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ABSTRACT : The notion of proximal intersection property and UC property is used to establish the existence
of the best proximity point for mappings satisfying contractive conditions.
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1. Introduction and Preliminaries:

Let X be a nonempty set and T be a self map of X. An element x € X is called a fixed point of T if Tx = x.
Fixed point theorems deal with sufficient conditions on X and T ensures the existence of fixed points. Suppose
the fixed point equation Tx = x does not posses a solution, then the natural interest to find an elementx € X,
such that x is in proximity to Tx in some cases.

In other words we would like to get a desirable estimate for the quality d(x, Tx).

It is natural that some mapping, especially non-self mappings defined on a metric space (X,d), do not
necessarily possess a fixed point that d(x, Tx) > 0 for all x € X. In such situations, it is reasonable to search for
the existence and uniqueness of the point x € X such that d(x, Tx) = 0.

In other words, one intends to determine an approximate solution x € X that is optimal in the sense that the
distance between x and Tx is minimum. Here the point x is the proximity point. That is d(x,Tx) = d(4,B)
where d(4,B) = inf{d(x,y):x € A,y € B}.

In Suzuki et al [1], UC property was introduced to prove some existence results on best proximity point. In Raj
and Eldred [2], the author introduced p —property and proved strict convexity is equivalent to p —property.

We use proximal intersection property for a pair (4, B) where A and B are non empty closed subsets of a metric
space. Then this property is used to prove the existence of the best proximity point for mapping satisfying some
contractive conditions introduced by Wong [3].

In this section, we use some basic definitions and concepts that are related to the context of our main results.
Definition:1.1 [4] Let A and B be nonempty subsets of a metric space (X, d). Then, the pair (4, B) is said to
satisfy the property UC if the following holds: If x,, and x;, are sequence in A and y,, is a sequence in B such
that Tlll_r)go d(xn,y,) = d(A,B) and 7111_1)120 d(xy,y,) = d(A,B) thenrlli_ﬁlo d(xp, x5) = 0 holds.

Definition:1.2 Let A and B be nonempty subsets of a metric space (X,d). Then (4,B) is said to satisfy
proximal intersection property if whenever A, c A and B, c B are a decreasing sequence of closed subsets
such that §(4, B) - d(4, B), then N 4,, = {x}, N B, = {y} with d(x,y) = d(4, B).

Remark:1.1 d(4,B) — d(4,B) and §(4, B) - d(A, B) where §(4, B) = Sup{||x — y||:x € A,y € B}.
Definition:1.3 [2] Let X be a metric space and let T: X — X. Then d is the function on X x X defined by

dr(x,y) = Infld(TET):in = 1,6,Y € X} eoiiiiiiiiiiiiiicee e (1)
Definition:1.4 [3] Let A and B be nonempty subsets of a metric space X. We shall use X, to denote the set
{r':forsomes >r',d(x,y) —d(A,B) €[r',s]forsomex €A, Yy EB}..c.covviririnennn.. 2)

Remark:1.2 If r' € X,, then there exists x,, € 4,y, € B such that d(x,,,y,) —d(4,B) »r'. Alsoifx € A,y €
B, then d(x,,y,) — d(A4,B) € X, and if x,, € A, y,, € B such that d(x,,,y,) —d(4,B) - r', thenr’ € X;.
Lemma:1.1 [1] Let A and B be nonempty subsets of a metric space (X,d). Then (4, B) has the property UC.
Let {x,,} and {y,,} be sequence in A and B respectively such that either of the following holds:

lim Suppzmd(xXm, yn) = d(4, B) or

lim Supysnd(Xm, yn) = d(4, B)
n—oo
Then {x,} is Cauchy.
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2.Results:
Theorem:2.1 Let A and B be nonempty closed subsets of a complete metric space X satisfying UC property. Let
A, B, be decreasing sequence of nonempty closed subsets of X such that §(4,, B,) = d(4,B) as n — o then
N A, = {x},N B, = {y} with d(4, B) that is (4, B) satisfies proximal intersection property.
Proof: Construct a sequence x,,, v, in X by selecting x,, € A,,,y,, € B, foreachn € N.
Since A,,,1 € A, B,+1 € B, forall n, we have x,, € A,, € A,,,, ¥, € B, € B,,, foralln > m.
We claim that x,, is a Cauchy sequence.
Let € > 0 be given.
Since §(A4,, B,) = d(4, B), there exists a positive integer N such that §(A4,, B,) < d(4,B) + ¢, foralln > N.
Since A,,, B, are decreasing sequence, we have 4,,4,, € Ay and B,, B,, € By forallm,n > N.
therefore x,, x,,, € Ay and y,,, y,,, € By forallm,n > N,
and there we have
d(xp, Xm) < 6(A,,B) <d(A,B)+eforallmmn=N...ooooooooiiiiiiii 3)
since A and B satisfy UC property from lemma 1.1, x,, is a cauchy sequence. There exists x € A such that x,, -
X.
similarly there exists y € B such that y,, = y
we claimthat x e NA4,,y € NB,,
since A4,, and B,, are closed for each n,
x€A,yeEB,forallneN
since d(x,, y,) = d(4, B) we have
d(x,y) =d(A,B)
finally to establish that x is the only point in N A4, if x; # x, € N A4,, then d(x,y) = d(A.B) UC property
forces that x; = x,, similarly N B, = {y}.
Lemma:2.1
0] Let A and B be nonempty closed subsets of a complete metric space X such that (4, B) satisfying
UC property. Let T:AUB - AU B be continuous, suppose that T(4A) c B,T(B) c A be a
continuous function such that inf{d(x,Tx):x € A} = d(4,B) = inf{d(x,Tx):x € A} = d(4,B)
(i) There exists &, >0 such that d(Tx, Ty)—d(4,B) <% whenever max{d(x, Tx) —
d(A,B),d(y,Ty) —d(A,B)} <6, and x € A",y € B' where A'and B’ are any closed bounded
sets of A and B respectively.
Then, there exists a best proximity point x € A, such that d(x,Tx) = d(A4, B), Further, if d(Tx,Ty) =
d(x,y) forall x € A,y € B then the best proximity point is unique.

Proof: Let A, = {x € A:d(x,Tx) — d(4,B) < 3}

B, = {y € B:d(y,Ty) —d(A,B) < }l} since T is continuous, A,, B,, are closed
from (i) 4,, and B, are nonempty

there exists N forall n € N

letx € A,, y€EB,

then d(x,Tx) — d(A,B) < 6, and

d(y,Ty) —d(4,B) <&,

from (ii) d(Tx,Ty) — d(4,B) < %Where 6, -0
foranyx € A,,y € B,

d(Tx,Ty) — d(4,B) < =

which implies 6(T(4,),T(B,)) — d(A,B)

and hence §(T(4,),T(B,)) — d(A,B)

By proximal intersection property,

we have N,»1 T(4,) =y and N>, T(B,) = x and
d(x,y) =d(A,B)

Thus for each n > 1, there exists x,, € A,

such that d(y, Tx,) < %

since d(x,, Tx,) = d(4,B) and

dYn, Tyn) = d(A, B)

By UC property x,, = x

Since A4,, is closed, x € A, for eachn

This implies that d(x, Tx) — d(4,B)

Similarly y,, = y suchthat d(y, Ty) = d(4, B)
To prove uniqueness,
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d(x,Tx) = d(A,B)

Since T is non expansive d(T2x’,Tx") = d(A, B) which implies that T2x’ = x' as

d(x,Tx) = d(Tx',T*x") = d(A,B)

from (ii) d(Tx,x") = d(Tx,T?x") = d(A, B)

which implies that x = x’

Theorem:2.2 Let A and B be nonempty closed subsets of a metric space X and let Let T:AUB —» AU B be
continuous, such that T(4) c B,T(B) c A. Suppose that there exists ¢:X; — [0,) such that d(x,y) —
d(A,B) < ¢((x,y) —d(A,B)) forall x € A,y € B and supss,infieps(t — $()) > 0 for r € X, — {0}. Then
dr(x,y) =d(4,B) forall x € A,y € B hence inf{d(x,Tx): x € A} = d(4,B)

Proof: Suppose to the contrary that there exists x € A,y € B such that

INf{A(TTx, T™Y)in = 1} > d(A,B) e, 4

by hypothesis there exists s € (', 0) such that u = inf e[, )(t — () > 0 where 7' = r — d(4, B)

since there exists a sequence

d(T™x,T"y) — d(A,B) » r' wherer' € X; — {0}

Then from (2) we have

d(T™x,T"y) —d(A,B) » r' +t < sforsomen > 1.

Since d(T™x, T™y) — d(A,B) € [r', s]

u < d(T"x,T™y) — d(4,B) — ¢(d(T"x, T™y) — d(4,B))

¢(d(T™x, T"y) —d(A,B)) < d(T™x,T™"Y) —d(A,B) — U cevovieiiiiiiiiiiiiieiieae, %)

IfT"x € A,T™y € B and vice versa

It follows that

dr(x,y) —d(A,B) Sdr(T™x,T™y) —d(A,B) ceoninieiiiie e, (6)
S AT, T™Y) = A(A, B e 7
Y L T B ) T A 0 U 2 ) ) TN ®)
S A(T™x,T™y) — d(A, BYTOm (5). .. v e 9)
b b Uttt e (10)
Letting t—0, we have

Ar(,Y) = AlA, B) S 1 = U oo (11)
dr (0, Y) —d(A,B) S7" = d(A,B) — U coniieiii i (12)

dr(x,y) < r — uacontradiction.

Theorem:2.3 Let A and B be nonempty closed subsets of a metric space X. Suppose (4, B) satisfies UC
property. Let T be as in theorem 2.2 then T satisfies all the conditions of lemma 2.1 and therefore T has a unique
best proximity point.

Proof: Clearly from theorem 2.2 and (i)2.1 of lemma are satisfied.

To prove (ii) of lemma 2.1 assume x, € 4, and y, € B are bounded sequences, then d(x,, Tx,) and
d(Vn Tyn) = d(4, B) where x,, and y,, are sequences in A and B resoectively.

suppose d(x,, Tx,) —d(4,B) = 0

since x,, y, are bounded sequence, there exists subsequence n, and r > 0 such that d(Txy,, Ty,,) —
d(4,B) »r>0

clearly r € X,

let 7, = d(Txy,, TYy,) — d(4, B) and

Sng = d(xnkﬂynk) - d(A, B)

given 7, — s, > 0ask » o

A(Txp,, Tyn,) — d(4,B) < d(Txy,, Tyy,) — d(A,B)

thereforer,, < @ (Spy) e veeerrreriiieeeiii (13)

now from (13) we have

0> ¢(snk) — Sn,

= ¢(Snk) - rﬂ.k + Tnk - Snk
2 T = Smye
since 1, — sp,, = 0 we have

liminff(¢(sn,) = sn,) =0
contradicting infeepr, s (t — ¢(t)) > 0 where s,, — 7.
This completes the proof.
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