Solution of Finite Cauchy difference equations on Free Abelian Group

¹M. Pradeep and ²Dr. S. Renukadevi

¹Assistant Professor, Department of Mathematics, Arignar Anna Government Arts College, Cheyyar-604407, Tamilndu. E.mail.: pradeepmprnet12@gmail.com ²Assistant Professor, Department of Mathematics., Bharathi women's college, E.mail.: renurajarajan24@gmail.com

Article History: *Do not touch during review process(xxxx)*

Abstract: Let (X, .) be a semigroup, (Y, +) an abelian group and $g: X \rightarrow Y$. The first and second order Cauchy diff erences of g are $D^{1}g(a,b) = g(ab) - g(a) - g(b)$, $D^{2}g(a,b,c) = g(abc) - g(ab) - g(bc) - g(ac) + g(a) + g(b) + g(b)$ (c). Finite order Cauchy diff erences $D^n f$ are defined recursively. In the case of Y = Z, a ring where multiplication is distributive over addition, we show that functions $g : X \rightarrow Z$ with finite Cauchy differences are closed under multiplication. The equation $D^n g = 0$ is considered for finite abelian groups.

Keywords: Semigroups, rings, Cauchy diff erence equation, finite abelian groups.

1. Introduction

Let (X_{n}) be a semigroup, (Y_{n}) an abelian groups and $0 \in Y$ denote the identity element. For a function $g: X \to Y$ Y, its Cauchy differences, $D^n g$, are defined by

 $D^0g=g,$

 $D^{1}g(a_{1}, a_{2}) = g(a_{1}a_{2}) - g(a_{1}) - g(a_{2}),$ $D^{n+1}g(a_{1}, a_{2}, \dots, a_{n+2}) = D^{n}g(a_{1}, a_{2}, a_{3}, \dots, a_{n+2})$ $-D^n g(a_1, a_3, \dots, a_{n+2}) - D^n g(a_2, a_3, \dots, a_{n+2})$. -----(1) The first order Cauchy difference D^1g will often be abbreviated as Dg.[5]For an *n*-place function S : $X^n \rightarrow Y$ its first order difference in the j-th

variable is defined by

 $D_j^{l}G(a_1,\ldots,a_{j-1},x,y,a_{j+1},\ldots,a_m) = G(a_1,\ldots,a_{j-1},xy,a_{j+1},\ldots,a_m)$ $-G(a_1, \dots, a_{j-1}, x, a_{j+1}, \dots, a_m) - G(a_1, \dots, a_{j-1}, y, a_{j+1}, \dots, a_m).$ Taking $G = D^1g : X^2 \longrightarrow Y$ in particular it follows from the associativity of

the operation on X that $D_1^{\ 1}G = D_2^{\ 1}G = D^2g$.

Hence we may see D^2g as the first order difference of D^1g in either the first or the second variable. This observation can be extended to higher order diff ernces.

In (1) we have defined $D^{n+1}g$ as the first order difference of D^ng in the first variable, and the result is the same as the first order difference of $D^n g$ in any of its n + 1 variables.

A function g is said to have vanishing D^n , or to be in the kernel of D^n , if $D^n g = 0$ Let Ker $D^n(X,Y) = \{g : X \to Y \mid D^n g = 0\}$.----(2)

It is clear that kernels are abelian groups under the usual addition of functions and we have an ascending chain Hom(X, Y) = Ker $D(X, Y) \leq$ Ker $D^2(X, Y) \leq$ Ker $D^3(X, Y) \leq$...

Abelian groups under addition will be treated as modules over R. In particular Y and Ker $D^n(X, Y)$ are modules over R. While we consider functions with vanishing Cauchy differences, there are interesting questions and results dealing with weaker assumptions, e.g., that the range of D_g is confined differently. The paper [1] is in such a direction on topological vector spaces.

In [4], the general solution of (2) for n = 2 is obtained on free groups, cyclic groups and permutation groups. In [2], the general solution of (2) for n = 3 is obtained when S is the free group with a single letter. In [3] results are given for higher n, including the general solution of (2) for n = 3 on free groups.

The result is extended to show that functions from X to a ring Z with finite Cauchy differences are closed under multiplication. We exhibit the general solution of the equation $D^3g = 0$ on free abelian groups using the product.

Preliminaries : Definition 1

Let $r \ge 0$ be an integer and consider the finite sequence < 1, 2, ..., r+1>. Subsequences $n = <n_1$, $n_2, ..., n_{l+1} >$ and $k = <m_1, m_2, ..., m_{x+1} >$ of < 1, 2, ..., r+1 > is a *covering pair* if the union of their range sets, $\{n_1, ..., n_{l+1}\} \cup \{m_1, ..., m_{x+1}\}$, equals $\{1, ..., r+1\}$. The family of all such covering pairs will be denoted by $P_{(r,l,x)}$.

Note: necessarily $(l+1)+(x+1) \ge r+1$ for $\{n_1, \dots, n_{l+1}\} \cup \{m_1, \dots, m_{x+1}\} = \{1, \dots, r+1\}.$

Theorem 2. Let X be a semigroup and Z be a ring in which multiplication is distributive over addition from both sides. For any $g, q: X \to Z$ we have

 $D^{r}(gq)(a_{1}, a_{2}, \dots, a_{r+1}) = \sum_{0 \le l, x \le r(n,m) \in P_{(r,l,x)}} \sum D^{r}g(a_{n1}, \dots, a_{l+1})D^{x}q(a_{m1}, \dots, a_{m_{x+1}}) \quad ------(3)$

Proof

We shall establish the identity by induction on r. If r = 0 then l = 0, x = 0, and n = <1>, m = <1> is the only covering pair. The left side of (3) gives $D^{0}(gq)(a_{1}) = (gq)(a_{1}) = g(a_{1})q(a_{1})$. The right side of (3) gives $D^{0}(g)(a_{1})D^{0}(q)(a_{1}) = g(a_{1})q(a_{1})$. So (3) holds for r = 0. By the definition of the first order Cauchy difference and the distributivity we have $D(gq)(a_1, a_2) = g(a_1a_2)q(a_1a_2) - g(a_1)q(a_1) - g(a_2)q(a_2)$ $= [Dg(a_1, a_2) + g(a_1) + g(a_2)][Dq(a_1, a_2) + q(a_1) + q(a_2)]$ $-g(a_1)q(a_1) - g(a_2)q(a_2)$ $= Dg(a_1, a_2) Dq(a_1, a_2) + Dg(a_1, a_2) q(a_1) + Dg(a_1, a_2)q(a_2)$ $+g(a_1)Dq(a_1a_2)+g(a_2)Dq(a_1,a_2)+g(a_1)q(a_2)+g(a_2)q(a_1).$ (4) This proves (3) for r = 1. Suppose as an induction hypothesis that for some $r = n \ge 1$ (3) holds, i.e., $D^{r}(gq)(a_{1}, a_{2}, \ldots, a_{r+2})$ $= \sum_{0 \le l, x \le r(n,m) \in P_{(r,l,x)}} \sum difference \ of \ D^r g(a_{n1}, \dots, an_{l+1}) D^x q(a_{m1}, \dots, am_{x+1})$ -----(5) Then, taking the difference with respect to the variable a_{n+1} we obtain $D^{r}(gq)(a_{1}, a_{2}, \ldots, a_{r+1})$ $= \sum_{0 \leq l, x \leq r(n,m) \in P_{(r,l,x)}} \sum D^r g(a_{n1}, \ldots, an_{l+1}) D^x q(a_{m1}, \ldots, am_{x+1})$ With respect to a_{n+1} $= \sum_{0 \le l, x \le r(n,m) \in P} \sum_{\substack{(r,l,x) \\ x \ l + 1 = n+1, m, x+1 = n+1}} \sum difference \ D^r g(a_{n1}, \dots, an_{l+1}) D^x q(a_{m1}, \dots, am_{x+1})$ With respect to a_{n+1} $+ \sum_{\substack{0 \le l, x \le r(n,m) \in P \\ x_{l+1}=n+1, m, x+1=n+1 \\ p \le D^r g(a_{n1}, \dots, an_{l+1}, an_{l+2}) D^x q(a_{m1}, \dots, am_{x+1})} \sum_{\substack{x_{l+1}=n+1, m, x+1=n+1 \\ p \ge D^r g(a_{n1}, \dots, an_{l+1}) D^{x+1} q(a_{m1}, \dots, am_{x+1}, am_{x+2})} D^x q(a_{m1}, \dots, am_{x+1}, am_{x+2})$ $\sum_{0 \leq l, x \leq r(n,m) \in P}$

Substituting (6) into (5) we arrive at (3) with r = n + 1. This completes the induction. With the above general expansion for $D^r(gq)$ we arrive at the following result:

Corollary 3. For any $g, q: X \to Z$, $D^j g = D^i q = 0$ implies $D^{j+i}(gq) = 0$. According to formula (3) we have $D^{j+i}(gq)(a_1, a_2, \dots, a_{j+i+1})$

 $= \sum_{0 \le l, x \le r(n,m) \in P_{(j+i,l,x)}} \sum D^r g(a_{n1}, \dots, a_{l+1}) D^x q(a_{m1}, \dots, a_{m_{k+1}})$

As mentioned in a little note following definition 1, $(n,m) \in P_{(j+I, l,x)}$ implies $l+x+l \ge j+i$. This either $l \ge j$ or $x \ge i$.

Because $D^{i}g = 0, l \ge j$ implies $D^{l}g = 0$ and because $D^{i}q = 0, x \ge i$ implies $D^{x}q = 0$.

So every term $D^r g(a_{n1}, \dots, a_{l+1}) D^x q(a_{m1}, \dots, a_{m_{k+1}})$ in the above expansion is zero.

Main Results:

Let $G = \langle D \rangle$ be the free group on the alphabetD and let $C^{x,y}$ denote the abelianization of C. In other words $\langle D \rangle^{xy}$ is the free abelian group on D. We shall present the general solution of $C^3 f = 0$ on the free abelian group.

To assist the presentation we shall endow D with a linear order < and without loss of generality assume that D has at least two letters.

Theorem 4.

Conversely, let g, Dg, and D^2g be arbitrary initial functions mapping indicated subsets of D, $D \times D$ and $D \times D \times D$, respectively, into Y, then g defined by (7) indeed belongs to Ker $D^3(\langle D D, Y \rangle)$.

Note: The definitions of the functions used in the above representation are given in [3] and are included here in the appendix. If D has only two letters then there won't be distinct letters u, v, w and the last sum in (7) disappears by the convention $\sum_{\emptyset} = 0$.

Proof. Suppose that $g :< D >^{uv} \to Y$ and $D^3g = 0$. For each element $a \in < D >^{uv}$, using the endowed linear order, we can write it as $a = \alpha_1^{k1} \alpha_2^{k2} \dots \alpha_r^{kr}, \alpha_1 \in D, \alpha_1 < \alpha_2 < \dots < \alpha_r$. (8) From [3] we get $G(a) = g(\alpha_1^{k1} \alpha_2^{k2} \dots \alpha_r^{kr})$ $= \sum_{1 \le j \le r} k_j g(\alpha_j) + {k_j \choose 2} Dg(\alpha_j, \alpha_j) + {k_j \choose 3} D^2 g(\alpha_j, \alpha_j, \alpha_j)$ $+ \sum_{1 \le j \le i \le r} k_j k_i g(\alpha_j, \alpha_i) + k_j {k_j \choose 2} D^2 g(\alpha_j, \alpha_i, \alpha_i) + {k_j \choose 2} \alpha_i D^2 g(\alpha_j, \alpha_j, \alpha_i)$ $+ \sum_{1 \le j \le i \le r} k_j k_i k_t D^2 g(\alpha_j, \alpha_i, \alpha_t)$ (9) From the writing (8) we observe that $k_j = W(a, \alpha_j)$ for every j. Hence (9) proves (7).

References

Baron, K., Kannappan, P.L,: On the Cauchydifference. Aequ. Math. 46, 112-118(1993).

Guo Q., Li L: Solution of the third order Cauchy difference equation on groups. Adv. Difference Equ. 2014(203),14

Ng, C.T.: Kernals of higher order Cauchy differences on free groups. Aequ. Math. 89, 119-147 (2015).

Ng, C.T., Zhao, H.: Kernals of the second order Cauchy difference on groups. Aequ. Math. 86, 155-170 (2013).

Stetkaer, H.: Functional equation on groups. World Scientific Publishing Co. Pte. Ltd (2013). ISBN 978-981-4513-12-8. Thangavelu, K., Pradeep, M.: Solution of the higher order Cauchy Difference equation on free groups. Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 13(8), 4141-4151 (2017).