EXISTENCE OF BEST PROXIMITY POINTS ON GEOMETRICAL PROPERTIES OF PROXIMAL SETS

Arul Ravi S1, Eldred AA2

1,2 Assistant Professor,
Department of Mathematics, St. Xavier’s College (Autonomous),
Palayamkottai
ammaarulravi@gamil.com

Article History: Received: 11 November 2020; Accepted: 27 December 2020; Published online: 05 April 2021

ABSTRACT: The notion of proximal intersection property and UC property is used to establish the existence of the best proximity point for mappings satisfying contractive conditions.

Keywords: Best Proximity point, Proximal sets, UC property, proximal intersection property.

1. Introduction and Preliminaries:
Let X be a nonempty set and T be a self map of X. An element x ∈ X is called a fixed point of T if Tx = x. Fixed point theorems deal with sufficient conditions on X and T ensures the existence of fixed points. Suppose the fixed point equation Tx = x does not possess a solution, then the natural interest to find an element x ∈ X, such that x is in proximity to Tx in some cases.

In other words we would like to get a desirable estimate for the quality d(x, Tx).

It is natural that some mapping, especially non-self mappings defined on a metric space (X, d), do not necessarily possess a fixed point that d(x, Tx) > 0 for all x ∈ X. In such situations, it is reasonable to search for the existence and uniqueness of the point x ∈ X such that d(x, Tx) = 0.

In other words, one intends to determine an approximate solution x ∈ X that is optimal in the sense that the distance between x and Tx is minimum. Here the point x is the proximity point. That is d(x, Tx) = d(A, B) where d(A, B) = inf{d(x, y): x ∈ A, y ∈ B}.

In Suzuki et al [1], UC property was introduced to prove some existence results on best proximity point. In Raj and Eldred [2], the author introduced p − property and proved strict convexity is equivalent to p − property.

We use proximal intersection property for a pair (A, B) where A and B are non empty closed subsets of a metric space. Then this property is used to prove the existence of the best proximity point for mapping satisfying some contractive conditions introduced by Wong [3].

In this section, we use some basic definitions and concepts that are related to the context of our main results.

Definition 1.1 [4] Let A and B be nonempty subsets of a metric space (X, d). Then, the pair (A, B) is said to satisfy the property UC if the following holds: If x_n and x'_n are sequence in A and y_n is a sequence in B such that lim d(x_n, y_n) = d(A, B) and lim d(x'_n, y_n) = d(A, B) then lim d(x'_n, x_n) = 0 holds.

Definition 1.2 Let A and B be nonempty subsets of a metric space (X, d). Then (A, B) is said to satisfy proximal intersection property if whenever A_n ⊂ A and B_n ⊂ B are a decreasing sequence of closed subsets such that d(A_n, B_n) → d(A, B), then ∩ A_n = {x}, ∩ B_n = {y} with d(x, y) = d(A, B).

Remark 1.1 d(A, B) → d(Ā, B̄) and δ(A, B) → d(Ā, B̄) where δ(A, B) = Sup{||x − y||: x ∈ A, y ∈ B}.

Definition 1.3 [2] Let X be a metric space and let T: X → X. Then d_T is the function on X × X defined by
d_T(x, y) = inf{d(T^n_x, T^n_y): n ≥ 1, x, y ∈ X}………………………………………………(1)

Definition 1.4 [3] Let A and B be nonempty subsets of a metric space X. We shall use X_d to denote the set {x': for some s > r', d(x, y) − d(A, B) ∈ [r', s] for some x ∈ A, y ∈ B}……………………………………..(2)

Remark 1.2 If r' ∈ X_d, then there exists x_n ∈ A, y_n ∈ B such that d(x_n, y_n) − d(A, B) → r'. Also if x ∈ A, y ∈ B, then d(x_n, y_n) − d(A, B) ∈ X_d if and only if x_n ∈ A, y_n ∈ B such that d(x_n, y_n) − d(A, B) → r', then r' ∈ X_d.

Lemma 1.1 [1] Let A and B be nonempty subsets of a metric space (X, d). Then (A, B) has the property UC. Let {x_n} and {y_n} be sequence in A and B respectively such that either of the following holds:

lim_{n→∞} sup_n d(x_m, y_n) = d(A, B) or
lim_{n→∞} sup_n d(x_m, y_n) = d(A, B)

Then {x_n} is Cauchy.
2. Results:

Theorem 2.1 Let A and B be nonempty closed subsets of a complete metric space X satisfying UC property. Let A_n, B_n be decreasing sequence of nonempty closed subsets of X such that $\delta(A_n, B_n) \to d(A, B)$ as $n \to \infty$ then $\bigcap A_n = \{x\}, \bigcap B_n = \{y\}$ with $d(A, B)$ that is (A, B) satisfies proximal intersection property.

Proof: Construct a sequence x_n, y_n in X by selecting $x_n \in A_n, y_n \in B_n$ for each $n \in N$. Since $A_{n+1} \subseteq A_n, B_{n+1} \subseteq B_n$ for all n, we have $x_n \in A_n \subseteq A_m, y_n \in B_n \subseteq B_m$ for all $n > m$. We claim that x_n is a Cauchy sequence. Let $\varepsilon > 0$ be given.

Since $\delta(A_n, B_n) \to d(A, B)$, there exists a positive integer N such that $\delta(A_n, B_n) < d(A, B) + \varepsilon$, for all $n \geq N$. Since A_n, B_n are decreasing sequence, we have $A_n, A_N \subseteq A_N$ and $B_n, B_m \subseteq B_N$ for all $m, n \geq N$.

Therefore $x_n, x_m \in A_N$ and $y_n, y_m \in B_N$ for all $m, n \geq N$, and there we have

$$d(x_n, x_m) \leq \delta(A_n, B_n) < d(A, B) + \varepsilon,$$

for all $m, n \geq N$.

(3) since A and B satisfy UC property from lemma 1.1, x_n is a cauchy sequence. There exists $x \in A$ such that $x_n \to x$.

Similarly there exists $y \in B$ such that $y_n \to y$

we claim that $x \in \bigcap A_n, y \in \bigcap B_n$.

since A_n, B_n are closed for each n, $x \in A_n, y \in B_n$ for all $n \in N$

since $d(x_n, y_n) \to d(A, B)$ we have

$$d(x, y) = d(A, B)$$

finally to establish that x is the only point in $\bigcap A_n$, if $x_1 \neq x_2 \in \bigcap A_n$, then $d(x, y) = d(A, B)$ UC property forces that $x_1 = x_2$, similarly $\bigcap B_n = \{y\}$.

Lemma 2.1

(i) Let A and B be nonempty closed subsets of a complete metric space X such that (A, B) satisfying UC property. Let $T: A \cup B \to A \cup B$ be continuous, suppose that $T(A) \subseteq B, T(B) \subseteq A$ be a continuous function such that $\inf d(x, Tx) : x \in A = d(A, B) = \inf d(x, Tx) : x \in A = d(A, B)$

(ii) There exists $\delta_n > 0$ such that $d(Tx, Ty) - d(A, B) < \frac{1}{n}$ whenever $\max(d(x, Tx) - d(A, B), d(y, Ty) - d(A, B)) < \delta_n$ and $x \in A', y \in B'$ where A' and B' are any closed bounded sets of A and B respectively.

Then, there exists a best proximity point $x \in A$, such that $d(x, Tx) = d(A, B)$. Further, if $d(Tx, Ty) = d(x, y)$ for all $x \in A, y \in B$ then the best proximity point is unique.

Proof: Let $A_n = \{x \in A : d(x, Tx) - d(A, B) \leq \frac{1}{n}\}$. $B_n = \{y \in B : d(y, Ty) - d(A, B) \leq \frac{1}{n}\}$ since T is continuous, A_n, B_n are closed from (i) A_n and B_n are nonempty there exists N for all $n \in N$

let $x \in A_n, y \in B_n$

then $d(x, Tx) - d(A, B) < \delta_n$ and $d(y, Ty) - d(A, B) < \delta_n$

from (ii) $d(Tx, Ty) - d(A, B) \leq \frac{1}{n}$ where $\delta_n \to 0$

for any $x \in A_n, y \in B_n$

$d(Tx, Ty) - d(A, B) \leq \frac{1}{n}$

which implies $\delta(T(A_n), T(B_n)) \to d(A, B)$

and hence $\delta(T(A_n), T(B_n)) \to d(A, B)$

By proximal intersection property,

we have $\bigcap_{n \geq 1} T(A_n) = y$ and $\bigcap_{n \geq 1} T(B_n) = x$ and $d(x, y) = d(A, B)$

Thus for each $n \geq 1$, there exists $x_n \in A_n$

such that $d(y, Tx_n) < \frac{1}{n}$

since $d(x_n, Tx_n) \to d(A, B)$ and $d(y_n, Ty_n) \to d(A, B)$

By UC property $x_n \to x$

Since A_n is closed, $x \in A_n$ for each n

This implies that $d(x, Tx) \to d(A, B)$

Similarly $y_n \to y$ such that $d(y, Ty) \to d(A, B)$

To prove uniqueness,
EXISTENCE OF BEST PROXIMITY POINTS ON GEOMETRICAL PROPERTIES OF PROXIMAL SETS

\[d(x, Tx) = d(A, B) \]
Since \(T \) is non expansive \(d(T^2 x', Tx') = d(A, B) \) which implies that \(T^2 x' = x' \) as
\[d(x, Tx) = d(Tx', T^2 x') = d(A, B) \]
from (ii) \(d(Tx, x') = d(Tx, T^2 x') = d(A, B) \)
which implies that \(x = x' \)

Theorem 2.2 Let \(A \) and \(B \) be nonempty closed subsets of a metric space \(X \) and let \(\{x_n\}_{n=1}^{\infty} \in A \cup B \) be continuous, such that \(T(A) \subset B, T(B) \subset A \). Suppose that there exists \(\phi: X_d \rightarrow [0, \infty) \) such that
\[d(x, y) = d(A, B) \leq \phi(x, y) - d(A, B) \]
for all \(x \in A, y \in B \) and \(\sup_{x, y \in [r, s]} \phi(t - \phi(t)) > 0 \) for \(r \in X_d - \{0\} \). Then \(d(x, y) = d(A, B) \) for all \(x \in A, y \in B \) hence \(\phi(x, y) = d(A, B) \)

Proof: Suppose to the contrary that there exists \(x \in A, y \in B \) such that
\[\phi(x, y) - d(A, B) > 0 \]
Then there exists \(s \in (r', \infty) \) such that \(u = \inf_{x, y \in [r', s]} (t - \phi(t)) > 0 \) where \(r' = r - d(A, B) \)
since there exists a sequence
\[d(T^n x, T^n y) - d(A, B) \rightarrow r' \]
where \(r' \in X_d - \{0\} \)
Then from (2) we have
\[d(T^n x, T^n y) - d(A, B) \rightarrow r' + t < s \text{ for some } n \geq 1. \]
Since \(d(T^n x, T^n y) - d(A, B) \in [r', s] \)
\[u \leq d(T^n x, T^n y) - d(A, B) - \phi(d(T^n x, T^n y) - d(A, B)) \]
\[\phi(d(T^n x, T^n y) - d(A, B)) \leq d(T^n x, T^n y) - d(A, B) - u \]
(5)

It follows that
\[d_T(x, y) - d(A, B) \leq d_T(x, y) - d(A, B) \]
(6)
\[\leq d(T^n x, T^n y) - d(A, B) \]
(7)
\[\leq \phi(d(T^n x, T^n y) - d(A, B)) \]
(8)
\[\leq d(T^n x, T^n y) - d(A, B) \]
from (5)
(9)
\[\xi r' + t - u \]
(10)

Letting \(t=0 \), we have
\[d_T(x, y) - d(A, B) \leq r' - u \]
(11)
\[d_T(x, y) - d(A, B) \leq r' - d(A, B) - u \]
(12)
\[d_T(x, y) \leq r - u \]
(13)

Theorem 2.3 Let \(A \) and \(B \) be nonempty closed subsets of a metric space \(X \). Suppose \((A, B) \) satisfies UC property. Let \(T \) be as in theorem 2.2 then \(T \) satisfies all the conditions of lemma 2.1 and therefore \(T \) has a unique best proximity point.

Proof: Clearly from theorem 2.2 and (i)2 of lemma are satisfied.

To prove (ii) of lemma 2.1 assume \(x_n \in A \) and \(y_n \in B \) bounded sequences, then \(d(x_n, Tx_n) \) and \(d(x_n, Ty_n) \)
\[d(x_n, Tx_n) \rightarrow d(A, B) \]
where \(x_n \) and \(y_n \) are sequences in \(A \) and \(B \) respectively.

suppose \(d(x_n, Tx_n) \rightarrow d(A, B) \rightarrow 0 \)
with \(x_n, y_n \) bounded sequence, there exists subsequence \(n_k \) and \(r > 0 \) such that \(d(Tx_{n_k}, Ty_{n_k}) - d(A, B) \rightarrow r > 0 \)

clearly \(r \in X_d \)
let \(r_{n_k} = d(Tx_{n_k}, Ty_{n_k}) - d(A, B) \) and
\[s_{n_k} = d(x_{n_k}, y_{n_k}) - d(A, B) \]
given \(r_{n_k} = s_{n_k} \rightarrow 0 \) as \(k \rightarrow \infty \)
\[d(Tx_{n_k}, Ty_{n_k}) - d(A, B) \leq d(Tx_{n_k}, Ty_{n_k}) - d(A, B) \]
therefore \(r_{n_k} \leq \phi(s_{n_k}) \)
(13)
now from (13) we have
\[0 > \phi(s_{n_k}) - s_{n_k} \]
\[= \phi(s_{n_k}) - r_{n_k} + r_{n_k} - s_{n_k} \]
\[\geq r_{n_k} - s_{n_k} \]
since \(r_{n_k} - s_{n_k} \rightarrow 0 \) we have
\[\liminf \phi(s_{n_k}) - s_{n_k} = 0 \]
contradicting \(inf_{(t, s, |r|)} (t - \phi(t)) > 0 \) where \(s_{n_k} \rightarrow r_0 \). This completes the proof.

References: