Restrained Isolate Edge Geodetic Number of a Graph

Venkanagouda M.Goudar ${ }^{1}$, L.S.Chitra ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sri Siddhartha Institute of Technology, Constituent College of Sri Siddhartha Academy of Higher Education Tumkur, Karnataka, India
${ }^{2}$ Research Scholar, Sri Siddhartha Academy of Higher Education
Tumkur, Karnataka, India
Department of Mathematics, Adhichunchanagiri Institute of Technology
Chikkamagaluru, Karnataka, India
E-mail: vmgouda@gmail.com, chitrals.ait@gmail.com

Abstract

Here we study the new concept of restrained isolate edge geodetic set for a graph $G=(V(G), E(G))$ of order $n \geq 4$. The edge geodetic set $S \subseteq V$ of a connected graph G is said to be a restrained isolate edge geodetic set if the induced sub graph $\langle S\rangle$ has at least one isolate vertex and the induced sub graph $\langle V(G)-S\rangle$ has no isolate vertex. The restrained isolate edge geodetic number denoted by $g_{1 r i}(G)$ is the minimum cardinality of a restrained isolate edge geodetic set of G. Here we determine the restrained isolate edge geodetic number of some standard graphs and by adding leaf vertices to a graph C_{n}. In addition, we determine the restrained isolate edge geodetic number for some graphs using cartesian product and corona product.

Keywords: Isolate edge geodetic number, restrained edge geodetic set, extreme vertex, cartesian product, corona product.

Subject Classification: AMS-05C12.

1. Introduction

We consider only finite, connected and simple graph $G=(V(G), E(G))$. In a connected graph G, the distance between any two vertices u, v is the length of the shortest $u-v$ path and the
$u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. This concept was introduced in [2]. The closed interval $I[u, v]$ consists of all vertices lying on some $u-v$ geodesic of G and for a non empty subset $S \subseteq V(G), I[S]=\mathrm{U}_{u, v \in S} I[u, v]$. The set S of vertices is a geodetic set in G if $I[S]=V(G)$. The minimum cardinality of a geodetic set is the geodetic number $g(G)$. The edge geodetic set $S \subseteq V(G)$, in which all edges of G is included in a geodesic connecting some pair of vertices in S and $g_{1}(G)$ is the edge geodetic number that represents the cardinality of minimum edge geodetic set. The vertex v is termed as an isolated vertex if $\operatorname{deg}(v)=0$ and the vertex v is called as the pendant vertex if $\operatorname{deg}(v)=1$.

The geodetic set S is said to be an isolate geodetic set in G, if the induced sub graph $<S>$ has at least one isolate vertex. The cardinality of an isolate geodetic set which is minimum is the isolate geodetic number and is denoted as $g_{o}(G)$. In [5], isolate geodetic number of a graph was introduced.

A set of vertices S in a connected graph G is a restrained edge geodetic set if S is an edge geodetic set and if either $V=S$ or the induced sub graph $<V(G)-S>$ has no isolated vertex. The minimum cardinality of a restrained edge geodetic set of G is the restrained geodetic number $\mathrm{eg}(G)$. In [6], the edge geodetic number of a graph and [1,7] restrained edge geodetic number of a graph was introduced. The vertex v in the graph G is said to be an extreme if a sub graph induced by its neighbours is a complete graph. The vertex v is called as the full vertex or dominating vertex of a graph G if $\operatorname{deg}(v)=n-1$. The vertex adjacent to the pendant vertex is called a support vertex. Any undefined terms may be found in $[3,4]$.

Theorem 1.1.[6] If G has exactly one vertex v of degree $p-1$, then $g_{1}(G)=p-1$.

Theorem 1.2.[6]Any graph G with at least two vertices of degree $p-1, g_{1}(G)=p$.

2. Restrained Isolate Edge Geodetic Number of a Graph

Definition 2.1. The edge geodetic set $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ in G is said to be a restrained isolate edge geodetic set if the induced sub graph $<\mathrm{S}>$ has at least one isolate vertex and the induced sub
graph $<\mathrm{V}(\mathrm{G})-\mathrm{S}>$ has no isolate vertex. The restrained isolate edge geodetic number $\mathrm{g}_{1 \mathrm{ri}}(\mathrm{G})$ is the cardinality of a minimum restrained isolate edge geodetic set in G .

Figure 2.1
The connected graph G in Figure 2.1, $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$ is a minimum edge geodetic set with the induced sub graph $<\mathrm{S}>$ has isolate vertices and $<\mathrm{V}(\mathrm{G})-\mathrm{S}>$ is connected has no isolate vertex. Thus the edge set S forms the restrained isolate edge geodetic set. Therefore $\mathrm{g}_{1 \mathrm{ri}}(\mathrm{G})=4$.

Observation 2.2. All graphs need not have a restrained isolate edge geodetic set. For example, complete graphs, complete bipartite graphs, wheel graphs have no restrained isolate edge geodetic set.

Theorem 2.3. There is no graph G of order n with restrained isolate edge geodetic number $\mathrm{g}_{1 \mathrm{ri}}(\mathrm{G})=\mathrm{n}-1$.

Proof. Suppose that $g_{1 r i}(G)=n-1=|S|$, the induced sub graph $\langle V(G)-S>$ contains an isolate vertex. Thus, there is no graph G of order n with $g_{1 r i}(G)=n-1$.

Theorem 2.4. If the graph G contains one or more full vertices, then there is no restrained isolate edge geodetic set in G .

Proof. Suppose the graph G contains one full vertex, then by Theorem 1.1, the edge geodetic set $g_{1}(G)=n-1=|S|$ and $<V(G)-S>$ contains an isolate vertex. If G has at least two full vertices, then by Theorem 1.2, the edge geodetic set $g_{1}(G)=n=|S|$. Clearly, the induced sub graph $\langle S\rangle$ is connected has no isolate vertex and $\langle V(G)-S\rangle$ is a order-zero graph K_{0}. Thus there is no restrained isolate edge geodetic set in G containing one or more full vertices.

Theorem 2.5. In a cycle $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$ with $\mathrm{n} \geq 6$
$\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{C}_{\mathrm{n}}\right)= \begin{cases}2, & \text { if } \mathrm{n} \text { is even } \\ 3, & \text { if } \mathrm{n} \text { is odd } .\end{cases}$
Proof. Case 1: Suppose that n is even. The set $S=\left\{v_{1}, v_{r+1}\right\}$ of two antipodal vertices in a cycle $C_{2 r}: v_{1}, v_{2}, \ldots v_{2 r}, v_{1}$ forms the edge geodetic set which is minimum with the induced sub graph $\langle S\rangle$ has isolated vertices and $\left\langle V\left(C_{2 r}\right)-S\right\rangle$ has no isolate vertex. Thus set S forms restrained isolate edge geodetic set. Therefore $g_{1 r i}\left(C_{2 r}\right)=2$.

Case 2: Suppose that n is odd. Let $S=\left\{v_{1}, v_{r+1}, v_{r+2}\right\}$ be a set of three vertices in a cycle $C_{2 r+1}: v_{1}, v_{2}, v_{r+1}, v_{r+2}, \ldots, v_{2 r+1}, v_{1}$ forms an edge geodetic set with $\langle S\rangle$ has isolate vertex and $\left\langle V\left(C_{2 r+1}\right)-S\right\rangle$ has no isolate vertex. Thus the set S forms a restrained isolate edge geodetic set. Therefore $g_{1 r i}\left(C_{2 r+1}\right)=3$.

Theorem 2.6. The tree T containing n vertices with k pendant vertices also $n-k \geq 2$, the restrained isolate edge geodetic number $\mathrm{g}_{1 \mathrm{ri}}(\mathrm{T})=\mathrm{k}$.

Proof. The tree T of order n containing k pendant vertices with $n-k \geq 2$. The set S of k pendant vertices forms an edge geodetic set which is minimum with the induced sub graph $\langle S\rangle$ has isolate vertices and $\langle V(T)-S\rangle$ is connected has no isolate vertex. Thus the set S forms restrained isolate edge geodetic set. Therefore $g_{1 r i}(T)=k$.

Theorem 2.7. In a graph $\mathrm{G}, 2 \leq \mathrm{g}_{1 \mathrm{ri}}(\mathrm{G}) \leq \mathrm{n}-2$.
Proof. Every restrained isolate edge geodetic set is an edge geodetic set and at least two vertices are required. So that $g_{1 r i}(G) \geq 2$. Suppose that if $g_{1 r i}(G)=n$, then the induced sub graph $\langle S\rangle$ is connected has no isolate vertex and if $g_{1 r i}(G)=n-1$, then the induced sub graph $\langle V(G)-S\rangle$ has isolate vertex. Further by Observation 2.2 and Theorem 2.3, there is no graph G of order n with restrained isolate edge geodetic number $g_{1 r i}(G)=n$ and $g_{1 r i}(G)=(n-1)$ so that, $g_{1 r i}(G)<(n-1)$. Therefore $2 \leq g_{1 r i}(G) \leq n-2$.

3. Adding a leaf vertex to a graph

Theorem 3.1. The graph G^{\prime} is formed by adding the leaf vertex v to a cycle $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$ where $\mathrm{n} \geq 4$. Then $\mathrm{g}_{1 \mathrm{ri}}\left(G^{\prime}\right)= \begin{cases}2 & \text { if } \mathrm{n} \text { is even } \\ 3 & \text { if } \mathrm{n} \text { is odd. }\end{cases}$

Proof. The graph G^{\prime} formed by adding the leaf vertex $v \notin G$ to any vertex in a cycle $G=C_{n}$ where $n \geq 4$.

Case 1: Suppose that n is even.
In G^{\prime}, the set $S=\{v, u\}$ forms the edge geodetic set which is minimum where $\mathrm{d}(\mathrm{v}, \mathrm{u})=\operatorname{diam}\left(\mathrm{G}^{\prime}\right)$ with the induced sub graph $\langle S\rangle$ has isolate vertices, $\left\langle V\left(G^{\prime}\right)-S\right\rangle$ is connected has no isolate vertex. Thus the set S forms restrained isolate edge geodetic set. Therefore $g_{1 r i}\left(G^{\prime}\right)=2$.

Case 2: Suppose that n is odd.
The edge geodetic set $S=\{\mathrm{v}, \mathrm{u}, \mathrm{w}\}$ where v is a leaf vertex and u, w are any two adjacent vertices in G^{\prime} such that $\mathrm{d}(\mathrm{v}, \mathrm{u})=\mathrm{d}(\mathrm{v}, \mathrm{w})$ with the induced sub graph $<\mathrm{S}>$ has isolate vertex, $<\mathrm{V}\left(\mathrm{G}^{\prime}\right)-\mathrm{S}>$ is connected has no isolate vertex. Thus S in G^{\prime} forms restrained isolate edge geodetic set. Hence $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{G}^{\prime}\right)=3$.

Theorem 3.2. If the graph G^{\prime} is formed by joining k-leaf vertices $\mathrm{v}_{\mathrm{i}} \notin \mathrm{G}$ where $1 \leq \mathrm{i} \leq \mathrm{k}$ to any vertex in $G=C_{n}$ where C_{n} is a cycle with $n \geq 4$, then
$g_{1 r i}\left(G^{\prime}\right)= \begin{cases}k+1, & \text { if } n \text { is even } \\ k+2, & \text { if } n \text { is odd } .\end{cases}$
Proof. The graph G^{\prime} formed by adding k-leaf vertices $\mathrm{X}=\left\{\mathrm{v}_{\mathrm{i}}\right\}$ where $1 \leq \mathrm{i} \leq \mathrm{k}$ to any vertex in $G=C_{n}$.

Case 1: Suppose that n is even. The set $\mathrm{S}=\mathrm{X} U\{\mathrm{u}\}$ forms an edge geodetic set in G^{\prime} where $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{u}\right)=\operatorname{diam}\left(\mathrm{G}^{\prime}\right), 1 \leq \mathrm{i} \leq \mathrm{k}$. The induced sub graph $<\mathrm{S}>$ has isolate vertices, $<\mathrm{V}\left(\mathrm{G}^{\prime}\right)-\mathrm{S}>$ is connected has no isolate vertex. Thus the set S forms restrained isolate edge geodetic set. Therefore $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{G}^{\prime}\right)=\mathrm{k}+1$.

Case 2: Suppose that n is odd. The set $S=X \cup\{u, w\}$ forms an edge geodetic set containing two adjacent vertices u, w with $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{u}\right)=\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{w}\right), 1 \leq \mathrm{i} \leq \mathrm{k}$. The induced sub graph $\left.<\mathrm{S}\right\rangle$ has isolated vertices and $<\mathrm{V}\left(\mathrm{G}^{\prime}\right)-\mathrm{S}>$ is connected has no isolate vertex. Thus the set S forms restrained isolate edge geodetic set. Therefore $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{G}^{\prime}\right)=\mathrm{k}+2$.

Theorem 3.3. The graph G^{\prime} is formed by adding a leaf vertex to each vertex in a cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ where $\mathrm{n} \geq 3$. Then $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{G}^{\prime}\right)=\mathrm{n}$.

Proof. The graph G^{\prime} formed by joining a leaf vertex to each vertex in a cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ where $\mathrm{n} \geq 3$. The set X of n end vertices in an extreme geodesic graph $\mathrm{G}^{\prime}=\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{1}$ forms minimum restrained isolate edge geodetic set in G^{\prime}. Therefore $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{G}^{\prime}\right)=\mathrm{n}$.

Theorem 3.4. The graph G^{\prime} is formed by joining k-leaf vertices $\mathrm{v}_{\mathrm{i}} \notin \mathrm{G}$ where $1 \leq \mathrm{i} \leq \mathrm{k}$ to each vertex in $G=C_{n}$ where C_{n} is a cycle of order $n \geq 3$. Then $g_{1 r i}\left(G^{\prime}\right)=n k$.

Proof. The graph G^{\prime} is formed by joining k-leaf vertices $\mathrm{X}=\left\{\mathrm{v}_{\mathrm{i}}\right\}$ where $1 \leq \mathrm{i} \leq \mathrm{k}$ to each vertex in $G=C_{n}, n \geq 3$. The set X of $n k$ pendant vertices forms minimum restrained isolate edge geodetic set. Therefore $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{G}^{\prime}\right)=\mathrm{nk}$.

4. The restrained isolate edge geodetic number and corona product.

Definition 4.1. A graph formed by taking a single copy of G with $|V(G)|=n$ copies of H. By joining $\mathrm{i}^{\text {th }}$ vertex of G with each vertex in the $\mathrm{i}^{\text {th }}$ copy of H , then it is said to be a corona product of two graphs G and H and it is denoted as $\mathrm{G} \circ \mathrm{H}$.

Theorem 4.2. If $\mathrm{G}=\mathrm{T}$ is a connected non trivial tree of order n , then $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{T} \circ \mathrm{K}_{1}\right)=\mathrm{n}$.
Proof. Let T be a connected tree of order n . By the definition of corona graph, $\left(\mathrm{T} \circ \mathrm{K}_{1}\right)$ is a tree with 2 n vertices and n pendant vertices. By Theorem 2.6, the restrained isolate edge geodetic set $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{T} \circ \mathrm{K}_{1}\right)=\mathrm{n}$.

Theorem 4.3. If K_{n} is a complete graph of order n, then $g_{1 r i}\left(K_{n} \circ K_{1}\right)=n$.

Proof. Let K_{n} be a complete graph of order n . By the definition of corona graph, $\mathrm{G}=\mathrm{K}_{\mathrm{n}} \circ \mathrm{K}_{1}$ is a connected graph of order 2 n containing n pendant vertices. The set S of n pendant vertices forms an edge geodetic set which is minimum with the induced sub graph $<\mathrm{S}>$ has isolated vertices, $<\mathrm{V}(\mathrm{G})-\mathrm{S}>$ is connected. Thus the set S forms restrained isolate edge geodetic set. Therefore $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{K}_{\mathrm{n}} \circ \mathrm{K}_{1}\right)=\mathrm{n}$.

Theorem 4.4. If the graph $K_{m, n}$ is a complete bipartite graph of order $(m+n)$, then $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}} \circ \mathrm{K}_{1}\right)=\mathrm{m}+\mathrm{n}$.

Proof. Let $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ be a complete bipartite graph of order $\mathrm{m}+\mathrm{n}$. By the definition of corona graph, $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}} \circ \mathrm{K}_{1}$ is a connected graph of order $2(\mathrm{~m}+\mathrm{n})$. Let S be an edge geodetic set contains $\mathrm{m}+\mathrm{n}$ end vertices. It is clear that $\langle\mathrm{S}\rangle$ has isolated vertices and the induced sub graph $<\mathrm{V}(\mathrm{G})-\mathrm{S}>$ is connected complete bipartite graph has no isolate vertices. Thus the set S forms restrained isolate edge geodetic set. Therefore $\mathrm{g}_{1 \mathrm{ri}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}} \circ \mathrm{K}_{1}\right)=\mathrm{m}+\mathrm{n}$.

5. The Cartesian product and restrained isolate edge geodetic number

Definition 5.1. The Cartesian product of any two graphs G, H is a graph with vertex set $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})=\left(\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ where $\mathrm{u}_{\mathrm{i}} \in \mathrm{V}(\mathrm{G}), \mathrm{v}_{\mathrm{j}} \in \mathrm{V}(\mathrm{H}), 1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$. Any two distinct vertices $\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right)$ adjacent in $G \times H$ if and only if either $u_{i}=u_{k}$ and $v_{j} v_{l} \in E(H)$ or $v_{j}=v_{l}$ and $u_{i} u_{k} \in E(G)$.

Theorem 5.2. The restrained isolate edge geodetic number of the cartesian product of C_{n}, P_{m} is $g_{1 r i}\left(C_{n} \times P_{m}\right)= \begin{cases}2 & \text { if } n \text { is even } \\ 4 & \text { if } n \text { is odd } .\end{cases}$

Where $\mathrm{C}_{\mathrm{n}}, \mathrm{n}>3$ is a cycle and the path $\mathrm{P}_{\mathrm{m}}, \mathrm{m}>1$.
Proof. In $C_{n}, V=\left\{v_{i}\right\}, 1 \leq i \leq n$ is the vertex set and for P_{m} vertex set is $W=\left\{w_{j}\right\}, 1 \leq j \leq m$. By the definition of cartesian product, $G=\left(C_{n} \times P_{m}\right)$ formed from n copies of P_{m}.

Case 1: Suppose that n is even.

Let $S=\left\{\left(v_{i}, w_{m}\right),\left(v_{i+\frac{n}{2}}, w_{1}\right)\right\}$ be the edge geodetic set, where $1 \leq i \leq \frac{n}{2}$ such that $\operatorname{diam}(G)=\mathrm{d}\left\{\left(v_{i}, w_{m}\right),\left(v_{i+\frac{n}{2}}, w_{1}\right)\right\}$ with the induced sub graph $<S>$ has isolate vertices and $<V(G)-S>$ is connected has no isolate vertex. Thus the set S forms restrained isolate edge geodetic set. Therefore $g_{1 r i}(G)=2$.

Case 2: Suppose that n is odd.
Let $S=\left\{\left(v_{1}, w_{1}\right),\left(v_{\left\lceil\frac{\mathrm{n}}{2}\right.}, w_{m}\right),\left(v_{\left\lceil\frac{\mathrm{n}}{2}\right\rceil_{+1}}, w_{m}\right),\left(v_{\left\lceil\frac{\mathrm{n}}{2}\right\rceil_{+1}}, w_{1}\right)\right\}$ be an edge geodetic set. The induced subgraph $\langle S>$ has isolated vertices and $\langle V(G)-S>$ is connected has no isolate vertex. Thus the set S forms restrained isolate edge geodetic set. Therefore $g_{1 r i}(G)=4$.

Theorem 5.3. If P_{m} and P_{n} are the paths with $m, n>2$, then $g_{1 r i}\left(P_{m} \times P_{n}\right)=2$.
Proof. By the definition of graph product, $G=\left(P_{m} \times P_{n}\right)$ is obtained from m copies of P_{n}. The two vertex sets $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ of P_{m} and P_{n} respectively. The set containing any two antipodal vertices in a grid graph G forms restrained isolate edge geodetic set. Therefore $g_{1 r i}(G)=2$.

6.Conclusion

In this paper, we obtained results on the restrained isolate edge geodetic number of several special graphs also some general properties of cartesian product of two graphs.

References

[1] K. S. Ashalatha and Venkanagouda M. Goudar. '"The Restrained Geodetic Number of a Line Graph." International Journal of Computer Applications, Vol. 171, No. 7 (2017).
[2] F.Buckley and F.Harary, Distance in Graphs, Addison-Wesley, Redwood city, CA, (1990).
[3] G.Chartrand, F. Harary and P.Zhang, On the Geodetic Number of a Graph, Networks 39, 1-6 (2002).
[4] F.Harary, Graph Theory, Addison-Wesley, (1969).
[5] X.LeninXaviour and S.V. Ashwin Prakash, Isoate Geodetic Number of a Graph, Vol. 5, No. 11,755-765 (2018).
\longrightarrow Research Article
[6] A.P.Santhakumaran and J.John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 10, No. 3, 415-432 (2007).
[7] A.P.Santhakumaran, M. Mahendran, and P. Titus. '"The Restrained Edge Geodetic Number of a Graph." International Journal of Computational and Applied Mathematics Vol. 11, No. 1, 9-19 (2016).

