-particles are coated with a 

surfactant. The carrier fluid can be any liquid that is compatible with the surfactant coating, such as water or oil. 

Superparamagnetism, magnetization saturation, and high magnetic susceptibility are all characteristics of 

ferromagnetic fluids. The potential future applications arise from the alterations in viscosity observed in magnetic 

fluids under the influence of magnetic field and shear dependence. These properties make ferromagnetic fluids 

valuable in many industrial and practical applications, such as pressure seals of blowers and compressors, 

dampers, shock absorbers, magnetic drug delivery, magnetic resonance imaging (MRI), soft robotics, 

microfluidics, avionics, and actuators [1-2]. 

Over the past few years, there has been increasing interest among researchers in the field of ferrofluids, 

particularly in examining the stability/instability in ferroconvective configurations. Finlayson [3] explored the 

convective instability within magnetic fluids subjected to heating from below while being exposed to a vertically 

acting magnetic field. In his analysis, he investigated the instability in the presence/absence of gravitational force, 

and found an accurate and approximate solutions for free and stiff boundaries respectively. Lalas and Carmi [4] 

examined the energy stability of Boussinesq ferromagnetic fluid in the presence of gravitational field, heat 

gradient and magnetic field gradient. Shliomis [5] investigated the thermo-convective instability exhibited by the 

free surface of a liquid when exposed to an external magnetic field. He also explored the relaxation processes of 

magnetization in a suspension, emphasizing the importance of Néel fluctuation mechanism and rotational 

Brownian motion of particles. Schwab et al. [6] explored the effect of a vertically oriented magnetic field on 

Bénard convectional problem in ferromagnetic fluid. Further, Stiles and Kagan [7] enhanced and expanded this 

study by considering the effect of colloid concentration and temperature under the influence of an intense 

magnetic field. Prakash et al. [8] explored convective instability in a ferrofluid layer through sparsely distributed 

porous medium in the presence of rotation and MFD viscosity. Sekar and Raju [9] investigated the thermal 

convective instability in micropolar ferrofluid under a transverse magnetic field. The study of Bénard convection 

problems in ferrofluid has been extensively explored by many researchers. Sharma [10] examined the 

thermosolutal convection occurring in a ferromagnetic fluid layer that saturates a porous medium, heated from 

below, and is subjected to a uniformly distributed magnetic field. To obtain more comprehensive information 

about these investigations, one may refer to [11-17]. N. Guerroudj et al. [18] investigated the convection of a 

ferromagnetic fluid in a vertical channel with different-shaped porous blocks by using numerical simulations. 
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Despite being extensive research on thermal convection in Newtonian ferrofluids, comparatively little 

emphasis has been placed on studying this phenomenon in non-Newtonian ferrofluids like Maxwell ferrofluid, 

Rivlin-Ericksen fluid, Jeffrey ferrofluid. These non-Newtonian ferrofluids display distinctive rheological 

properties, offering potential for significant advancements in diverse fields including advanced material science, 

biomedicine and microfluidics. Ijaz and Ayub [19] investigated the behavior of a Maxwell ferromagnetic fluid in 

the presence of magnetic dipole and dual stratification effects. A. Majeed et al. [20] examined how a rotating 

magnetic field influences the flow of Maxwell ferrofluid over a thermally stretching sheet with heat generation or 

absorption. Sudhir et al. [21] employed linear stability theory to investigate thermal convection within a Maxwell 

ferromagnetic fluid layer that saturates in a porous medium. Nabwey et al. [22] investigated that Maxwell 

ferromagentic fluid exhibits higher temperature fluctuations compared to Jeffrey ferromagnetic fluid but the heat 

diffusion in Maxwell ferromagnetic fluid is less gradual than Jeffrey ferromagnetic fluid. 

The task of establishing the upper bounds is equally important in order to provide experimenters and 

computational analysts with improved estimations of growth rate of any randomly oscillating movement of rising 

or neutral amplitude. Banerjee et al. [23] established the novel technique to determine the upper limits for the 

growth rate of disturbances in thermohaline convection. Prakash [24], Prakash and Gupta [25] also determined 

upper limits for growth rates of perturbations in various ferroconvective configurations. Recently, K. Ram et al. 

[26] investigated the complex growth rate of perturbations in a thermohaline ferroconvection within a densely 

packed porous medium, considering that the viscosity is dependent on magnetic field strength. To the best of our 

knowledge, the complex growth rate of disturbances in Maxwell ferromagnetic convection through a densely 

packed porous medium has not been examined yet. The aim of the present communication is to analytically 

investigate the complex growth rate in Maxwell ferromagnetic convection. This investigation will provide deep 

insights into the stability of these perturbations and drive the development of more efficient and reliable 

engineering solutions.  

2. Problem Description 

Consider an incompressible and electrically non conducting Maxwell ferrofluid layer confined statically in a 

densely packed porous medium, with infinite horizontal extension.  The ferrofluid layer has a thickness ‘ ’ and is 

subjected to heating from below. The lower and upper boundary surfaces are kept at constant temperatures, 

denoted as     and    respectively, creating a uniform temperature gradient   |
  

  
|  . The entire system is 

influenced by the gravitational field, represented as  ⃗     ̂. Figure 1 displays the geometrical setup of the 

problem 

 

 

The basic equations which govern the Maxwell ferroconvection in a densely packed porous medium are: 

The equation of continuity is 

       ⃗    .        (1) 

The equation of motion is 



Turkish Journal of Computer and Mathematics Education   Vol.14 No.03(2023),642- 651 

 

 

644 
 

 

 

Research Article  

  

 
(   

 

  
)

  ⃗⃗

  
 (   

 

  
) (      ⃗    ( ⃗⃗⃗ ⃗⃗))  

 

  
 ⃗.      (2) 

The temperature equation is 
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where  ⃗ is velocity,   referred to coefficient of volume expansion,  ⃗  (      ) is gravitational acceleration,      

  is medium porosity,     [  (     ) ]  is fluid's density,    is medium permeability,    is magnetic 

permeability,  ⃗⃗⃗  represents magnetic field,   denoted pressure,   is stress relaxation time,    fluid's density at 

temperature   ,   denotes viscosity,       is heat capacity at constant magnetic field and volume,    denotes heat 

capacity of the solid phase,    is the density of the solid phase,  ⃗⃗⃗ is magnetization,   is temperature and    is 

thermal conductivity. 

When there is no displacement current in a non-conducting fluid, Maxwell equations are 

     ⃗⃗⃗   ,       (4a) 

   ⃗⃗   ,       (4b) 

where  ⃗⃗ is magnetic induction and is given by 

   ⃗⃗    ( ⃗⃗⃗   ⃗⃗⃗).       (5) 

Considering that magnetic field and magnetization are aligned parallelly, and magnetization varies with 

temperature and magnitude of the magnetic field, and is given by 

   ⃗⃗⃗  (
 ⃗⃗⃗

 
) (   ).       (6) 

The equation representing the linearized magnetization is given by 

         (    )   (    ),     (7) 

where    denotes magnetization at a certain temperature    and magnetic field intensity   ,     (
  ⃗⃗⃗

  
)
     

 is 

the pyromagnetic coefficient and   (
  ⃗⃗⃗

  
)
     

 is the magnetic susceptibility. 

The basic state solutions are presented in the following manner 
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where  ̂ represents the unit vector along  -axis. In this analysis, only the spatially varying components of    

and    are considered, and convection is not dependent on the orientation of the external magnetic field. 

By disturbing the stationary state, the perturbed equations are expressed as: 
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where         ⃗⃗⃗⃗  (        )      ⃗⃗⃗⃗⃗⃗  and   ⃗⃗⃗⃗⃗ are very small disturbances in temperature, pressure, velocity, 

density, magnetization and magnetic field intensity respectively. 

Utilizing Eqs. (8)-(9) in Eqs. (1)-(7), we obtain the subsequent linearized perturbation equations: 

   

  
 

   

  
 

   

  
  ,          (10) 

  

 
(   

 

  
)

   

  
 (   

 

  
) ( 

   

  
   (     )

   
 

  
)  

 

  
        (11) 

  

 
(   

 

  
)

   

  
 (   

 

  
) ( 

   

  
   (     )

   
 

  
)  

 

  
  ,     (12) 

  

 
(   

 

  
)

   

  
 (   

 

  
) [ 

   

  
     

     (     )
   

 

  
        

  
    

    

   
]  

 

  
    (13) 



Turkish Journal of Computer and Mathematics Education   Vol.14 No.03(2023),642- 651 

 

 

645 
 

 

 

Research Article  

   
   

  
       

 

  
(
   

  
)     

    (     
      

  

   
)  ,      (14) 

where      (                  )       and       (             ). 
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where   ⃗⃗⃗⃗⃗      and    represents the perturbed magnetic potential. 
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where       and it is assumed that        (   ). 

Eliminating             among Eqs. (11)-(13) by utilizing Eq. (10), we obtain 
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Combining Eqs. (15) and (16), we obtain 
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Now, in normal mode analysis, let the perturbed quantities be expressed in the following manner 
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By utilizing Eq. (19) into Eqs. (14), (17)-(18) and subsequently making the variables dimensionless by specific 
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Removing the asterisks for the sake of simplicity, we obtain 
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(    )  ] (     )       [     (    ) ],     (21) 

    (      )          (    )      ,      (22) 

(       )      ,          (23) 

where   is wave number,   (  ) is the  Prandtl number,   is an independent variable which is real and lies in the 

closed interval [0,1],  (  ) is the Rayleigh number,   is stress relaxation parameter,    (  )  is magnetic 

number,   (  ) is dimensionless parameter,   (  ) measures the non-linearity of magnetization,   represents 

the derivative with respect to   and   is  complex growth rate constant which can be expressed as         , 

where    and    are real constants. 

Also the dependent variables   (     )   (     ) and   (     ) in the complex plane are  functions of 

real variable  , where functions                and    are real-valued. 

 

As    is infinitesimal quantity so it is ignored in the later analysis [3] and therefore Eq. (22) can be rewritten as: 

    (      )                   (24) 

 

The ferromagnetic boundaries are given as: 

Free-Free boundaries 
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                              (25) 

Rigid-Rigid boundaries 

                   .        (26) 

It is noteworthy that Eqs. (21) and (23)–(26) can be interpreted as an eigenvalue problem for  , which regulates 

the occurrence of Maxwell ferromagnetic convection within a densely packed porous medium. 

3. Mathematical Analysis 

Theorem 1. If                   and      , then the essential condition for the occurrence of non-

trivial solutions (       ) of Eqs. (21), (23)-(24) along with the boundary conditions (25) is that 
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Proof: Multiplying Eq. (21) by    (where    is the complex conjugate of  ) and integrating the resultant 

equation from     to    , we obtain 
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The terms on the R.H.S. of Eq. (27) by utilizing Eqs. (23)-(24) and boundary conditions (25), can be written as: 
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Combining Eqs. (27)-(29), which yield 
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Utilizing the boundary conditions (25) to integrate the each integral of Eq. (30).  

The integral on the L.H.S. of (30) gives 
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In Eq. (35), substituting          and            and comparing the imaginary coefficient on either 

side of the resultant equation and cancelling   , we obtain 
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By multiplying Eq. (24) with its complex conjugate and integrating it within the limits from      to     and 

utilizing the boundary conditions (25), we get 
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 (utilizing Schwartz inequality) 

It follows that 
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Combining inequalities (41) and (43), we get 
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the above inequalities imply that 
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Combining both the cases it can be written as 
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Hence, the proof is established. 

Special Cases: The following outcomes can be deduced as special cases from Theorem 1: 

 For classical ferromagnetic convection (Taking      and    ) 

| |  √
   

  
. 

This result aligned well with the complex growth rate observed in ferromagnetic convection as presented by 

Jyoti Prakash [24].  

 For classical ferromagnetic convection in a densely packed porous medium (Taking    ) 

| |  √ (
   

  
). 

 

Theorem 2: If               and     , then the essential condition for the occurrence of non-trivial 

solutions (       ) of Eqs. (21), (23), and (24) along with the boundary conditions (26) is that 
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Proof: Multiplying Eq. (21) by the complex conjugate of  , denoted as   , and integrating the resultant equation 

within the limits from     to    , which yield 
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Integrating each term of Eq. (48) and utilizing the boundary conditions (26), we have 
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By substituting          and           into Eq. (53), setting the imaginary parts equal in the resulting 

equation, and dividing it by    (where     ), which yield 
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By employing both inequalities (39) and (44), we get 

[∫ |  |   
 

 
]
   

 
     

  | |
[∫ | |   

 

 
]
   

        (56) 

Making use of inequalities (55) and (56), we get 

 
       

  
    ∫    

 

 
    

     

  | ||  |
[∫ | |   

 

 
]        (57) 

By utilizing inequality (57) in (54), which yields 

(
 

 
 

 

|    |   
) ∫ (  | |  |  | )  

 

 
  (    )  ∫ | |   

 

 
 

    
 

  | ||  |
∫ | |   
 

 
    (58) 

which can be rewritten as: 

(
 

 
 

 

|    |   
) ∫ |  |   

 

 
   (

 

 
 

 

|    |   
 

   

  | ||  |
) ∫ |  |  

 

 
 (    )  ∫ | |   

 

 
  .  (59) 

 

Case 1: If (
 

 
 

 

|    |   
)    then (

 

 
 

 

|    |   
 

   

  | ||  |
)   .  

The above inequalities imply that 

|  || |  (
 

   
)     |  || |   (

 

   
 

   

  
)  

or 

|  |
 | |  (

 

   
)
 

     |  |
 | |    (

 

   
 

   

  
)
 

  

Hence, we get 

|  |
 | |     {  (

 

   
 

   

  
)
 

 (
 

   
)
 

}  

Case 2: If  (
 

 
 

 

|    |   
)      

then, we must have 

(
 

 
 

 

|    |   

 
   

  | ||  |
)     



Turkish Journal of Computer and Mathematics Education   Vol.14 No.03(2023),642- 651 

 

 

650 
 

 

 

Research Article  

It implies that 
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Combining both the cases it can be written as: 
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}      (60) 

Hence, the proof of the theorem is established. 

In terms of the physical aspects, the above theorem (in view of inequality (60)) can be stated as `in the context of 

rigid-rigid boundaries, the complex growth of a random oscillating movement of increasing amplitude in Maxwell 

ferroconvection, lies in the right half plane      of  '. 

Special Cases: From Theorem 2, one can derive the subsequent results as specific outcomes: 

 For classical ferromagnetic convection (Taking      and    ) 

|  |
 | |  (

   

  
)
 

. 

This result aligned well with the complex growth rate observed in ferromagnetic convection as presented by 

Jyoti Prakash [24].  

 For classical ferromagnetic convection within a densely packed porous medium (Taking    ) 

|  |
 | |    (

   

  
)
 

. 

 

4. Conclusion 

The normal mode analysis and linear stability analysis are utilized to explore the growth rate of disturbances in a 

Maxwell ferromagnetic fluid layer that is heated from underside and subjected to a vertically acting magnetic 

field. The fundamental essence of the Theorem 1 indicates that when Maxwell ferromagnetic fluid flows through a 

densely packed porous medium bounded by both free-free boundaries, the complex growth rate of oscillating 

movement with increasing amplitude is located within a semi-circle positioned in the right half of the 

     plane. This semi-circle has its radius √   { (
 

   
 

   

  
)  

 

   
} and centre at origin. Also, the case of 

estimating the growth rate of perturbations in Maxwell ferromagnetic fluid for rigid-rigid boundaries is derived in 

Theorem 2. For higher value of stress relaxation parameter   and standard value of medium porosity, the general 

results can be drawn for convection in ferrofluid layer for the cases of rigid-rigid and free-free boundaries. The 

outcomes obtained in this paper concern only unitless parameters and are not containing wave number, so they are 

uniformly valid and applicable. 
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