Restrained Isolate Edge Geodetic Number of a Graph

Venkanagouda M.Goudar¹, L.S.Chitra²

¹ Department of Mathematics, Sri Siddhartha Institute of Technology, Constituent College of Sri Siddhartha Academy of Higher Education Tumkur, Karnataka, India
²Research Scholar, Sri Siddhartha Academy of Higher Education Tumkur, Karnataka, India
Department of Mathematics, Adhichunchanagiri Institute of Technology Chikkamagaluru, Karnataka, India

E-mail: vmgouda@gmail.com, chitrals.ait@gmail.com

Abstract

Here we study the new concept of restrained isolate edge geodetic set for a graph G = (V(G), E(G)) of order $n \ge 4$. The edge geodetic set $S \subseteq V$ of a connected graph G is said to be a restrained isolate edge geodetic set if the induced sub graph $\langle S \rangle$ has at least one isolate vertex and the induced sub graph $\langle V(G) - S \rangle$ has no isolate vertex. The restrained isolate edge geodetic number denoted by $g_{1ri}(G)$ is the minimum cardinality of a restrained isolate edge geodetic set of G. Here we determine the restrained isolate edge geodetic number of some standard graphs and by adding leaf vertices to a graph C_n . In addition, we determine the restrained isolate edge geodetic number for some graphs using cartesian product and corona product.

Keywords: Isolate edge geodetic number, restrained edge geodetic set, extreme vertex, cartesian product, corona product.

Subject Classification: AMS-05C12.

1. Introduction

We consider only finite, connected and simple graph G = (V(G), E(G)). In a connected graph G, the distance between any two vertices u, v is the length of the shortest u - v path and the

u - v path of length d(u, v) is called an u - v geodesic. This concept was introduced in [2]. The closed interval I[u, v] consists of all vertices lying on some u - v geodesic of G and for a non empty subset $S \subseteq V(G)$, $I[S] = \bigcup_{u,v \in S} I[u, v]$. The set S of vertices is a geodetic set in G if I[S] = V(G). The minimum cardinality of a geodetic set is the geodetic number g(G). The edge geodetic set $S \subseteq V(G)$, in which all edges of G is included in a geodesic connecting some pair of vertices in S and $g_1(G)$ is the edge geodetic number that represents the cardinality of minimum edge geodetic set. The vertex v is termed as an isolated vertex if deg(v) = 0 and the vertex v is called as the pendant vertex if deg(v) = 1.

The geodetic set *S* is said to be an isolate geodetic set in *G*, if the induced sub graph $\langle S \rangle$ has at least one isolate vertex. The cardinality of an isolate geodetic set which is minimum is the isolate geodetic number and is denoted as $g_o(G)$. In [5], isolate geodetic number of a graph was introduced.

A set of vertices *S* in a connected graph *G* is a restrained edge geodetic set if *S* is an edge geodetic set and if either V = S or the induced sub graph $\langle V(G) - S \rangle$ has no isolated vertex. The minimum cardinality of a restrained edge geodetic set of *G* is the restrained geodetic number $eg_r(G)$. In [6], the edge geodetic number of a graph and [1,7] restrained edge geodetic number of a graph was introduced. The vertex *v* in the graph *G* is said to be an extreme if a sub graph induced by its neighbours is a complete graph. The vertex *v* is called as the full vertex or dominating vertex of a graph *G* if deg(v) = n - 1. The vertex adjacent to the pendant vertex is called a support vertex. Any undefined terms may be found in [3, 4].

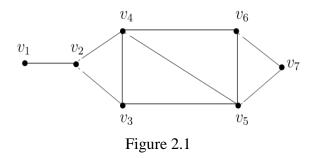
Theorem 1.1.[6] If G has exactly one vertex v of degree p - 1, then $g_1(G) = p - 1$.

Theorem 1.2.[6]Any graph G with at least two vertices of degree p - 1, $g_1(G) = p$.

2. Restrained Isolate Edge Geodetic Number of a Graph

Definition 2.1. The edge geodetic set $S \subseteq V(G)$ in G is said to be a restrained isolate edge geodetic set if the induced sub graph $\langle S \rangle$ has at least one isolate vertex and the induced sub

graph $\langle V(G) - S \rangle$ has no isolate vertex. The restrained isolate edge geodetic number $g_{1ri}(G)$ is the cardinality of a minimum restrained isolate edge geodetic set in G.



The connected graph G in Figure 2.1, $S = \{v_1, v_3, v_6, v_7\}$ is a minimum edge geodetic set with the induced sub graph $\langle S \rangle$ has isolate vertices and $\langle V(G) - S \rangle$ is connected has no isolate vertex. Thus the edge set S forms the restrained isolate edge geodetic set. Therefore $g_{1ri}(G) = 4$.

Observation 2.2. All graphs need not have a restrained isolate edge geodetic set. For example, complete graphs, complete bipartite graphs, wheel graphs have no restrained isolate edge geodetic set.

Theorem 2.3. There is no graph G of order n with restrained isolate edge geodetic number $g_{1ri}(G) = n - 1$.

Proof. Suppose that $g_{1ri}(G) = n - 1 = |S|$, the induced sub graph $\langle V(G) - S \rangle$ contains an isolate vertex. Thus, there is no graph G of order n with $g_{1ri}(G) = n - 1$.

Theorem 2.4. If the graph G contains one or more full vertices, then there is no restrained isolate edge geodetic set in G.

Proof. Suppose the graph *G* contains one full vertex, then by Theorem 1.1, the edge geodetic set $g_1(G) = n - 1 = |S|$ and $\langle V(G) - S \rangle$ contains an isolate vertex. If *G* has at least two full vertices, then by Theorem 1.2, the edge geodetic set $g_1(G) = n = |S|$. Clearly, the induced sub graph $\langle S \rangle$ is connected has no isolate vertex and $\langle V(G) - S \rangle$ is a order-zero graph K_0 . Thus there is no restrained isolate edge geodetic set in *G* containing one or more full vertices.

Theorem 2.5. In a cycle $G = C_n$ with $n \ge 6$

 $g_{1ri}(C_n) = \begin{cases} 2, & \text{if n is even} \\ 3, & \text{if n is odd.} \end{cases}$

Proof. Case 1: Suppose that *n* is even. The set $S = \{v_1, v_{r+1}\}$ of two antipodal vertices in a cycle $C_{2r}: v_1, v_2, \dots, v_{2r}, v_1$ forms the edge geodetic set which is minimum with the induced sub graph $\langle S \rangle$ has isolated vertices and $\langle V(C_{2r}) - S \rangle$ has no isolate vertex. Thus set *S* forms restrained isolate edge geodetic set. Therefore $g_{1ri}(C_{2r}) = 2$.

Case 2: Suppose that *n* is odd. Let $S = \{v_1, v_{r+1}, v_{r+2}\}$ be a set of three vertices in a cycle $C_{2r+1}: v_1, v_2, v_{r+1}, v_{r+2}, \dots, v_{2r+1}, v_1$ forms an edge geodetic set with $\langle S \rangle$ has isolate vertex and $\langle V(C_{2r+1}) - S \rangle$ has no isolate vertex. Thus the set *S* forms a restrained isolate edge geodetic set. Therefore $g_{1ri}(C_{2r+1}) = 3$.

Theorem 2.6. The tree T containing n vertices with k pendant vertices also $n - k \ge 2$, the restrained isolate edge geodetic number $g_{1ri}(T) = k$.

Proof. The tree *T* of order *n* containing *k* pendant vertices with $n - k \ge 2$. The set *S* of *k* pendant vertices forms an edge geodetic set which is minimum with the induced sub graph $\langle S \rangle$ has isolate vertices and $\langle V(T) - S \rangle$ is connected has no isolate vertex. Thus the set *S* forms restrained isolate edge geodetic set. Therefore $g_{1ri}(T) = k$.

Theorem 2.7. In a graph G, $2 \le g_{1ri}(G) \le n - 2$.

Proof. Every restrained isolate edge geodetic set is an edge geodetic set and at least two vertices are required. So that $g_{1ri}(G) \ge 2$. Suppose that if $g_{1ri}(G) = n$, then the induced sub graph $\langle S \rangle$ is connected has no isolate vertex and if $g_{1ri}(G) = n - 1$, then the induced sub graph $\langle V(G) - S \rangle$ has isolate vertex. Further by Observation 2.2 and Theorem 2.3, there is no graph G of order n with restrained isolate edge geodetic number $g_{1ri}(G) = n$ and $g_{1ri}(G) = (n-1)$ so that, $g_{1ri}(G) < (n-1)$. Therefore $2 \le g_{1ri}(G) \le n - 2$.

3. Adding a leaf vertex to a graph

Theorem 3.1. The graph G' is formed by adding the leaf vertex v to a cycle $G = C_n$ where $n \ge 4$. Then $g_{1ri}(G') = \begin{cases} 2 & \text{if n is even} \\ 3 & \text{if n is odd.} \end{cases}$

Proof. The graph G' formed by adding the leaf vertex $v \notin G$ to any vertex in a cycle $G = C_n$

where $n \geq 4$.

Case 1: Suppose that *n* is even.

In G', the set $S = \{v, u\}$ forms the edge geodetic set which is minimum where d(v, u) = diam(G') with the induced sub graph $\langle S \rangle$ has isolate vertices, $\langle V(G') - S \rangle$ is connected has no isolate vertex. Thus the set S forms restrained isolate edge geodetic set. Therefore $g_{1ri}(G') = 2$.

Case 2: Suppose that n is odd.

The edge geodetic set $S = \{v, u, w\}$ where v is a leaf vertex and u, w are any two adjacent vertices in G' such that d(v, u) = d(v, w) with the induced sub graph $\langle S \rangle$ has isolate vertex, $\langle V(G') - S \rangle$ is connected has no isolate vertex. Thus S in G' forms restrained isolate edge geodetic set. Hence $g_{1ri}(G') = 3$.

Theorem 3.2. If the graph G' is formed by joining k-leaf vertices $v_i \notin G$ where $1 \le i \le k$ to any vertex in $G = C_n$ where C_n is a cycle with $n \ge 4$, then

 $g_{1ri}(G') = \begin{cases} k+1, & \text{ if n is even} \\ k+2, & \text{ if n is odd.} \end{cases}$

Proof. The graph G' formed by adding k-leaf vertices $X = \{v_i\}$ where $1 \le i \le k$ to any vertex in $G = C_n$.

Case 1: Suppose that n is even. The set $S = X \cup \{u\}$ forms an edge geodetic set in G' where $d(v_i, u) = diam(G'), 1 \le i \le k$. The induced sub graph $\langle S \rangle$ has isolate vertices, $\langle V(G') - S \rangle$ is connected has no isolate vertex. Thus the set S forms restrained isolate edge geodetic set. Therefore $g_{1ri}(G') = k + 1$.

Case 2: Suppose that n is odd. The set $S = X \cup \{u, w\}$ forms an edge geodetic set containing two adjacent vertices u, w with $d(v_i, u) = d(v_i, w)$, $1 \le i \le k$. The induced sub graph $\langle S \rangle$ has isolated vertices and $\langle V(G') - S \rangle$ is connected has no isolate vertex. Thus the set *S* forms restrained isolate edge geodetic set. Therefore $g_{1ri}(G') = k + 2$.

Theorem 3.3. The graph G' is formed by adding a leaf vertex to each vertex in a cycle $C_n = G$ where $n \ge 3$. Then $g_{1ri}(G') = n$.

Proof. The graph G' formed by joining a leaf vertex to each vertex in a cycle $C_n = G$ where $n \ge 3$. The set X of n end vertices in an extreme geodesic graph $G' = C_n \circ K_1$ forms minimum restrained isolate edge geodetic set in G'. Therefore $g_{1ri}(G') = n$.

Theorem 3.4. The graph G' is formed by joining k-leaf vertices $v_i \notin G$ where $1 \le i \le k$ to each vertex in $G = C_n$ where C_n is a cycle of order $n \ge 3$. Then $g_{1ri}(G') = nk$.

Proof. The graph G' is formed by joining k-leaf vertices $X = \{v_i\}$ where $1 \le i \le k$ to each vertex in $G = C_n$, $n \ge 3$. The set X of nk pendant vertices forms minimum restrained isolate edge geodetic set. Therefore $g_{1ri}(G') = nk$.

4. The restrained isolate edge geodetic number and corona product.

Definition 4.1. A graph formed by taking a single copy of G with |V(G)| = n copies of H. By joining ith vertex of G with each vertex in the ith copy of H, then it is said to be a corona product of two graphs G and H and it is denoted as $G \circ H$.

Theorem 4.2. If G = T is a connected non trivial tree of order n, then $g_{1ri}(T \circ K_1) = n$.

Proof. Let T be a connected tree of order n. By the definition of corona graph, $(T \circ K_1)$ is a tree with 2n vertices and n pendant vertices. By Theorem 2.6, the restrained isolate edge geodetic set $g_{1ri}(T \circ K_1) = n$.

Theorem 4.3. If K_n is a complete graph of order n, then $g_{1ri}(K_n \circ K_1) = n$.

Proof. Let K_n be a complete graph of order n. By the definition of corona graph, $G = K_n \circ K_1$ is a connected graph of order 2n containing n pendant vertices. The set S of n pendant vertices forms an edge geodetic set which is minimum with the induced sub graph < S > has isolated vertices, < V(G) - S > is connected. Thus the set S forms restrained isolate edge geodetic set. Therefore $g_{1ri}(K_n \circ K_1) = n$.

Theorem 4.4. If the graph $K_{m,n}$ is a complete bipartite graph of order (m + n), then $g_{1ri}(K_{m,n} \circ K_1) = m + n$.

Proof. Let $K_{m,n}$ be a complete bipartite graph of order m + n. By the definition of corona graph, $G = K_{m,n} \circ K_1$ is a connected graph of order 2(m + n). Let S be an edge geodetic set contains m + n end vertices. It is clear that $\langle S \rangle$ has isolated vertices and the induced sub graph $\langle V(G) - S \rangle$ is connected complete bipartite graph has no isolate vertices. Thus the set S forms restrained isolate edge geodetic set. Therefore $g_{1ri}(K_{m,n} \circ K_1) = m + n$.

5. The Cartesian product and restrained isolate edge geodetic number

Definition 5.1. The Cartesian product of any two graphs G, H is a graph with vertex set $V(G) \times V(H) = (u_i, v_j)$ where $u_i \in V(G)$, $v_j \in V(H)$, $1 \le i \le m$ and $1 \le j \le n$. Any two distinct vertices (u_i, v_j) , (u_k, v_l) adjacent in $G \times H$ if and only if either $u_i = u_k$ and $v_j v_l \in E(H)$ or $v_j = v_l$ and $u_i u_k \in E(G)$.

Theorem 5.2. The restrained isolate edge geodetic number of the cartesian product of C_n , P_m is $g_{1ri}(C_n \times P_m) = \begin{cases} 2 & \text{if n is even} \\ 4 & \text{if n is odd} \end{cases}$

Where C_n , n > 3 is a cycle and the path P_m , m > 1.

Proof. In C_n , $V = \{v_i\}, 1 \le i \le n$ is the vertex set and for P_m vertex set is $W = \{w_j\}, 1 \le j \le m$. By the definition of cartesian product, $G = (C_n \times P_m)$ formed from *n*-copies of P_m .

Case 1: Suppose that *n* is even.

Let $S = \{(v_i, w_m), (v_{i+\frac{n}{2}}, w_1)\}$ be the edge geodetic set, where $1 \le i \le \frac{n}{2}$ such that $diam(G) = d\{(v_i, w_m), (v_{i+\frac{n}{2}}, w_1)\}$ with the induced sub graph < S > has isolate vertices and < V(G) - S > is connected has no isolate vertex. Thus the set *S* forms restrained isolate edge geodetic set. Therefore $g_{1ri}(G) = 2$.

Case 2: Suppose that n is odd.

Let
$$S = \{(v_1, w_1), (v_{\lceil \frac{n}{2} \rceil}, w_m), (v_{\lceil \frac{n}{2} \rceil+1}, w_m), (v_{\lceil \frac{n}{2} \rceil+1}, w_1)\}$$
 be an edge geodetic set. The

induced subgraph $\langle S \rangle$ has isolated vertices and $\langle V(G) - S \rangle$ is connected has no isolate vertex. Thus the set *S* forms restrained isolate edge geodetic set. Therefore $g_{1ri}(G) = 4$. **Theorem 5.3.** If P_m and P_n are the paths with m, n > 2, then $g_{1ri}(P_m \times P_n) = 2$.

Proof. By the definition of graph product, $G = (P_m \times P_n)$ is obtained from *m* copies of P_n . The two vertex sets $V = \{v_1, v_2, ..., v_m\}$ and $W = \{w_1, w_2, ..., w_n\}$ of P_m and P_n respectively. The set containing any two antipodal vertices in a grid graph *G* forms restrained isolate edge geodetic set. Therefore $g_{1ri}(G) = 2$.

6.Conclusion

In this paper, we obtained results on the restrained isolate edge geodetic number of several special graphs also some general properties of cartesian product of two graphs.

References

- [1] K. S. Ashalatha and Venkanagouda M. Goudar. "The Restrained Geodetic Number of a Line Graph." International Journal of Computer Applications, Vol. 171, No.7 (2017).
- [2] F.Buckley and F.Harary, Distance in Graphs, Addison-Wesley, Redwood city, CA, (1990).
- [3] G.Chartrand, F. Harary and P.Zhang , On the Geodetic Number of a Graph, Networks 39, 1-6 (2002).
- [4] F.Harary, Graph Theory, Addison-Wesley, (1969).
- [5] X.LeninXaviour and S.V. Ashwin Prakash, Isoate Geodetic Number of a Graph, Vol. 5, No. 11,755-765 (2018).

- [6] A.P.Santhakumaran and J.John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 10, No. 3, 415-432 (2007).
- [7] A.P.Santhakumaran, M. Mahendran, and P. Titus. "The Restrained Edge Geodetic Number of a Graph." International Journal of Computational and Applied Mathematics Vol. 11, No. 1, 9-19 (2016).