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ABSTRACT 

In this research, we introduce an advanced framework for continuous sign language (SL) recognition 

using deep neural networks. Our primary goal is to accurately transcribe videos of SL sentences into 

sequences of ordered gloss labels. Traditional methods for continuous SL recognition have relied on 

hidden Markov models, which have limitations in capturing temporal information effectively. To 

overcome this, we propose a novel architecture that leverages the power of deep convolutional neural 

networks with stacked temporal fusion layers for feature extraction, coupled with bi-directional 

recurrent neural networks for sequence learning. One of the key challenges we faced was the limited 

size of available datasets, which made it difficult for an end-to-end training approach to fully exploit 

the capabilities of the complex deep neural network. To tackle this issue, we developed an iterative 

optimization process to train our CNN-BILSTM architecture effectively. Here's how it works: We 

start by providing gloss-level gestural supervision through forced alignment from the end-to-end 

system. This approach directly guides the training process of the feature extractor. Next, we fine-tune 

the BILSTM system using the improved feature extractor, leading to further refined alignment for the 

feature extraction module. This iterative training strategy allows our CNN-BILSTM model to 

continue learning and benefiting from these refined gestural alignments. To evaluate our framework, 

we employed the 'SignumDataset,' a dataset containing 24 different signs or signatures. Our proposed 

architecture demonstrated promising results on this dataset, showing the potential of deep neural 

networks in SL recognition. 

Keywords: Sign recognition, online tutorial classes, iterative training, deep learning.  

1. INTRODUCTION 

Sign language (SL) is commonly known as the primary language of deaf people, and usually collected 

or broadcast in the form of video. SL is often considered as the most grammatically structured 

gestural communications [1]. This nature makes SL recognition an ideal research field for developing 

methods to address problems such as human motion analysis, human-computer interaction (HCI) and 

user interface design, and makes it receive great attention in multimedia and computer vision [2], [3], 

[4]. Typical SL learning problems involve isolated gesture classification [3], [5], [6], [7], sign spotting 

[8], [9], [10], and continuous SL recognition [11], [12], [13]. Generally speaking, gesture 

classification is to classify isolated gestures to correct categories, while sign spotting is to detect 

predefined signs from continuous video streams, with precise temporal boundaries of gestures 

provided for training detectors. Different from these problems, continuous SL recognition is to 

transcribe videos of SL sentences to ordered sequences of glosses (here we use “gloss” to represent a 

gesture with its closest meaning in natural languages [1]), and the continuous video streams are 
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provided without prior segmentation. Continuous SL recognition concerns more about learning 

unsegmented gestures of long-term video streams and is more suitable for processing continuous 

gestural videos in real-world systems. Its training also does not require an expensive annotation on 

temporal boundary for each gesture. Recognizing SL indicates simultaneous analysis and integration 

of gestural movements and appearance features, as well as disparate body parts [1], and therefore 

probably using a multimodal approach. In this paper, we focus on the problem of continuous SL 

recognition on videos, where learning the spatiotemporal representations as well as their temporal 

matching for the labels is crucial.  Many studies [11], [14], [15], [16] have made their efforts on 

representing SL with hand-crafted features. For example, hand and joint locations are used in [11], 

[17], local binary patterns (LBP) is used in [16], histogram of oriented gradients (HOG) is utilized in 

[15], and its extension HOG-3D is applied in [11]. Recently, deep convolutional neural networks have 

achieved a tremendous impact on related tasks on videos, e.g., human action recognition [18], [19], 

[20], gesture recognition [6] and sign spotting [9], [10], and recurrent neural networks (RNNs) have 

shown significant performance on learning the temporal dependencies in sign spotting [4], [21]. 

Several recent approaches taking advantage of neural networks have also been proposed for 

continuous SL recognition [12], [13], [22]. In these works, neural networks are restricted to learning 

frame-wise representations, and hidden Markov models (HMMs) are utilized for sequence learning. 

However, the frame-wise labelling adopted in [12], [13], [22] is noisy for training the deep neural 

networks, and HMMs might be hard to learn the complex dynamic variations, considering their 

limited representation capability. 

This work therefore develops a recurrent convolutional neural network for continuous SL recognition. 

Our proposed neural model consists of two modules for spatiotemporal feature extraction and 

sequence learning respectively. Due to the limited scale of the datasets, we find an end-to-end training 

cannot fully exploit the deep neural network of high complexity. To address this problem, we 

investigate an iterative optimization process to train our recurrent deep neural architecture effectively. 

We use gloss-level gestural supervision given by forced alignment from end-to-end system to directly 

guide the training process of the feature extractor. Afterwards, we fine-tune the recurrent neural 

system with the improved feature extractor, and the system can provide further refined alignment for 

the feature extraction module. Through this iterative training strategy, our deep neural network can 

keep learning and benefiting from the refined gestural alignments. 

2. LITERATURE SURVEY 

SL recognition systems on videos usually consist of a feature extraction module, which extracts 

sequential representations to characterize gesture sequences, and a temporal model mapping 

sequential representations to labels. Many hand-crafted features have been introduced for gesture and 

SL recognition. These features characterize handshape, appearance and motion cues, by using image 

pixel intensity [16], gradients [11], [15], [23] and motion trajectories or velocities [8], [11], [17]. In 

recent years, there has been a growing trend to learn feature representations by deep neural networks. 

Wu et al. [24] employ a deep belief network to extract high-level skeletal joint features for gesture 

recognition. Convolutional neural networks (CNNs) [25], [26] and 3D convolutional neural networks 

(3D-CNNs) [9], [10], [4] have also been employed to capture visual cues for hand regions. For 

instance, Molchanov et al. [4] apply 3D-CNNs for spatiotemporal feature extraction from video 

streams on color, depth and optical flow data. 

 Neverova et al. [9] present a multi-scale deep architecture on color, depth data and handcrafted pose 

descriptors.  Temporal model is to learn the correspondences between sequential representations and 

gloss labels. HMMs are the most widely used temporal models in SL recognition [10], [11], [13]. 
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Besides, dynamic time warping (DTW) [16] and SVMs [27] are also used for measuring similarity 

between gestures. Recently, RNNs have been successfully applied to sequential problems such as 

speech recognition [28] and machine translation [29], [30], and some progress has also been made for 

exploring the application of RNNs in SL recognition. Pigou et al. [21] propose an end-to-end neural 

model with temporal convolutions and bidirectional recurrence for sign spotting, which is taken as 

frame-wise classification in their framework. However, with only weak supervision in sentence level, 

recurrent neural networks are hard to learn to match the over-length input sequence frame by frame 

with the ordered labels. Different from their model, we use temporal pooling layers to integrate the 

temporal dynamics before the bidirectional recurrence. Molchanov et al. [4] employ a recurrent 3D-

CNN with connectionist temporal classification (CTC) [31] as the cost function for gesture 

recognition, while in our experiments, we find that our architecture shows a much superior 

performance compared to 3D-CNN model on the SL recognition benchmarks.  

Due to lack of temporal boundaries for the sign glosses in the image sequences, continuous SL 

recognition is also a typical weakly supervised learning problem. There have been some attempts 

focusing on the problem of mining gestures of interest from large amount of SL videos, where signs 

and annotations are usually coarsely aligned with considerable noise. Different from our problem, 

they usually take more focus on local temporal dynamics but not long-term dependencies. Buehler et 

al. [15] propose a scoring function based on multiple instance learning (MIL) and search for signs of 

interest by maximizing the score. Pfister et al. [27] use subtitle text, lip and hand motion cues to select 

candidate temporal windows, and these candidates are further refined using MISVM [32]. Chung and 

Zisserman [33] use a ConvNet learned on image encoding representing human keypoint motion for 

recognition, and they locate temporal positions of signs via saliency map by back-propagation. 

There have been a few works exploring the problem of continuous SL recognition. Gweth et al. [34] 

employ a one hidden-layer perceptron to estimate posterior from appearance based features, and use 

the probabilities as inputs to train an HMM-based recognition system. Koller et al. [12], [13], [25] 

adopt CNNs for feature extraction from cropped hand regions and also use HMMs to model the 

temporal relationships. As the amount of training data is not sufficient enough, training of deep neural 

networks is inclined to end in overfitting. To alleviate this problem, Koller et al. [12] embed a CNN 

within a weakly supervised learning framework. Weakly labelled sequence of hand shape annotations 

are brought in as an initialization, to iteratively train CNN and re-estimate hand shape labels within 

Expectation Maximization (EM) [35] framework. Similarly, annotations of finger and palm 

orientations are also imported as weakly supervised information to train CNN [25]. In their later 

works [13], [22], they use the frame-state alignment, provided by a baseline HMM recognition 

system, as frame labelling to train the embedded neural networks. In contrast with these works [12], 

[13], [25], [22], our sequence learning module of recurrent neural networks with end-toend training 

shows much more learning capacity and better performance for the dynamic dependencies. Besides, 

instead of using noisy frame-wise labelling as training targets of neural networks, we adopt the gloss-

level alignment proposal to train our feature extraction module, which takes more local temporal 

dynamics into consideration. Moreover, no extra supervisory information such as hand shape 

annotations is imported in our approach. Notice that the development of such lexicon requires 

laborious annotation with expert knowledge, while our method is free from this limitation.  

Different from the previous work [36], this project proposes a distinctive segment-gloss alignment 

method to learn from the outputs of our sequence learning module, and we provide an explicit 

illustration for our iterative training scheme, by proving the training of feature extraction module to be 

maximizing the lower bound of the objective function, instead of using an intuitive approach. We also 
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contribute by investigating more on the multimodal integration of appearance and motion cues in this 

work. 

3. PROPOSED SYSTEM 

Our proposed neural model consists of two modules for spatiotemporal feature extraction and 

sequence learning, respectively. Due to the limited scale of the datasets, we find an end-to-end 

training cannot fully exploit the deep neural network of high complexity. To address this problem, we 

investigate an iterative optimization process to train our recurrent deep neural architecture effectively. 

We use gloss-level gestural supervision given by forced alignment from end-to-end system to directly 

guide the training process of the feature extractor. Afterwards, we fine-tune the recurrent neural 

system with the improved feature extractor, and the system can provide further refined alignment for 

the feature extraction module. Through this iterative training strategy, our deep neural network can 

keep learning and benefiting from the refined gestural alignments. The main contributions of our work 

can be summarized as follows:  

1) We develop our architecture with recurrent convolutional neural networks of more learning 

capacity to achieve state-of-the-art performance on continuous SL recognition, without importing 

extra supervisory information. 

2) We design an iterative optimization process for training our deep neural network architecture, and 

our approach, with the neural networks better exploited, is proved to take notable effect on the limited 

training set in contrast to the end-to-end trained system.  

3) We propose a multimodal version of our framework with RGB frames and optical flow frames and 

experiments present that our multimodal fusion scheme provides better representations for the 

gestures and further improves the performance of the system. 

 

Fig.1. Iterative training process. 

3.1 Model design 

The proposed deep neural architecture consists of a deep CNN followed by temporal operations for 

representation learning, and Bi-LSTMs for sequence learning. For experiments with modalities from 

dominant hands as the inputs, we build the deep convolutional network based on the VGG-S model 

(from layer conv1 to fc6), which is memory-efficient and shows competitive classification 

performance on ILSVRC-2012 dataset. The input frames, which are the region of dominant hands 

signped from original frames, are resized to 101 × 101 in dimension, and they are then transformed to 
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1024-dimensional feature vectors through the fully connected layer fc6. The stacked temporal 

convolution and pooling layers are utilized to generate spatiotemporal representation for each 

segment.  

 

Fig.2. Proposed block diagram 

Figure 2 shows the block diagram of proposed method, which is used identify the different signs from 

the test video using CNN feature extraction and BI-LSTM training. We select the temporal stride δ to 

ensure sufficient overlapping between neighboring segments, as well as pool the representation 

sequence to a moderate length. In the feature extraction module, rectifier and max pooling are adopted 

for all the nonlinearity and pooling operations. We use Bi-LSTMs with 2 × 512 dimensional hidden 

states and peephole connections to learn the temporal dependencies. The hidden states are then fed 

into the SoftMax classifier, with the dimension equal to the vocabulary size. We also investigate the 

performance of our training framework with full video frames as the inputs. We use CNN as the deep 

convolutional network in our feature extractor, and we adopt two stacked Bi-LSTMs to build the 

sequence learning module. Due to the limitations on GPU memory to fit in the whole system, we fix 

the parameters of CNN at the end-to-end stage and only tune the sequence learning module. The video 

frames are resized to 224×224 as the inputs of CNN, transformed to feature vectors after the average 

pooling layer, and then fed into the temporal fusion layers.  

3.2 SIGNUM Dataset 

The SIGNUM Database was created within the framework of a research project at the Institute of 

Man–Machine Interaction, located at the RWTH Aachen University in Germany. The SIGNUM 

(Signer-Independent Continuous Sign Language Recognition for Large Vocabulary Using Subunit 

Models) project was funded by the Deutsche Forschung gemeinschaft (German Research Foundation) 

and aimed to develop a video-based automatic sign language recognition system. In order to ensure 

user-friendliness, the system utilizes a single-color video camera for data acquisition. Since sign 

languages make use of manual and facial means of expression both channels are analysed by means of 

frame processing. The whole system, particularly the feature extraction and the subsequent 

classification stage, is designed for signer-independent operation and allows adaptation to an 

unknown signer. The reader interested in a more detailed description of this recognition system or an 

in-depth introduction to gesture and sign language recognition is directed to the publication list. 

3.3 Multimodal Fusion  
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To incorporate the appearance and motion information, we also take colour frame and optical flow for 

dominant hand regions as the inputs of our deep neural architecture. We adopt sum fusion approach at 

the conv5 layer for fusing the two stream networks. It computes element-wise sum of the two feature 

maps at the same spatial location and channel for the fusion. Our intention here is to put appearance 

and motion cues at the same spatial position in correspondence, without introducing extra filters in 

order to join the feature maps together. The sum fusion approach also shows a decent performance on 

the task of action recognition in video compared to other spatial fusion methods.  

 

Fig. 3. Deep neural architecture for RGB and optical flow modalities of dominant hands. 

Our end-to-end architecture for SL recognition from dominant hands is depicted in Fig. 2. Note that 

parameters for different modalities are not shared before the sum fusion. Figure 3 discloses the 

architecture of CNN-BILSTM that is utilized in proposed methodology for system for enhanced 

feature representation of word frame over conventional retrieval systems. 

3.4 CNN-BILSTM 

According to the facts, training and testing of CNN-BILSTM involves in allowing every source frame 

via a succession of convolution layers by a kernel or filter, rectified linear unit (ReLU), max pooling, 

fully connected layer and utilize SoftMax layer with classification layer to categorize the objects with 

probabilistic values ranging from [   ].   

Convolution layer as depicted in Figure 4 is the primary layer to extract the features from a source 

frame and maintains the relationship between pixels by learning the features of frame by employing 

tiny blocks of source data. It’s a mathematical function which considers two inputs like source frame 

 (     ) where   and   denotes the spatial coordinates i.e., number of rows and columns.   is 

denoted as dimension of a frame (here    , since the source frame is RGB) and a filter or kernel 

with similar size of input frame and can be denoted as  (       ). 

 

Fig. 4. Representation of convolution layer process. 

The output obtained from convolution process of input frame and filter has a size of  ((     

 ) (       )  ), which is referred as feature map. An example of convolution procedure is 

demonstrated in Figure 5. Let us assume an input frame with a size of     and the filter having the 
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size of    . The feature map of input frame is obtained by multiplying the input frame values with 

the filter values as given in Figure 5 (b). 

 

(a) 

 

(b) 

Fig. 5. Example of convolution layer process (a) a frame with size     is convolving with     

kernel (b) Convolved feature map 

3.4.1 ReLU layer 

Networks those utilizes the rectifier operation for the hidden layers are cited as rectified linear unit 

(ReLU). This ReLU function  ( ) is a simple computation that returns the value given as input 

directly if the value of input is greater than zero else returns zero. This can be represented as 

mathematically using the function    ( ) over the set of   and the input   as follows: 

 ( )     {   } 

3.4.2 Max pooing layer 

This layer mitigates the number of parameters when there are larger size frames. This can be called as 

subsampling or down sampling that mitigates the dimensionality of every feature map by preserving 

the important information. Max pooling considers the maximum element form the rectified feature 

map. 

3.5 SoftMax classifier 

Generally, as seen in the above picture SoftMax function is added at the end of the output since it is 

the place where the nodes are meet finally and thus, they can be classified. Here, X is the input of all 

the models and the layers between X and Y are the hidden layers and the data is passed from X to all 

the layers and Received by Y. Suppose, we have 10 classes, and we predict for which class the given 

input belongs to. So, for this what we do is allot each class with a particular predicted output. Which 

means that we have 10 outputs corresponding to 10 different class and predict the class by the highest 

probability it has. 



Turkish Journal of Computer and Mathematics Education   Vol.14 No.01 (2023),321- 333 
 
 

328 
 

 
 

Research Article  

In Figure 6, and we must predict what is the object that is present in the picture. In the normal case, 

we predict whether the sign is A. But in this case, we must predict what is the object that is present in 

the picture. This is the place where SoftMax comes in handy. As the model is already trained on some 

data. So, as soon as the picture is given, the model processes the pictures, send it to the hidden layers 

and then finally send to SoftMax for classifying the picture. The SoftMax uses a One-Hot encoding 

Technique to calculate the cross-entropy loss and get the max. One-Hot Encoding is the technique that 

is used to categorize the data. In the previous example, if SoftMax predicts that the object is class A 

then the One-Hot Encoding for:  

 

Fig.6. Sign class prediction using SoftMax classifier. 

 

Fig.7. Example of SoftMax classifier. 

Class A will be [1 0 0] 

Class B will be [0 1 0] 

Class C will be [0 0 1] 
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From the Figure 7, we see that the predictions are occurred. But generally, we don’t know the 

predictions. But the machine must choose the correct predicted object. So, for machine to identify an 

object correctly, it uses a function called cross-entropy function. So, we choose more similar value by 

using the below cross-entropy formula. 

 

Fig.8. Example of SoftMax classifier with test data. 

In the above example from figure 8 we see that 0.462 is the loss of the function for class specific 

classifier. In the same way, we find loss for remaining classifiers. The lowest the loss function, the 

better the prediction is. The mathematical representation for loss function can be represented as: - 

           (           (      )) 

4. RESULTS 

This section gives the detailed analysis of simulation results implemented using “python 

environment”. Further, the performance of proposed method is compared with existing methods using 

same dataset. 

      

                                 (a)                                         (b)                                                (c) 
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(d) 

Fig.9. predicted outcomes (a) sign recognized as B, (b) sign recognized as S, (c) sign recognized as S, 

(d) sign recognized as U. 

Figure 9 shows the predicted signs from the test video and Figure 10 shows the WER graph for 

multiple number of epochs (iterations). 

 

Fig.10. word error rate (WER) graph. 

5. CONCLUSION 

In this proposal, we have developed a continuous SL recognition system with recurrent convolutional 

neural networks on multimodal data of RGB frames and optical flow images. In contrast to previous 

state-of-the-art methods, our framework employs recurrent neural networks as the sequence learning 

module, which shows a superior capability of learning temporal dependencies compared to HMMs. 

The scale of training data is the bottleneck in fully training a deep neural network of high complexity 

on this task. To alleviate this problem, a novel CNN-BILSTM training scheme is proposed to make 

our feature extraction module fully exploited to learn the relevant gestural labels on video segments 

and keep on benefitting from the iteratively refined alignment proposals. In addition, a multimodal 

fusion approach also developed to integrate appearance and motion cues from SL videos, which 

presents better spatiotemporal representations for gestures. Further, our model is evaluated on two 

publicly available SL recognition benchmarks, and experimental results present the effectiveness of 

our method, where both the iterative training strategy and the multimodal fusion contribute to a better 

representation and the performance improvement 
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