Research Article

EXISTENCE OF BEST PROXIMITY POINTS ON GEOMETRICAL PROPERTIES OF PROXIMAL SETS

Arul Ravi S¹ , Eldred AA ²

1,2 Assistant Professor, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai ammaarulravi@gamil.com

Article History:Received:11 november 2020; Accepted: 27 December 2020; Published online: 05 April 2021 **ABSTRACT :** The notion of proximal intersection property and UC property is used to establish the existence of the best proximity point for mappings satisfying contractive conditions.

Keywords: Best Proximity point, Proximal sets, UC property, proximal intersection property.

1. Introduction and Preliminaries:

Let X be a nonempty set and T be a self map of X. An element $x \in X$ is called a fixed point of T if $Tx = x$. Fixed point theorems deal with sufficient conditions on X and T ensures the existence of fixed points. Suppose the fixed point equation $Tx = x$ does not posses a solution, then the natural interest to find an element $x \in X$, such that x is in proximity to Tx in some cases.

In other words we would like to get a desirable estimate for the quality $d(x, Tx)$.

It is natural that some mapping, especially non-self mappings defined on a metric space (X, d) , do not necessarily possess a fixed point that $d(x, Tx) > 0$ for all $x \in X$. In such situations, it is reasonable to search for the existence and uniqueness of the point $x \in X$ such that $d(x, Tx) = 0$.

In other words, one intends to determine an approximate solution $x \in X$ that is optimal in the sense that the distance between x and Tx is minimum. Here the point x is the proximity point. That is $d(x, Tx) = d(A, B)$ where $d(A, B) = \inf \{ d(x, y) : x \in A, y \in B \}.$

In Suzuki et al [1], UC property was introduced to prove some existence results on best proximity point. In Raj and Eldred [2], the author introduced p –property and proved strict convexity is equivalent to p –property.

We use proximal intersection property for a pair (A, B) where A and B are non empty closed subsets of a metric space. Then this property is used to prove the existence of the best proximity point for mapping satisfying some contractive conditions introduced by Wong [3].

In this section, we use some basic definitions and concepts that are related to the context of our main results. **Definition:1.1** [4] Let A and B be nonempty subsets of a metric space (X, d) . Then, the pair (A, B) is said to satisfy the property UC if the following holds: If x_n and x'_n are sequence in A and y_n is a sequence in B such that $\lim_{n\to\infty} d(x_n, y_n) = d(A, B)$ and $\lim_{n\to\infty} d(x'_n, y_n) = d(A, B)$ then $\lim_{n\to\infty} d(x_n, x'_n) = 0$ holds.

Definition:1.2 Let A and B be nonempty subsets of a metric space (X, d) . Then (A, B) is said to satisfy proximal intersection property if whenever $A_n \subset A$ and $B_n \subset B$ are a decreasing sequence of closed subsets such that $\delta(A, B) \to d(A, B)$, then $\bigcap A_n = \{x\}, \bigcap B_n = \{y\}$ with $d(x, y) = d(A, B)$.

Remark:1.1 $d(A, B) \rightarrow d(\overline{A}, \overline{B})$ and $\delta(A, B) \rightarrow d(\overline{A}, \overline{B})$ where $\delta(A, B) = \sup\{|x - y| |: x \in A, y \in B\}$.

Definition:1.3 [2] Let *X* be a metric space and let $T: X \to X$. Then d_T is the function on $X \times X$ defined by

(,) = inf{(,): ≥ 1, , ∈ }……………………………………….……….(1)

Definition:1.4 [3] Let *A* and *B* be nonempty subsets of a metric space *X*. We shall use X_d to denote the set

{ ′ : for some > ′ , (,) − (,) ∈ [′ ,] for some ∈ , ∈ }……………...……(2)

Remark:1.2 If $r' \in X_d$, then there exists $x_n \in A$, $y_n \in B$ such that $d(x_n, y_n) - d(A, B) \to r'$. Also if $x \in A$, $y \in A$ B, then $d(x_n, y_n) - d(A, B) \in X_d$ and if $x_n \in A$, $y_n \in B$ such that $d(x_n, y_n) - d(A, B) \to r'$, then $r' \in X_d$.

Lemma:1.1 [1] Let A and B be nonempty subsets of a metric space (X, d) . Then (A, B) has the property UC. Let $\{x_n\}$ and $\{y_n\}$ be sequence in A and B respectively such that either of the following holds:

 $\lim_{m \to \infty} Sup_{n \geq m} d(x_m, y_n) = d(A, B)$ or

 $\lim_{n\to\infty} Sup_{m\geq n}d(x_m, y_n) = d(A, B)$

Then $\{x_n\}$ is Cauchy.

^{*}Corresponding author: Arul Ravi S Assistant Professor, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai ammaarulravi@gamil.com

2.Results:

Theorem:2.1 Let A and B be nonempty closed subsets of a complete metric space X satisfying UC property. Let A_n, B_n be decreasing sequence of nonempty closed subsets of X such that $\delta(A_n, B_n) \to d(A, B)$ as $n \to \infty$ then $\bigcap A_n = \{x\}, \bigcap B_n = \{y\}$ with $d(A, B)$ that is (A, B) satisfies proximal intersection property. **Proof:** Construct a sequence x_n , y_n in X by selecting $x_n \in A_n$, $y_n \in B_n$ for each $n \in N$. Since $A_{n+1} \subseteq A_n$, $B_{n+1} \subseteq B_n$ for all n, we have $x_n \in A_n \subseteq A_m$, $y_n \in B_n \subseteq B_m$ for all $n > m$. We claim that x_n is a Cauchy sequence. Let $\varepsilon > 0$ be given. Since $\delta(A_n, B_n) \to d(A, B)$, there exists a positive integer N such that $\delta(A_n, B_n) < d(A, B) + \varepsilon$, for all $n \ge N$. Since A_n, B_n are decreasing sequence, we have $A_n, A_m \subseteq A_N$ and $B_n, B_m \subseteq B_N$ for all $m, n \ge N$. therefore $x_n, x_m \in A_N$ and $y_n, y_m \subseteq B_N$ for all $m, n \ge N$, and there we have (,) ≤ (,) < (,) + , for all , ≥ ……………………………………(3) since A and B satisfy UC property from lemma 1.1, x_n is a cauchy sequence. There exists $x \in A$ such that $x_n \to a$ $\mathcal{X}.$ similarly there exists $y \in B$ such that $y_n \to y$ we claim that $x \in \bigcap A_n$, $y \in \bigcap B_n$, since A_n and B_n are closed for each n, $x \in A_n, y \in B_n$ for all $n \in N$ since $d(x_n, y_n) \rightarrow d(A, B)$ we have $d(x, y) = d(A, B)$ finally to establish that x is the only point in $\bigcap A_n$, if $x_1 \neq x_2 \in \bigcap A_n$, then $d(x, y) = d(A, B)$ UC property forces that $x_1 = x_2$, similarly $\bigcap B_n = \{y\}.$ **Lemma:2.1** (i) Let A and B be nonempty closed subsets of a complete metric space X such that (A, B) satisfying UC property. Let $T: A \cup B \rightarrow A \cup B$ be continuous, suppose that $T(A) \subset B$, $T(B) \subset A$ be a continuous function such that inf{ $d(x, Tx): x \in A$ } = $d(A, B)$ = inf{ $d(x, Tx): x \in A$ } = $d(A, B)$ (ii) There exists $\delta_n > 0$ such that $d(Tx, Ty) - d(A, B) < \frac{1}{n}$ $d(A, B), d(y, Ty) - d(A, B) < \delta_n$ and $x \in A', y \in B'$ where A' and B' are any closed bounded whenever max $\{d(x, Tx)$ – sets of A and B respectively. Then, there exists a best proximity point $x \in A$, such that $d(x, Tx) = d(A, B)$, Further, if $d(Tx, Ty) =$ $d(x, y)$ for all $x \in A$, $y \in B$ then the best proximity point is unique.

Proof: Let $A_n = \{x \in A : d(x, Tx) - d(A, B) \leq \frac{1}{n}\}$ $\frac{1}{n}$

 $B_n = \left\{ y \in B : d(y, Ty) - d(A, B) \leq \frac{1}{n} \right\}$ $\frac{1}{n}$ since T is continuous, A_n , B_n are closed from (i) A_n and B_n are nonempty there exists N for all $n \in N$ let $x \in A_n$, $y \in B_n$ then $d(x, Tx) - d(A, B) < \delta_n$ and $d(y, Ty) - d(A, B) < \delta_n$ from (ii) $d(Tx, Ty) - d(A, B) \leq \frac{1}{a}$ $\frac{1}{n}$ where $\delta_n \to 0$ for any $x\in A_n,$ $y\in B_n$ $d(Tx, Ty) - d(A, B) \leq \frac{1}{a}$ n which implies $\delta(T(A_n), T(B_n)) \to d(A, B)$ and hence $\delta(\overline{T(A_n)}, \overline{T(B_n)}) \to d(A, B)$ By proximal intersection property, we have $\bigcap_{n\geq 1} \overline{T(A_n)} = y$ and $\bigcap_{n\geq 1} \overline{T(B_n)} = x$ and $d(x, y) = d(A, B)$ Thus for each $n \geq 1$, there exists $x_n \in A_n$ such that $d(y, Tx_n) < \frac{1}{n}$ \boldsymbol{n} since $d(x_n, Tx_n) \to d(A, B)$ and $d(y_n, Ty_n) \to d(A, B)$ By UC property $x_n \to x$ Since A_n is closed, $x \in A_n$ for each n This implies that $d(x, Tx) \rightarrow d(A, B)$ Similarly $y_n \to y$ such that $d(y, Ty) \to d(A, B)$ To prove uniqueness,

 $d(x, Tx) = d(A, B)$ Since T is non expansive $d(T^2x', Tx') = d(A, B)$ which implies that $T^2x' = x'$ as $d(x,Tx) = d(Tx',T^2x') = d(A,B)$ from (ii) $d(Tx, x') = d(Tx, T^2x') = d(A, B)$ which implies that $x = x'$ **Theorem:2.2** Let A and B be nonempty closed subsets of a metric space X and let Let $T: A \cup B \rightarrow A \cup B$ be continuous, such that $T(A) \subseteq B$, $T(B) \subseteq A$. Suppose that there exists $\phi: X_d \to [0, \infty)$ such that $d(x, y)$ – $d(A, B) \leq \phi((x, y) - d(A, B))$ for all $x \in A, y \in B$ and $sup_{\delta > r} inf_{t \in [r, s]}(t - \phi(t)) > 0$ for $r \in X_d - \{0\}$. Then $d_T(x, y) = d(A, B)$ for all $x \in A$, $y \in B$ hence $inf\{d(x, Tx): x \in A\} = d(A, B)$ **Proof:** Suppose to the contrary that there exists $x \in A$, $y \in B$ such that {(,): ≥ 1} > (,)……………………………….………………….……(4) by hypothesis there exists $s \in (r', \infty)$ such that $u = inf_{t \in [r', s]} (t - \phi(t)) > 0$ where $r' = r - d(A, B)$ since there exists a sequence $d(T^n x, T^n y) - d(A, B) \rightarrow r'$ where $r' \in X_d - \{0\}$ Then from (2) we have $d(T^n x, T^n y) - d(A, B) \rightarrow r' + t < s$ for some $n \ge 1$. Since $d(T^n x, T^n y) - d(A, B) \in [r', s]$ $u \leq d(T^{n}x, T^{n}y) - d(A, B) - \phi(d(T^{n}x, T^{n}y) - d(A, B))$ ((,) −(,)) ≤ (,) − (,) − ………………………………(5) If $T^n x \in A$, $T^n y \in B$ and vice versa It follows that $d_T(x, y) - d(A, B) \leq d_T(T^n x, T^n y) - d(A, B) \dots (6)$ ≤ (,) − (,)…………………………………………………………...………(7) ≤ ((,) − (,))…………………………………………………………….…(8) ≤ (,) − (,)from (5)…………………………………………………….……(9) < ′ + −…………………………………………………………………….......……….(10) Letting $t\rightarrow 0$, we have (,) − (,) ≤ ′ − ……………………………………………………………....(11) $d_T(x, y) - d(A, B) \leq r' - d(A, B) - u \dots (12)$ $d_T(x, y) \le r - u$ a contradiction.

Theorem:2.3 Let A and B be nonempty closed subsets of a metric space X. Suppose (A, B) satisfies UC property. Let T be as in theorem 2.2 then T satisfies all the conditions of lemma 2.1 and therefore T has a unique best proximity point.

Proof: Clearly from theorem 2.2 and (i)2.1 of lemma are satisfied.

To prove (ii) of lemma 2.1 assume $x_n \in A$, and $y_n \in B$ are bounded sequences, then $d(x_n, Tx_n)$ and $d(y_n, Ty_n) \to d(A, B)$ where x_n and y_n are sequences in A and B resoectively.

suppose $d(x_n, Tx_n) - d(A, B) \to 0$

since x_n , y_n are bounded sequence, there exists subsequence n_k and $r > 0$ such that $d(Tx_{n_k}, Ty_{n_k})$ – $d(A, B) \rightarrow r > 0$

$$
\begin{array}{c}\n\text{clearly } r \in X_d\n\end{array}
$$

let $r_{n_k} = d(Tx_{n_k}, Ty_{n_k}) - d(A, B)$ and $s_{n_k} = d(x_{n_k}, y_{n_k}) - d(A, B)$ given $r_{n_k} - s_{n_k} \to 0$ as $k \to \infty$ $d(Tx_{n_k}, Ty_{n_k}) - d(A, B) \leq d(Tx_{n_k}, Ty_{n_k}) - d(A, B)$ therefore ≤ ()……………………………………………………………………...(13) now from (13) we have $0 > \phi(s_{n_k}) - s_{n_k}$ $= \phi(s_{n_k}) - r_{n_k} + r_{n_k} - s_{n_k}$ $\geq r_{n_k} - s_{n_k}$ since $r_{n_k} - s_{n_k} \to 0$ we have $\liminf f(\phi(s_{n_k}) - s_{n_k}) = 0$ contradicting $inf_{t \in [r_0,s]} (t - \phi(t)) > 0$ where $s_{n_k} \to r_0$. This completes the proof.

References:

Suzuki T,Kikkawa M,Vefro C. The existence of best proximity points in metric spaces with the UC property UC.Nonlinear Anal 2009;71:2918-26.

- Raj VS,Eldred A.A characterization of strictly convex space and applications. J optim theory Appl 2014;160:703-10.
- Woug CS.Fixed point theorems for non-expansive mappings. J Math Anal Appl 1972;37:142-50.
- Eldred A. Ph.D thesis. Madras:Indian Institutes of Technology; 2007.