Solution of Finite Cauchy diff erence equations on Free Abelian Group

${ }^{1}$ M. Pradeep and ${ }^{2}$ Dr. S. Renukadevi
${ }^{1}$ Assistant Professor, Department of Mathematics, Arignar Anna Government Arts College, Cheyyar-604407, Tamilndu.
E.mail.: pradeepmprnet12@gmail.com
${ }^{2}$ Assistant Professor, Department of Mathematics,, Bharathi women's college,
E.mail.: renurajarajan24@gmail.com

Article History: Do not touch during review process(xxxx)

Abstract: Let ($\mathrm{X},$. .) be a semigroup, $(\mathrm{Y},+$) an abelian group and $g: X \rightarrow Y$. The first and second order Cauchy diff erences of g are $D^{1} g(a, b)=g(a b)-g(a)-g(b), \quad D^{2} g(a, b, c)=g(a b c)-g(a b)-g(b c)-g(a c)+g(a)+g(\mathrm{~b})+g$ (c). Finite order Cauchy diff erences $D^{n} f$ are defined recursively. In the case of $Y=\mathrm{Z}$, a ring where multiplication is distributive over addition, we show that functions $\mathrm{g}: X \rightarrow Z$ with finite Cauchy diff erences are closed under multiplication. The equation $D^{n} g=0$ is considered for finite abelian groups.
Keywords: Semigroups, rings, Cauchy diff erence equation, finite abelian groups.

1. Introduction

Let $(X,$.$) be a semigroup, (Y,+)$ an abelian groups and $0 \in Y$ denote the identity element. For a function $g: \mathrm{X} \rightarrow$ Y , its Cauchy diff erences, $D^{n} g$, are defined by
$D^{0} g=g$,
$D^{1} g\left(a_{1}, a_{2}\right)=g\left(a_{1} a_{2}\right)-g\left(a_{1}\right)-g\left(a_{2}\right)$,
$D^{n+1} g\left(a_{1}, a_{2}, \ldots, a_{n+2}\right)=D^{n} g\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n+2}\right)$
$-D^{n} g\left(a_{1}, a_{3}, \ldots, a_{n+2}\right)-D^{n} g\left(a_{2}, a_{3}, \ldots, a_{n+2}\right) . \cdots--------------------------(1)$
Thefirst order Cauchy diff erence $D^{1} g$ will often be abbreviated as $D g$.[5]
For an n-place function $\mathrm{S}: X^{n \rightarrow} Y$ its first order diff erence in the j -th variable is defined by

$$
D_{j}^{l} G\left(a_{1}, \ldots, a_{j-1}, x, y, a_{j+1}, \ldots, a_{m}\right)=G\left(a_{1}, \ldots, a_{j-1}, x y, a_{j+1}, \ldots, a_{m}\right)
$$

$-G\left(a_{1}, \ldots, a_{j-1}, x, a_{j+1}, \ldots, a_{m}\right)-G\left(a_{1}, \ldots, a_{j-1}, y, a_{j+1}, \ldots, a_{m}\right)$.
Taking $G=D^{1} g: X^{2} \rightarrow Y$ in particular it follows from the associativity of the operation on X that $D_{1}{ }^{1} G=D_{2}{ }^{1} G=D^{2} g$.

Hence we may see $D^{2} g$ as the first order difference of $D^{1} g$ in either the first or the second variable. This observation can be extended to higher order diff ernces.

In (1) we have defined $D^{n+1} g$ as the first order diff erence of $D^{n} g$ in the first variable, and the result is the same as the first order diff erence of $D^{n} g$ in any of its $n+1$ variables.

A function g is said to have vanishing D^{n}, or to be in the kernel of D^{n}, if $D^{n} g=0$
Let Ker $D^{n}(X, Y)=\left\{g: X \rightarrow Y \mid D^{n} g=0\right\}$
It is clear that kernels are abelian groups under the usual addition of functions and we have an ascending chain
$\operatorname{Hom}(X, Y)=\operatorname{Ker} D(X, Y) \leq \operatorname{Ker} D^{2}(X, Y) \leq \operatorname{Ker} D^{3}(X, Y) \leq \ldots$
Abelian groups under addition will be treated as modules over R. In particular Y and $\operatorname{Ker} D^{n}(X, Y)$ are modules over R.
While we consider functions with vanishing Cauchy diff erences, there are interesting questions and results dealing with weaker assumptions, e.g., that the range of $D g$ is confined differently. The paper [1] is in such a direction on topological vector spaces.

In [4], the general solution of (2) for $n=2$ is obtained on free groups, cyclic groups and permutation groups. In [2], the general solution of (2) for $n=3$ is obtained when S is the free group with a single letter. In [3] results are given for higher n, including the general solution of (2) for $n=3$ on free groups.

The result is extended to show that functions from X to a ring Z with finite Cauchy diff erences are closed under multiplication. We exhibit the general solution of the equation $D^{3} g=0$ on free abelian groups using the product.

Preliminaries:

Definition 1

Let $r \geq 0$ be an integer and consider the finite sequence $\langle 1,2, \ldots, r+1\rangle$. Subsequences $n=\left\langle n_{1}\right.$, $\left.n_{2}, \ldots, n_{l+1}\right\rangle$ and $k=\left\langle m_{1}, m_{2}, \ldots, m_{x+1}\right\rangle$ of $\langle 1,2, \ldots, r+1\rangle$ is a covering pair if the union of their range sets, $\left\{n_{1}, \ldots, n_{l+1}\right\} \cup\left\{m_{1}, \ldots, m_{x+1}\right\}$, equals $\{1, \ldots, r+1\}$. The family of all such covering pairs will be denoted by $\mathrm{P}_{(\mathrm{r}, 1, \mathrm{x})}$.

Note: necessarily $(l+1)+(x+1) \geq r+1$ for $\left\{n_{1}, \ldots, n_{l+1}\right\} \cup\left\{m_{1}, \ldots, m_{x+1}\right\}$
$=\{1, \ldots, r+1\}$.
Theorem 2. Let X be a semigroup and Z be a ring in which multiplication is distributive over addition from both sides. For any $g, q: X \rightarrow Z$ we have

$$
\begin{align*}
& D^{r}(g q)\left(a_{1}, a_{2}, \ldots, a_{r+1}\right) \\
& \quad=\sum_{0 \leq l, x \leq r(n, m) \in P_{(r, l, x)}} \sum D^{r} g\left(a_{n 1}, \ldots . a n_{l+1}\right) D^{x} q\left(a_{m 1}, \ldots, a m_{x+1}\right) \tag{3}
\end{align*}
$$

Proof

We shall establish the identity by induction on r.
If $r=0$ then $l=0, x=0$, and $n=<1>, m=<1>$ is the only covering pair.
The left side of (3) gives $D^{0}(g q)\left(a_{1}\right)=(g q)\left(a_{1}\right)=g\left(a_{1}\right) q\left(a_{1}\right)$.
The right side of (3) gives $D^{0}(g)\left(a_{1}\right) D^{0}(q)\left(a_{1}\right)=g\left(a_{1}\right) q\left(a_{1}\right)$.
So (3) holds for $r=0$.
By the definition of the first order Cauchy diff erence and the distributivity we have

$$
\begin{align*}
D(g q)\left(a_{1}, a_{2}\right)= & g\left(a_{1} a_{2}\right) q\left(a_{1} a_{2}\right)-g\left(a_{1}\right) q\left(a_{1}\right)-g\left(a_{2}\right) q\left(a_{2}\right) \\
= & {\left[D g\left(a_{1}, a_{2}\right)+g\left(a_{1}\right)+g\left(a_{2}\right)\right]\left[D q\left(a_{1}, a_{2}\right)+q\left(a_{1}\right)+q\left(a_{2}\right)\right] } \\
& \quad-g\left(a_{1}\right) q\left(a_{1}\right)-g\left(a_{2}\right) q\left(a_{2}\right) \\
= & D g\left(a_{1}, a_{2}\right) D q\left(a_{1}, a_{2}\right)+D g\left(a_{1}, a_{2}\right) q\left(a_{1}\right)+D g\left(a_{1}, a_{2}\right) q\left(a_{2}\right) \\
& +g\left(a_{1}\right) D q\left(a_{1}, a_{2}\right)+g\left(a_{2}\right) D q\left(a_{1}, a_{2}\right)+g\left(a_{1}\right) q\left(a_{2}\right)+g\left(a_{2}\right) q\left(a_{1}\right) . \tag{4}
\end{align*}
$$

This proves (3) for $r=1$.
Suppose as an induction hypothesis that for some $r=n \geq 1$ (3) holds, i.e.,
$D^{r}(g q)\left(a_{1}, a_{2}, \ldots, a_{r+2}\right)$
$=\sum_{0 \leq l, x \leq r(n, m) \in P_{(r, l, x)}} \sum$ difference of $D^{r} g\left(a_{n 1}, \ldots ., a n_{l+1}\right) D^{x} q\left(a_{m 1}, \ldots, a m_{x+1}\right)$
Then, taking the difference with respect to the variable a_{n+1} we obtain
$D^{r}(g q)\left(a_{1}, a_{2}, \ldots, a_{r+1}\right)$
$=\sum_{0 \leq l, x \leq r(n, m) \in P_{(r, l x)}} \sum D^{r} g\left(a_{n 1}, \ldots ., a n_{l+1}\right) D^{x} q\left(a_{m 1}, \ldots ., a m_{x+1}\right)$
With respect to a_{n+1}
$=\sum_{0 \leq l, x \leq r(n, m) \in P} \underset{\substack{(r, L x) \\ x l+1=n+1, m x+1=n+1}}{ } \sum$ difference $D^{r} g\left(a_{n 1}, \ldots ., a n_{l+1}\right) D^{x} q\left(a_{m 1}, \ldots ., a m_{x+1}\right)$
With respect to $\mathrm{a}_{\mathrm{n}+1}$

$$
\begin{gather*}
+\sum_{\substack{0 \leq l, x \leq r(n, m) \in P^{(r, l x)}}} \sum D^{r+1} g\left(a_{n 1}, \ldots, a n_{l+1}, a n_{l+2}\right) D^{x} q\left(a_{m 1}, \ldots, a m_{x+1}\right) \\
\sum_{\substack{(r, l x)}} \sum_{\substack{x+1=n+1, m x+1=n+1 \\
D^{r}}\left(a_{n 1}, \ldots ., a n_{l+1}\right) D^{x+1} q\left(a_{m 1}, \ldots, a m_{x+1}, a m_{x+2}\right)}
\end{gather*}
$$

Substituting (6) into (5) we arrive at (3) with $r=n+1$. This completes the induction.
With the above general expansion for $D^{r}(g q)$ we arrive at the followingresult:

Corollary 3. For any $g, q: X \rightarrow Z, D^{j} g=D^{i} q=0$ implies $D^{j+i}(g q)=0$.
According to formula (3) we have $D^{j+i}(g q)\left(a_{1}, a_{2}, \ldots, a_{j+i+1}\right)$
$=\sum_{0 \leq l, x \leq r(n, m) \in P_{(+i+i, x)}} \sum D^{r} g\left(a_{n 1}, \ldots ., a n_{l+1}\right) D^{x} q\left(a_{m 1}, \ldots ., a m_{x+1}\right)$
As mentioned in a little note following definition $1,(\mathrm{n}, \mathrm{m}) \in \mathrm{P}_{(\mathrm{j}+1, \mathrm{l})}$ implies $1+\mathrm{x}+1 \geq \mathrm{j}+\mathrm{i}$.
This either $\mathrm{l} \geq \mathrm{j}$ or $\mathrm{x} \geq \mathrm{i}$.
Because $\mathrm{D}^{\mathrm{j}} \mathrm{g}=0,1 \geq \mathrm{j}$ implies $\mathrm{D}^{\mathrm{l}} \mathrm{g}=0$ and because $\mathrm{D}^{\mathrm{i}} \mathrm{q}=0, \mathrm{x} \geq \mathrm{i}$ implies $\mathrm{D}^{\mathrm{x}} \mathrm{q}=0$.
So every term $D^{r} g\left(a_{n 1}, \ldots ., a n_{l+1}\right) D^{x} q\left(a_{m 1}, \ldots . a m_{x+1}\right)$ in the above expansion is zero.

Main Results:

Let $G=\left\langle\varnothing>\right.$ be the free group on the alphabet \varnothing and let $C^{x, y}$ denote the abelianization of C. In other words $\left\langle Ð>^{x y}\right.$ is the free abelian group on D. We shall present the general solution of $C^{3} f=0$ on the free abelian group.

To assist the presentation we shall endow \doteq with a linear order < and without loss of generality assume that \doteq has at least two letters.

Theorem 4.

Suppose that $|D|>1$. If $f \in \operatorname{Ker} C^{3}\left(\langle D\rangle^{u v}, Y\right)$ then it has therepresentation

$$
\begin{gather*}
G(a)=\sum_{x}\left\{W(u, x) g(u)+\left[\begin{array}{c}
W(u, a) \\
2
\end{array}\right] D g(u, u)+\left[\begin{array}{c}
W(a, u) \\
3
\end{array}\right] D^{2}(u, u, u)\right\}+ \\
\sum_{u<v}\left\{W(u, x) W(a, v) D g(u, b)+W(u, x)\left[\begin{array}{c}
W(u, a) \\
2
\end{array}\right] D^{2} g(u, v, v)+\right. \\
\left.\left[\begin{array}{c}
W(a, u) \\
2
\end{array}\right] W(u, v) D^{2}(u, u, v)\right\}+\sum_{u<v<w} W(a, u) W(b, v) W(c, w) D^{2} g(u, v, v) \tag{7}
\end{gather*}
$$

Conversely, let $g, D g$, and $D^{2} g$ be arbitrary initial functions mapping indicated subsets of $Đ, ~ Ð \times Đ$ and $Đ$ $\times Ð \times \pm$, respectively, into Y, then g defined by (7) indeed belongs to Ker $D^{3}(<Đ Ð, Y)$.

Note: The definitions of the functions used in the above representation are given in [3] and are included here in the appendix. If $Đ$ has only two letters then there won't be distinct letters u, v, w and the last sum in (7) disappears by the convention $\sum_{\varnothing}=0$.

Proof. Suppose that $g:\langle Đ\rangle^{u v} \rightarrow Y$ and $D^{3} g=0$.
For each element $\mathrm{a} \in\langle D\rangle^{u v}$, using the endowed linear order, we can write it as
$\mathrm{a}=\alpha_{1}^{k 1} \alpha_{2}^{k 2} \ldots . \alpha_{r}^{k r}, \alpha_{1} \in Ð, \alpha_{1}<\alpha_{2}<\cdots<\alpha_{r}$.
From [3] we get
$\mathrm{G}(\mathrm{a})=g\left(\alpha_{1}^{k 1} \alpha_{2}^{k 2} \ldots . \alpha_{r}^{k r}\right)$

$$
\begin{align*}
& \quad=\sum_{1 \leq j \leq r} k_{j} g\left(\alpha_{j}\right)+\left[\begin{array}{c}
k_{j} \\
2
\end{array}\right] D g\left(\alpha_{j}, \alpha_{j}\right)+\left[\begin{array}{c}
k_{j} \\
3
\end{array}\right] D^{2} g\left(\alpha_{j}, \alpha_{j}, \alpha_{j}\right) \\
& +\sum_{1 \leq j \leq i \leq r} k_{j} k_{i} g\left(\alpha_{j}, \alpha_{i}\right)+k_{j}\left[\begin{array}{c}
k_{j} \\
2
\end{array}\right] D^{2} g\left(\alpha_{j}, \alpha_{i}, \alpha_{i}\right)+\left[\begin{array}{c}
k_{j} \\
2
\end{array}\right] \alpha_{i} D^{2} g\left(\alpha_{j}, \alpha_{j}, \alpha_{i}\right) \\
& +\sum_{1 \leq j \leq i \leq t \leq r} k_{j} k_{i} k_{t} D^{2} g\left(\alpha_{j}, \alpha_{i}, \alpha_{t}\right) \tag{9}
\end{align*}
$$

From the writing (8) we observe that $k_{j}=W\left(a, \alpha_{j}\right)$ for every j .
Hence (9) proves (7).

References

Baron, K., Kannappan, P.L,: On the Cauchydifference. Aequ. Math. 46, 112-118(1993).
Guo Q., Li L: Solution of the third order Cauchy difference equation on groups. Adv. Difference Equ. 2014(203), 14
Ng, C.T.: Kernals of higher order Cauchy differences on free groups. Aequ. Math. 89, 119-147 (2015).
Ng, C.T., Zhao, H. : Kernals of the second order Cauchy difference on groups. Aequ. Math. 86, 155-170 (2013).
Stetkaer, H.: Functional equation on groups. World Scientific Publishing Co. Pte. Ltd (2013). ISBN 978-981-4513-12-8.
Thangavelu, K., Pradeep, M.: Solution of the higher order Cauchy Difference equation on free groups. Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 13(8), 4141-4151 (2017).

