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Abstract: In this paper, we study the bifurcation of limit cycles for the following Lienard systems
X =y .y = ~fm(X)y = gn(X),

where, fm (X) and gn (x) respectively are polynomials of degree m and n, g» (0) = 0. We prove that, if m =5 and gn(x) =
X, there are always Lienard systems of the above form as they have a limit cycle.

Keywords: Limit cycles , The bifurcation set.

1. Introduction

In general, there are several free parameters. By using a method introduced in a previous
paper, we obtain a sequence of algebraic a proximations to the bifurcationsets,in the parameter
space.

Each algebraic approximation represents an exact lower bound to the bifurcation set.

The method is perturbative. So, it is not necessary to have a small or a large parameter in
order to obtain these results.

We consider the following problem

dx_
ac 7
d
d_}t/: (1 —x¥)y —x.

(See [1]).
Liénard system
In 1926, German Van Der Pol proposed the differential equation
F+e(x?-1Dx+x=0, e>0. (1)
Can the Lienard system with m > 5 and m + 1 <n < 2m have an algebric limit cycle ?
In this part, by developing the main ideas we prove the next results which give a positive solution to the

problem opened above.

2. MAIN RESULT
The first step We choose m=5and n = 1then fn(X)=agx® + a;, gn(X)=x.

The system becomes.
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(2
y = —(apx® + a;)y — x.
First approximation the general solution is
Xx=Ccos(t—a):
(See [2])
Where C and «a are arbitrary, we study how the presence of the term with e affects on the solution
x =Ccost,
Being given what should be a first reasonable approximation, we try
X = Acos(wt),
Where w is a constant which is close to 1 (See [2]) .

{5{ = —Aw sin(wt)
¥ = —Aw? cos(wt).

by replacing this in the coming differential equation
i+ (apx® +a))x+x =0, )
We find that - Aw? cos(wt) — (ay A° cos(wt)® + a;) (Aw s in(wt)) + A cos(wt) = 0
A(—w?) cos(wt) = ayA®w cos(wt)?® sin(wt) + a, Aw sin(wt),
= Aw(ayA°® cos(wt)® sin(wt) + a; A sin(wt))

According to the simplification, we find the second member equal at :
:AW(QO%S in(6wt)+116a0A5 s in(4wt)+;—za0 ASsinQQwt)+a; s in(a)t)).

This equation can be satisfactory for all t only if the coefficients of the different terms sinusoidal disappear

The term cos(wt) diappear if w=1 and the coefficient of sin(wt) is zero if we take
w=1l, a,=0.
We see that the choice of A is arbitrary that signifies that the system doesn’t admit an isolated closed

curve as limited cycle (See [9]). So, we search for another more efficient method :
Passage in coordinated polar We take :

{x = r cos(wt)
y = r sin(wt).

According to the study,was :

{r' = (xx +yy)/r
0 = (xy — yx)/r>.
(See [11,13]) We have :

XCHYy'= xp — (20X>+ an)y*— xy,
= —(aox°+ a1)y?,
=-1%(a, r° cos(6)® + a,) sin(0)2.

Then
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7 = —r(ayr® cos0° + a;) sin6?,

=—r(ayr® cos6°sin 62 + a, sin62),

1-cos 260

=-r(ar® (icos 50 + 1—56cos 30 + Zcos 9) sin6? + a,

),

2 2
7 = 2 a,r6 cos 50 + —agr® cos 760 + a; —cos 20 ——ayr®cos 6 — a; —+ —a,r® cos 36,
64 64 2 64 2 64
We have :
xy —yx = —(agx® + a;)xy — x* = y?,
= —(apx® + apxy — (x* +y?),
=-7r2((apr® cos56 + a;) cos§ sinf + 1)

We have :

6= - ((aor®cos56 + a;) cos@ sinf + 1),

sin 26
2

6 =- (apr® —cos560 +—cos360 +cos b +a,) +1),
16 16 8

sin 26
2

0= a 1‘5(l c0s50 sin26 —— cos30 sin26 —— cosf sin28 — a, - 1),
0 32 32 16

5
. aogr-a .
5 smH—% sin2 — 1 .

1 . 5 . 5 . 15
=- —a,r® sin70-—a,r® sin5 0 -—a,r> sin3 8+=a,r
64 64 64 64

So the system becomes :

T2 7,.2

3 1 5
7= aaor6 cos 50 + 6—4a0r6 cos 76 + ay —-cos 26 —aa0r6 cos@ —a, -+ 6—4a0r6 cos 36.

5
5 a4

5 5

6= 2 in76 - > 56 — > 36 + 2 aors sing - & in26 — 1
= a,r® sin 7007’ sin 7007’ sin gz o7 sin sin .

64
We estimate the conditions starting from the existence of the limited cycle ( th Bedixon)(See [9,6,3,10])

, so that the hypothesis doesn’t change agy;a; # 0.

Perturbation of the system We take the equation:

i+ (apx® +a;))x+x =0,

Development in the neighbourhood limit (0, 0). (See [9])
For the value of £ = 0, we find the exact solution.

The wanted idea is to extend the solution in power serial ¢:

x(t)=xo(t)+xa(t)e+x2(t)e2+0(%). (3)
So:
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F(H)=Xo(t)+x1(t)e+x2(t) 2+0(%).

(aox® + a;)=ag (xo(t) + x1(t)e + x,(t)e* + 0(e3))° + ay,

Research Article

= ao(( Xo(t) +x,(0)€)® 45 (%o () +x,(D)e)*x % +10  (x0(t) + x1(t))3x, 2e*

+10(xo (1) + x1 () &) * x5 3% + 5(xo (t) + x1 () ) *x, *e® +x, %10 +a, ,

= ao(x® () + 5x0 () x, (£)e + 10 x4 (£)x,2(8) € + 10 %2 ()%, 3 ()3 +  +5 xo(E)x,*(£)e* +

x°(0)€® +5x,(t)x0* ()e?) + ay,
=ay(x0° () + 5x0 (@) x (£)e + 10 x03(£)x,2(£)e? + 5 %, () x* (£)e?) + a;.

Is replaced in equation:

x(£) + x() = (Zo () + %0 (£))+(2,(6) + 2, () ) + (2, () + x,(£))e? + 0(3).

a, x(t) = ay%(t) + ag %, (t)e + azx, (t)e? + 0(e3).

ao x°(O)x(t) = ag x> ()% (t) + 5a0 x* (1) x, ()% (1) € + 10 ag x> (O)x,* ()% (t) €2
+ 5 agx0*(t)x, ()% () €2 +

Ay x0> () %, () € + 5 ag x0* (O)x; ()%, () €2 + a9 x> (t) %, (t) €2
We find

(xo + Xy + a. Xy + a0x05x'0) + (x1 + % + a1 %) + agxe®x; + 5ayxe* xlx'o)s

+ (o, + %, + aX, + 10agxe35x,2 %o + 5a9%e* Xp %o + 5a020* X712, + agxo® %;)e? + 0(e3)

=0

We want find a solution that is valid for all little values of . We cancel each of the coefficient ofs™.

Forn=0,1,2,..

Forn=0; 1 and 2, we obtained :

xo + Xb + alxro.q' aoxosx:o =0 (4’)
X1 + x1 + alx:]_"‘|' aoxosle + 5a0x04 xlx:o =0 (5)

X, + X + 1%, + 10agx03x,2 Xo + 5agxo? x,%0 + 5axe? x1x1 + agxy® X,
=0 (6)

As the equation is autonomous we can choose the instant for corresponding t = 0 to any point

of the limited cycle.

Thus,we can choose the initial condition x(0)=0with out losing genralty from developing (5).

we obtain the initial conditions :

%(0) = %,(0) = x,(0) =--=0 (7)
EQS (6) and 9
Xon(t) =a cos(6), homogeneous solution. (8)

Where « is yet determined.
we find the particular solution equal at :

Xop(t) = Aoc0s(6 8) + Bocos(4 0) + Rocos(28) + Mocos(8).

given
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We need of all terms ( are not periodic) Ao, Bo, Ro, Mo to be removed .by substituting (10) in (7) and by

using trigonometric identities, we obtain :

We need of all terms (are not periodic) Aqy; Bo; Rg; M, to be removed .

by substituting (10) in (7) and by using trigonometric identities.

We obtain :
¥+ x; = —(a; + apa® cos 6°)x; + 5a,a® cos % sin 0 x; 9
X + (a; + apa® cos 8°)x; + (1 — 5aya® cos8*sinO)x; =
0 (10) as aresult, this is a

differential equation of second order with variable coefficients. This equation is ,relatively,

easy to solve in the general case. Be the equation

Supposing that the function x;that satisfies the differential equation x;=exp(k t) where k can be

a complex number.

So we have

kZexp*t + (a; + aya® cos B%)kexpt + (1 — 5a® cos 8% sin ) exp*t = 0,
or
k% + (a, + aga® cos 8%k + (1 — 5a® cos 8% sin ) = 0,

this last relation is the quadratic equation auxiliary of the differential equation (polynomial charac-
teristic)(See [9]).

It has to be solutions / roots that we will notice in the

general case : ki,ko.

Immediately comes that :

—(a, + apa® cos 8°) £ \/(a, + aga® cos 6%)2 — 4(1 — 5a5 cos 8 sin 6)
2

k1,2 =

So
x; = s;exp¥it+s,expkat

If we take ay= 0 or a = 0 we find that x; is a periodic solution, but it’s contradictory to the hypothesis or to
the trivial solution x = 0.

Bifurcation system We have the following system:
(=
y = —(apx® + a;)y —x.
We search equilibrium points for this system :
{J'C =0
y=0

The system accepts one equilibrium point which is : (0; 0).
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After that, we look for the Jacobean:

— (0 1
Ixy) = (—(5a0x5y)—1 —(a0x5+a1))

So, at the equilibrium point:
100)= (°, )
We search for the polynomial characteristic :
J+ad+1=0. 6 =a’—4
We find three cases o :
If 0=0 then a, = +2 thus the equilibrium point is a node.

If 0>0 then a; > 2 , thus A it accepts two values of different signs , and the equilibrium point

is a saddle point..
The interesting case is 0 <0, then the value of 1 is complex and in this case , we have :
A=—a; ta,?— 4.

If a;= 0 the equilibrium points is central in the linear case for the non linear part it’s a passage
of polar coordinated because linear is topologically equivalent with the non linear but the
centre can be a limited cycle.

If 0 < a;1<2 the equilibrium point is an unstable focus

( positive real part).

If O<aj the equilibrium point is a steady focus (negative real
part).

In the non linear case, we can use lyaponov’s criterium :
The system linear predicts centres when the setting is equal to 0.

In the non linear system, we can see that those centres aren’t in fact conserved. To determine the steadiness
of the origin , we consider positive defined function v(x, y).I take some examples of v(x, y)but they aren’t
efficient.

The second step

We choose :
fm(X)=a0x®+arx*+a, gn(X) =X.
The system becomes :

7
y=—(apx® + a;x* +a,)y — x

In the first approximation, the general solution is :

x = C cos(z — a).

529



Turkish Journal of Computer and Mathematics Education Vol.14 No.3(2023),524-535
Research Article

Where C and « are arbitrary.
We study how the presence of the term with ¢ affects on the solution :
X = C cost.
By giving what can be a first reasonable approximation , we try
X = A cos(w?).
Where w is a constant close to 1.

{J'c = —Awsinwt
¥ = —Aw? coswt

We replace in the following differential equation
i+ (agx®+a;x*+ay)x+x=0. (12)
We find that :
—Aw? coswt — (ayA® coswt® + a;A* coswt* + a,) (Aw sinwt + Acoswt ) = 0,
A(1 — w?) coswt = ayA°w coswt®sinwt + a; A°w coswt* sinwt + a,Aw sinwt,
= Aw (ayA® coswt® + a;A* coswt* + a,) sinwt.

After the simplification, we find the second member equal at :

6
= qa, EVE sin 6wt
ASw 6

+ay Fsm 5wt +a,

sin 4wt

30 Y i 3wt + ag Y sin 2wt + (@ A 4 aydw) sinwe
0 g Sin3wt + ag —o-sin2w (a4 3 a,Aw) sin wt.

This equation can be satisfied for all t only if the coefficients of the different sinusoidal terms disappear .

The term cos(wt) disappears if w = 1, and the coefficient of A =4/—8% is zero as if we take aq,a, <
1

0,a, # 0.

Thus, we choose : w=1A =4/—8 %
1

This lets yet the term that containing sin(6wt); sin(5wt); sin(4wt); sin(3wt); sin(2wt) to disappear because we
have fixed w and A.

Thus, we find that the system admits a limited cycle of radius A :‘*\/?Z—j as aq,a,<0,a; #0.
3r9Step
We choose fm(X)=aox>+aix*+ax3+as, gn(X) =x.

The system becomes :

b

y = —(apx® + a;x* + ax® + az)y — x
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In first approximation, the general solution is
x = C cos(z — ).
Where C and « are arbitrary.
We study how the presence of the term with ¢ affects on the solution
X = C cost.
By giving what can be a first reasonable approximation , we try
X = A cos wt..
Where w is a constant close to 1.

{J’c = —Awsinwt
% = —Aw? coswt

We replace in the following differential equation
%+ (agx®+a; x*+a,x® +a3 )% +x=0. (13)
We find that :
—Aw? coswt — (agA® coswt® + a,A* coswt* + a,A% coswt® + a3) (Awsinwt + Acoswt ) = 0,

A(1 — w?) coswt = ayA°w coswt® sinwt + a;A°w coswt* sinwt
+ a,Aw sinwt + a,A*w coswt3 sinwt + azAw sinwt,
= Aw (ayA® coswt® + a,A* coswt* + a,A% coswt? + a3) sin wt.
After the simplification, we find the second member equal at :
ASw 5 6

w
= aoﬁsin 6wt + alﬁsin Swt + (aOT

A4
+a, T) sin 4wt

ASw Sw Atw_ Sw _
+3a4 ?sm 3wt + (ag ETE +a, T) sin 2wt + (a, e + a3 Aw) sin wt.

This equation can be satisfied for all t only if the coefficients of the different sinusoidal terms disappear .

The term cos(wt) disappears if w = 1, and the coefficient of sin wt is zero as if we take A =* —8%
1

a,,a3 <0,a4 #0.

This lets yet the term that containing sin(6wt); sin(5wt); sin(4wt); sin(3wt); sin(2wt) to disappear because
we have fixed w and A.

Thus, we find that the system admits a limited cycle of radius A =4/—8% as ag,a; <0,a, #0.
1
4thstep
We choose fm(X)=aox>+aix*+ax3+asx?+ay, gn(X) =x.

The system becomes :
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X=y
{)'/ = —(apx® + a;x* + a,x3® + azx® + a,)y — x

In first approximation, the general solution is
x = C cos(t — a).
Where C and « are arbitrary.
We study how the presence of the term with ¢ affects on the solution
x = C cost.
By giving what can be a first reasonable approximation , we try
X = A cos wt..

Where w is a constant close to 1.

{J’c = —Awsinwt
% = —Aw? coswt

We replace in the following differential equation
i+ (agx®+a; x* + ax® + azx? + a, )x +x = 0. (14)
We find that :

—Aw? coswt — (ayA® coswt® + a; A* coswt* + a,A3 coswt? + a3 A? cos wt?

+a,) (Awsinwt + Acoswt ) =0,

A(1 —w?) coswt = ayA®w coswt’ sinwt + a;A*w coswt* sinwt

+ a,A*w coswt® sinwt + azA3w coswt? sinwt + a,Aw sinwt,
= Aw (a,A® coswt® + a;A* coswt* + a,A3 coswt® + azA% coswt? + a,) sinwt.

After the simplification, we find the second member equal at :

AW b + a2 sin Swt + (g
=q, 32 sin6wt + a, 16 sin 5wt + (a, 3
A*w 5
——) sin4wt + (3a; —
+a, 8)smw+(a1 16
Aw_ 6 Atw_ Sw Adw _
+a3T)sm3wt+(a0 32 +a, 2 )sm2wt+(alT+a3T+a4Aw)smwt.

This equation can be satisfied for all t only if the coefficients of the different sinusoidal terms disappear .

The term cos(wt) disappears if w = 1 and the coefficient of sin wt is zero as if we take

A* A?
Aw <a1 3 +a; T + a4> =0 Aw # 0 inorder not to fall in trivial case.

a,A* + 2a;A* + 8a, = 0.We put y = A%,s0 § = 4 az*> — 32 a,a,.

If § =0- a;%2 =8aya, , theny = ;—‘13 so the system accepts a limited cycle of radius A = _a—a3 as
1 1

a,,a3 <0,a4 #0.
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—4a3i\/3
2a11

If§ >0 - az® > 8a,a, ,we find two solutions : Y12 =

So, the system accepts a limited cycle only if A, , = ./y,, provided that y;, > 0.

If § <0, itisnot accepts any limited cycle.

5thstep
We choose fm(X)=aox5+arx*+ax3+asx?+asx+as, gn(X) =x.
The system becomes :

X=y
{y = _(aoxs + 011354 + ‘?lzx3 + a3x2 +aux + as)y - X

In first approximation, the general solution is
x = C cos(t — a).
Where C and « are arbitrary. We study how the presence of the term with ¢ affects on the solution
x = C cost.

By giving what can be a first reasonable approximation , we try

X = A cos wt..

Where w is a constant close to 1.
{J'C = —Awsinwt
¥ = —Aw? coswt

We replace in the following differential equation
4 (agx®+ay x* + ax® + azx? + a, x + as)x + x = 0. (15)
We find that :

—Aw? coswt — (agA® coswt® + a;A* coswt* + a,A3 cos wt® + a3 A% cos wt?

+a,) (Awsinwt + Acoswt ) =0,

A(1 — w?) coswt = ayA®w coswt® sinwt + a, A°w coswt* sinwt

+ a,A*w coswt? sinwt + a;A3w coswt? sinwt + a,A*w sinwt + asAw sinwt,

= Aw (ayA® coswt® + a;A* coswt* + a,A3 coswt® + az; A3 coswt? + azA? coswt?

+ a,Acoswt + as) sinwt.

After the simplification, we find the second member equal at :
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ACw ASw Abw
ao EVE sin6wt + a, ETS sin 5wt + (a, e
4 5w
+a, 3 ) sin4wt + (3a1?
5 6y

w
+ as T) sin 3wt + (ao ?

Atw  A*w_ ASw A3 _
7 a, > ) sin 2wt + (a4 5 + a; T + asAw) sin wt.

+ a,

This equation can be satisfied for all t only if the coefficients of the different sinusoidal terms disappear .

The term cos(wt) disappears if w = 1 and the coefficient of sin wt is zero as if we take

4 2
Aw (al ) +a; T + a5> =0 Aw # 0 inorder not to fall in trivial case.

a,A* + 2a3A? + 8a; = 0.Weput y = A%,50 86 = 4 a3? — 32 a,as.

If § =0 - as? =8a,as , theny = ;—‘13 so the system accepts a limited cycle of radius A = /_a—‘“ as
1 1
a,, a3 <0,a; #0.
If 6§ >0 - az? > 8a,as , we find two solutions : Yiz = _42'1;i‘/§.
11

So, the system accepts a limited cycle only if A, , = ./y;, provided that y,, > 0.

If § <0, it accepts any limited cycle.

)

Figure : The two limit cycle of the Lienard system

8.Conclusion

In this paper, we proved the system can have at most 2 limit cycles. If f(x) is an odd polynomial of degree 5
then the probabilities that the Liénard equation for f(x) has at least 2 periodic solutions is greater than 47,23
%5 and that it has no periodic solution is greater than 34.54%.
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