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ABSTRACT:  

Mathematical models and common sense suggest that a connected system of predator and prey 

should cycle: predation decreases prey populations to low rates, predator numbers rise, and prey 

populations rise continually. One such model that models predator-prey interactions is the Lotka-

Volterra Model. According to our findings, both prey and predator growth are reliant on additional 

food sources as well as one another. Utilizing this technique, the stability of the linearized 

equilibrium point is analyzed. The findings indicate that the equilibrium point in the positive 

quadrant is stable. To demonstrate the behavior of the cohabitation of prey and predator populations, 

certain instances are offered. Additionally, it illustrates how the prey or predator population behaves 

while they are absent, what interactions occurred between them, and evaluates the numerical 

simulation for various parameters. The biological ramifications of our findings are further touched 

upon in the study's conclusion. 

Keywords: Population Model, Prey-Predator system, logistic growth rate, Lotka-Volterra 

Model   and   Numerical simulations. 

 

INTRODUCTION 

Mathematics has always prospered from working with developing sciences. Mathematical modeling 

is the process of applying mathematical systems to analyze various social, technological, and 

scientific situations. These techniques involve the creation of mathematical models based on real-

world circumstances, their simulation and mathematical analysis, and the interpretation and 

validation of data analysis. The most frequently addressed subject in biomathematics is population 

dynamics. 

A mathematical model of a predator and prey is typically presented in published articles as a Cauchy 

problem for a set of ordinary differential equations 
[1]– [5]

. Starting with populations of a single 
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species and progressing to increasingly realistic models where different species dwell and interact in 

the same ecosystem, the study of the evolution of different populations has long been of particular 

interest 
[6]

. The analysis of the dynamic interaction between predator and prey has also benefited 

greatly from the use of mathematical models 
[7]

. Alfred J. Lotka first suggested the Lotka-Volterra 

predator-prey system in the theory of autocatalytic chemical reactions in 1910. It has since been 

offered to represent the population dynamics of two interacting species of a predator and its prey 
[8]

, 

[9]
. The model equations, the mathematical analysis, and the subsequent numerical simulations all 

combine to show both the quantitative and qualitative effects of that logical framework. If the prey 

population becomes extinct and the predator populations follow, the predator is referred to as a 

specialized predator. A generalist predator, however, can endure in the absence of a prey population. 

Predator considered in all prior research on prey-predator interaction is an expert. A predator-prey 

model that depends on the prey and includes self- and cross-diffusion and in which the predator has 

a secondary food supply has been taken into account 
[10]

. Together, the prey and the predator evolve. 

The predator's surroundings include the prey. The predator must therefore evolve all the skills 

required to catch prey in order to survive. These skills include speed, stealth, camouflage (to conceal 

while approaching the prey), good senses of smell, sight, and hearing (to find the prey), immunity to 

the prey's poison, poison (to kill the prey), the appropriate mouthparts or digestive system, and 

others 
[11]

. The additional food may ease the population's predation pressure. Although they receive 

less attention than base prey, this supplementary food is a significant part of the diets of most 

predators 
[12]

. In order to exploit a single victim, two predators compete, and Freedman and Waltman 

examined the persistence criteria 
[13]

. In a model of two predators vying for the same prey, B. 

Mukhopadhyay and R. Bhattacharyya investigated the effects of harvesting and predator 

interference 
[14]

. Because predator-prey interactions have a significant impact on the dynamical 

system and the predator plays an intriguing role in maintaining the structure of the food web, 

studying the interactions between the two species using differential equation models is one of the 

traditional applications of mathematical biology 
[15]

. 
[16]

. In a population system, there are often two 

different sorts of predators: one is a specialist (such as little mustelids), while the other is a 

generalist (like foxes, common buzzards, cats, etc.). Specialist predators depend only on the specific 

food for a healthy and successful life, but generalist predators need to have a variety of food sources 

and attack aggressively on their favorite food 
[17]

. It is known as apparent competition 
[18]

 when the 

predator's assault frequency decreases as a result of more food being available to it. Some theoretical 

research 
[19]

 have reached the conclusion that the provision of more food could increase the number 

of target predators and reduce the attack rate of prey biomass. Toaha investigated the stability 

analysis of the model of the prey-predator population with harvesting on the predator population 
[20].

. 

The assumption that the habitat is stable permits the use of the differential equations with partial 

derivatives, which are frequently employed in the creation of mathematical models of continuous 
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ecosystems with linear features 
[21]

, 
[22]

. In this paper, we present a continuous and deterministic 

Lotka-Volterra model of the prey-predator population. The prey-predator system's equilibrium 

solution, analytical solution, logistic growth rate, and harvesting effect were all determined. We also 

use graphical representations to assess the growth rates of the prey and predator populations and 

what would happen if one of the populations (the prey or predator population) disappeared. 

METHOD AND MATERIALS: 

Formulation of prey-predator model: 

Let      and     ) is the population of the prey and predator species at any time t. 

Now, the following assumption for prey and predator system 
[23] [24] [25]:

 

i. If there are no predators, the number of prey will increase at a rate determined by nature.                                                                       

)1(0 aaX
dt

dX

 

ii. If there were no prey, the predator population might decline naturally. 

)2(0 ppY
dt

dY

 

iii. The expansion of predator species is promoted by the presence of both prey and predators, 

while the growth of prey species is prevented. For example, the predator species grows and 

declines at a rate equivalent to the amount of the two populations. 

Based on the above considerations, a system of differential equations that simulates the interaction 

of competitors or prey-predator populations has been developed. For the purpose of analysis, we 

may choose the following prey-predator system as the form 
[26] [23]

,
[27]–[30]

.                                             

qXYpY
dt

dY

bXYaX
dt

dX





                                  (3) 

with the initial conditions  
0XX  and 

0YY  at time t=0 

The variables X and Y represent, respectively, the size of the prey and the predators at time t. These 

two populations cooperate in interaction and competition. Positive constants a, b, p, and q are 

present. A represents the rate of growth in the prey population X, while p represents the rate of 

decline in the predator population Y. It seems reasonable to assume that the proportion of contacts 

between prey and predator is proportionate. The frequency of contacts between predators and prey is 

considered to be proportional to X Times Y and it is acceptable to suppose that a certain percentage 

p of these encounters will result in the deaths of prey population members. As a result, the term 

bXY  measures the decline in the prey population, and its subtraction must be adjusted for 

uncontrolled growth in the population, which could occur if there is enough food. Similarly, the 
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word qXY  must be added to the equation to change the rate at which the predator population is 

declining because more predators survive when they come into contact with their prey. 

The first equation in (3) is known as the prey equation, and the second equation in (3) is known as 

the predator equation. The Lotka-Volterra prey-predator model is the name of this well-known 

solution to equation (3). 

Solution of the Model 

0)( tX and 0)( tY  with initial conditions of  
0)0( XX   and  

0)0( YY   to determine the 

solution of the system of equations (1) and (2). 

We can write, 

)(

)(

bYaX

pqXY

dt

dX
dt

dY

dX

dY






 

dx
x

p
qdyb

y

a

dx
x

pqx
dy

y

bya

)()(

)()(








 

Integrating both sides, we get 

                                               

CXpqXbYYa

CXpqXbYYa

lnlnln

lnlnln





 

Where log c is constant. 

  
CXpeqebYa XY lnlnlnlnln 

                  
)4()
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Thus the value of K is known as the final solution of the prey-predator system. 

 

Figure-1 Lotka-Volterra prey-predator model vector field (3.3); values of the arbitrary 

parameter value a = 1, b = 1.5, p = 1, and q =1 [24] 

Equilibrium Solution: 

Special population values that result in zero change over time. 

  
0.. 

dt

dY

dt

dX
ei

 

system of equations:                       

)(0 byYaXbXYaX                           )(0 pqXYqXYpY   

One equilibrium solution: )0,0(),( YX  

  If 0X then 
b

a
Y  and 

q

p
X   

Second equilibrium solution: 

),(),(
b

a

q

p
YX    



Turkish Journal of Computer and Mathematics Education   Vol.14 No.03(2023),480- 497 

 

 

 

 

485 

 

 
 

Research Article  

We will linearize the functions 

       )(1 bYaXXf   

       
)(2 pqXYYf 

 

Let the stationary point be **)*,( xYX   

                    )(*)( tuXtX   

                    )(*)( tvYtY   

Where )()( tvandtu are very small. 

Now, the linear equation can be written as  xxDf
dt

dx
).( *  

Where 













pqXqY

bXbYa
YXDf ),(  

Case-1 

For stationary point (0,0) 













p

a
Df

0

0
)0,0(

 

The eigenvalues are a1  and  q2  

Now the linearize equation become  
































Y

X

q

a

Y

X

0

0

 

Therefore,  atectY 1)( as t  

                 0)( 2  qtectY as t  

Hence, an unstable saddle node is present at the stationary point (0,0). 

Case-2 

For the stationary point  ),(
b

a

q

p
 

 
































q

p
qp

b

a
q

q

p
b

b

a
ba

d

c

q

p
Df

..

..

,

 



Turkish Journal of Computer and Mathematics Education   Vol.14 No.03(2023),480- 497 

 

 

 

 

486 

 

 
 

Research Article  

                  





















0

0

b

aq

q

bp

 

Hence, the linear system's characteristic equation is 

0













b

aq

q

bp

A

 

02  ap  

api 
 

As a result, the equilibrium point is stable. A center, definitely. 

 Harvesting of Prey Predator System 

First we analyze harvesting. We harvest prey at a small but constant rate 0  Thus the equations 

ultimately become 

)(

)(

qXpYqXYpY
dt

dY

bYaXbXYaX
dt

dX



 

         

For ,0
dt

dY
we still have or 

q

p
X  . If ,0Y then 0 aX

dt

dY
when 

a
X


 . As a result, 

the equilibrium point at )0,0(  has moved to the right to )0,(
a


. This simple explanation: 

a


 is just a 

population of prey for whom the natural increase will just balance our harvesting rate   in the 

absence of predators . 

Conversely, with 0)(,  
q

p
bYa

dt

dX

q

p
X  when 

bp

q

b

a
Y


 . The second equilibrium 

point has moved to ),(),( **

bp

q

b

a

q

p
YX


  as a result. Assumedly,  is so little that 0* Y . 

Because we only added a constant to ),( YXf  the Jacobian Matrix ),( YXJ , it is still identical, but 

the equilibrium points have changed. 
























a

q
p

a

b
a

a
J






0

)0,(  is the initial equilibrium point. 
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The positive eigenvalue is a, and the negative eigenvalue is )(
a

q
p


 . (again, assuming is 

small). The equilibrium point is still a saddle as a result. The trajectory leaving this saddle point is 

still on the x-axis, and 








0

1
 is still an eigenvector with the positive eigenvalue ( it is still true that if 

0Y  then 0
dt

dY
). When F is small, an eigenvector for the negative eigenvalue is 




















a

q
pa

a

b





, which (when  is small) points up and slightly to the right. 

Logistic Growth of Prey Predators system: 

Suppose the system has a carrying for prey(Rabbits) K. For the population of unregulated prey 

(rabbits), logistic growth will be observed instead of exponential growth. 

In the absence of predators(Foxes), 
)5()1(

K

X
aX

dt

dX


                               

Couple back with the population, 

                                          

 )6()1(

log

actionmass

growthistic

bXY
K

X
aX

dt

dX



                          

                                           
 )7(

exp

qXYpY
dt

dY

decayonential



                            

Replacing 1/K with N, then 

                                   
)8()1( bXYNXaX

dt

dX


                        

If 0K  exists,
K

N
1

 and if 0N then it returns the original equation. 

 

 

 

Compartmental model 

● The ecosystem has a carrying capacity for prey (Rabbits) in the absence of predators (Foxes) 

  
 

 
 . 

● Prey (Rabbits) decline at a pace proportional to how prey (Rabbits) and predators interact 

(Foxes). 
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● Predator (Foxes)population declines proportionate to their existing size when there are no 

prey (Rabbits). 

● The interactions between prey (Rabbits) and predators (Foxes) determine how quickly 

predators (Foxes) grow (Foxes). 

 

For equilibrium solutions,         

                                        
)9()1(0 bXYNXaX

dt

dX


                    

                                        
)10(0 qXYpY

dt

dY


                               

                                    

)11(

0)(

0)(













qXpY

bYaNXaX

          

    We obtain from the second equation of (11)                   

                                       q

p
XY  ,0

 

Putting Y = 0 into the first equation of (11), we get 

               )1(0 NXa   

                                                                      )(0 bY
q

p
aNa

q

p
  

                

)(
q

p
aNabY 

 

                

N
bq

ap

b

a
Y 

 

Now, equilibrium solutions are: )0,(),();0,0(),( KYXYX   (if K exists) 

and 







 N

bq

ap

b

a

q

p
YX ,),(  
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Examples 

In prey-predator system X represents Rabbits and Y represents Foxes in an area, where t(times) is 

measured in months. This relationship is defined by the differential equations: 

XYX
dt

dX
002.007.0 

 

XYY
dt

dY
00004.003.0 

 

Consider looking at the solutions 

a) Find two equilibrium solutions 

b) Using the differential equations explain what would happen to the Rabbits population if 

there were no Foxes. 

c) Using the differential equations explain what would happen to the Rabbit population if there 

were no Rabbits. 

d) If t = 0, there are initially 4000 Rabbits and 100 Foxes then what happens are the 

populations increasing or decreasing? 

Solution: 

a) We have,  

                                       
XYX

dt

dX
002.007.0 

 

                                 
XYY

dt

dY
00004.003.0 

 

For equilibrium solutions,  

















0

0

dt

dY

dt

dX

 

                                         














000004.0003

0002.0007.0

XYY

XYX

 

                                         














0)00004.003.0(

0)002.0007.0(

XY

YX

 

Using the first equation shown before, we have X = 0 and Y = 35 

Also, Using the second equation shown before, we have Y = 0 and X = 750 
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b) if there are no Rabbits, Y
dt

dY
03.0 → here, Foxes grow exponentially. 

 c)  if there are no Foxes, X
dt

dY
007.0 → here, Rabbits grow exponential decay. 

d) we have an initial population of Rabbits are 4000 and Foxes are 100, then 

)100)(4000(02.0)4000(07.0 
dt

dX

 

= -7720 Rabbits/ month (decreasing) 

)4000)(100(00004.0)100(03.0 
dt

dY

 

=16 Foxes/ month (increasing) 

Result and Discussion 

 Result: 

 Numerical simulations with Graphical Representations 

The way of analyzing numerical data is known as graphical representations. It illustrates in a 

diagram the relationship between facts, ideas, information, and concepts. It is easy to understand and 

also one of the most significant learning strategies. 

By utilizing a representation in which state variables are continuously changing in connection to 

time, continuous simulation is the modeling of a realistic overview across time. To establish 

relationships for the rates of change of the state variables across time, differential equations are 

frequently used. As a result, biological differential equation models with various dependent 

variables are more likely to use a system of two or more connected differential equations. 

In this study, we use MATLAB to illustrate the dynamical and complex characteristics of the 

system while representing certain numerical simulations to investigate the function of the prey-

predator system. We fixed all parameters and the starting values for the populations of prey and 

predators at the beginning. The impact of parameters on the intricate behavior of a given system is 

explained via numerical simulations. 

a)   Think about the parameters listed below. 

002.010,001.0,2  qandpba  and with an initial population, 100)0(,4000)0(  yx .  

These values are used by the script to create the graph in Figure 2. 
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Figure 2: Variation of prey and predator population as time goes on )100)0(,4000)0((  yx  

b)    Think about the parameters listed below. 

002.010,001.0,2  qandpba  and with an initial population, 100)0(,2000)0(  yx . 

These values are used by the script to create the graph in Figure 3. 
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Figure 3: Variation of prey and predator population as time goes on ( 100)0(,2000)0(  yx

). 

c) Think about the parameters listed below. 

002.010,001.0,2  qandpba and with an initial populatio 1000)0(,200)0(  yx .  

These values are used by the script to create the graph in Figure 4.  

 

Figure 4: Variation of prey and predator population as time goes on ( 1000)0(,200)0(  yx

). 

d) Think about the parameters listed below. 

002.010,001.0,2  qandpba and with an initial population, 0)0(,4000)0(  yx . 

These values are used by the script to create the graph in Figure 5.  

 

                 

 

 

 

 

 

 

 

 

Figure 5: Represents the predator population absent as time  

e) Think about the parameters listed below. 

002.010,001.0,2  qandpba and with an initial population, 0)0(,200)0(  yx . These 

values are used by the script to create the graph in Figure 6. 
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Figure 6: Represents the predator population absent as time goes on 

f) Think about the parameters listed below. 

002.010,001.0,2  qandpba and with an initial population, 100)0(,0)0(  yx . These 

values are used by the script to create the graph in Figure 7. 

 

Figure 7: Represents the prey population absent as time goes on with constant prey. 

g) Think about the parameters listed below. 

002.010,001.0,2  qandpba and with an initial population, 2000)0(,0)0(  yx . 

These values are used by the script to create the graph in Figure 8. 

   

Figure 8: Represents the prey population absent as time goes on with increase predator. 

Phase Plane Analysis 

In the first quadrant, each trajectory is a closed curve. As a result, the numbers of prey and 

predator fluctuate in cycles. Having a small initial population (in the region
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) When trajectories don't intersect, the number of prey rises initially 

while the number of predators falls (but not to zero) until . Predators increase while 

the prey declines until . The following in the region , the predators 

and prey both decrease until  . 

In case you're interested, below is the system's phase portrait for the first quadrant. 

I. Taking the parameters 1,333.1,667.1  qpba  into consideration, we locate the 

following integral curve in the phase plane. 

 

 

        Figure 9: An integral curve in phase plane. 

I. Taking the parameters  1,333.1,667.0  qpba  into consideration, we locate the 

following integral curve in the phase plane. 

 

Figure 10:  phase plot of Prey/Predator Populations 

Discussion:  

An important subject for study is the relationships between prey species and their predator species. 

Many researchers are still researching the multiple aspects of this relationship in the modern era. In 

order to achieve this, a mathematical model of the prey-predator system is created and examined in 

the present study, using numerical simulations involving both prey and predator species. By 
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considering system parameters with an interval value rather than a single value, the model system is 

further improved. 

In our discussion, we studied continuous systems with a set of nonlinear differential equations 

determining their existence. Such a system has a number of parameters that need to be evaluated 

based on existing research. In this field, (for example, the predator-prey model's a, b, p, and q > 0). 

Point estimates are often computed and incorporated into the model. There is usually some 

ambiguity surrounding these estimates. Figure 1 represents the solutions, with prey illustrated in red 

(solid) and predators in blue (solid). The prey curve always leads the predator curve in this kind of 

scenario. The Predator-Prey model's periodic activity is seen in Figure 2, Figure 3 and Figure 4. 

Figures 5 and 6 provide an expression for the prey's rate of change with respect to the predator and 

also illustrate the exponential growth of the prey population in the absence of predators. Similarly, 

the figure 7 and figure 8 which are represent the expression for the rate of change predator with 

respect to prey and also shows the exponential decay, when prey population are absent. The level 

curves in Figure 9 are closed, hence the solution is periodic. Although it is ideal, the numerical 

solution is not always periodic. Keep in mind that when there are no predators, the prey population 

increases, but there are reduced predators when there is no prey. 

 CONCLUSION 

Consider a circumstance in which there are two populations present: prey and predators. The 

populations of predators and prey are both of importance to us. These populations do, however, 

communicate with one another. The Lotka-Volterra equations provide a description of the ecological 

predator-prey model (or parasite-host model). The dynamics of the nonlinear system are described 

by differential equations that are sensitive to changes in the Lotka—Volterra model. 
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