Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

Deep Learning Approach for Intelligent Intrusion Detection System
K. Sushma', Meghana Mandala’, Rohith Gunda®, Anvesh Jvn®, Mali Sai Chand Reddy2
"“Department of Information Technology

"2 CMR Engineering College, Kandlakoya, Medchal, Hyderabad.

ABSTRACT

The Industrial Internet of Things has grown significantly in recent years. While implementing
industrial digitalization, automation, and intelligence introduced a slew of cyber risks, the complex
and varied industrial Internet of Things environment provided a new attack surface for network
attackers. As a result, conventional intrusion detection technology cannot satisfy the network threat
discovery requirements in today’s Industrial Internet of Things environment.

An intrusion detection system (IDS) is a critical component of network security protection because it
enables the system to detect network intrusions efficiently. However, in recent years, as the operating
environment and structure of the Industrial Internet of Things have changed, traditional intrusion
detection models (such as intrusion detection models based on simple machine learning) have been
unable to provide adaptive detection, response, and defence against complex network attacks.

Machine learning nowadays is a developing topic; its applications are wide. We can forecast the future
through machine learning and classify the right class. Unsupervised solutions do reduce
computational complexities and manual support for labeling data but current unsupervised solutions
do not consider spatio-temporal correlations in traffic data. To address this, in the existing basic
convolutional autoencoder methods are presented. However, the existing autoencoders have lot of
issues, such as Insufficient training data, training the wrong use case, too lossy, imperfect decoding,
misunderstanding important variables, better alternatives, algorithms become too specialized,
bottleneck layer is too narrow.

So, to overcome these drawbacks, this work presented the deep learning convolutional network-based
intrusion detection framework. The simulations will conduct on UNSW-NBI15 dataset, which contains
attack and normal classes of data. Initially, the dataset preprocessing operation will perform to remove
the missing symbols, unknown characters. Then, the deep learning model applied to perform the
training of dataset, which also predicts the normal and attack class from test data.

Keywords: Intrusion detection, deep learning, loT.

1. INTRODUCTION

Information and communications technology (ICT) systems and networks handle various sensitive
user data that are prone to various attacks from both internal and external intruders. These attacks can
be manual, machine generated, diverse and are gradually advancing in obfuscations resulting in
undetected data breaches. For instance, the Yahoo data breach had caused a loss of $350M and Bitcoin
breach resulted in a rough estimate of $70M loss. Such cyberattacks are constantly evolving with very
sophisticated algorithms with the advancement of hardware, software, and network topologies
including the recent developments in the Internet of Things (IoT). Malicious cyber-attacks pose
serious security issues that demand the need for a novel, flexible and more reliable intrusion detection
system (IDS). An IDS is a proactive intrusion detection tool used to detect and classify intrusions,
attacks, or violations of the security policies automatically at network-level and host-level
infrastructure in a timely manner. Based on intrusive behaviors, intrusion detection is classified into

943

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

network-based intrusion detection system (NIDS) and host-based intrusion detection system (HIDS).
An IDS system which uses network behaviour is called NIDS. The network behaviors are collected
using network equipment via mirroring by networking devices, such as switches, routers, and network
taps and analyzed in order to identify attacks and possible threats concealed within network traffic. An
IDS system which uses system activities in the form of various log files running on the local host
computer in order to detect attacks is called HIDS. The log files are collected via local sensors. While
NIDS inspects each packet contents in network traffic flows, HIDS relies on the information of log
files which includes sensors logs, system logs, software logs, file systems, disk resources, users
account information and others of each system.

Many organizations use a hybrid of both NIDS and HIDS. Analysis of network traffic flows is
done using misuse detection, anomaly detection and stateful protocol analysis. Misuse detection uses
predefined signatures and filters to detect the attacks. It relies on human inputs to constantly update
the signature database. This method is accurate in finding the known attacks but is completely
ineffective in the case of unknown attacks. Anomaly detection uses heuristic mechanisms to find
unknown malicious activities. In most of the scenarios, anomaly detection produces a high false
positive rate. To combat this problem, most organizations use the combination of both misuse and
anomaly detection in their commercial solution systems. Stateful protocol analysis is most powerful in
comparison to the detection methods due to the fact that stateful protocol analysis acts on the network
layer, application layer and transport layer. This uses the predefined vendors specification settings to
detect the deviations of appropriate protocols and applications.

Though deep learning approaches are being considered more recently to enhance the
intelligence of such intrusion detection techniques, there is a lack of study to benchmark such
machine learning algorithms with publicly available datasets. The most common issues in the existing
solutions based on machine learning models are: firstly, the models produce high false positive rate
with wider range of attacks; secondly, the models are not generalizable as existing studies have
mainly used only a single dataset to report the performance of the machine learning model; thirdly, the
models studied so far have completely unseen today’s huge network traffic; and finally the solutions
are required to persevere today’s rapidly increasing high-speed network size, speed and dynamics.
These challenges form the prime motivation for this work with a research focus on evaluating the
efficacy of various classical machine learning classifiers and deep neural networks (DNNs) applied to
NIDS and HIDS. Overall, this work has made the following contributions to the cyber security
domain:

e By combining both NIDS and HIDS collaboratively, an effective deep learning approach
is proposed by modelling a deep neural network (DNN) to detect cyberattacks
proactively. In this study, the efficacy of various classical machine learning algorithms
and DNNs are evaluated on various NIDS and HIDS datasets in identifying whether
network traffic behaviour is either normal or abnormal due to an attack that can be
classified into corresponding attack categories.

e The advanced text representation methods of natural language processing (NLP) are
explored with host-level events, i.e., system calls with the aim to capture the contextual
and semantic similarity and to preserve the sequence information of system calls. The
comparative performance of these methods is conducted with the NSL-KDD dataset.

e This study uses various benchmark datasets to conduct a comparative experimentation.
This is mainly due to the reason that each data set suffers from various issues such as data
corruptions, traffic variety, inconsistencies, out of date and contemporary attacks.

944

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

2. LITERATURE SURVEY

A Detailed Investigation and Analysis of Using Machine Learning Techniques for Intrusion
Detection.

AUTHORS: Mishra .P, Varadharajan. V, Tupakula. U and Pilli E. S

The increasing rate of intrusions in the network and host machines have badly affected the security
and privacy of users. Researchers have extensively worked on various solutions to detect intrusions.
The security aspects of intrusion detection using machine learning approach have been considered in
our paper. We have described various types of attacks in the network and host systems with the brief
description of their attack features. The analysis performed, reveals that if a technique is performing
well for detecting an attack, it may not perform same for detecting other attacks. Hence, the relevance
of a technique for specific attacks has been presented by classifying various machine learning
techniques for each type of attack. The critical performance analysis of various machine learning
algorithms has been done in an evolutionary way. The comparison has been carried out with single
classifier approaches and multiple classifier approaches. The influence of a classifier with other
classifier is not only analyzed but also the influence of a feature subset with the classifier is analyzed.
We have shown that even if an optimal feature set is sufficient for analyzing the behavior of an attack,
it is not good for analyzing the behavior of other attacks.

Use of Data Visualization for Zero-Day Malware Detection.
AUTHORS: Venkatraman. S, Alazab. M

This paper proposed a new hybrid method of feature based and data-based visualization of similarity
mining to identify and classify malware accurately. Our visualization technique is effectively used to
compare malware samples for better communication of their behaviour patterns and faster detection
and classification of new malware (zero-day malware). We calculated the similarities between the
malware variants using eight different distance measures to generate similarity matrices and to
identify the malware family by adopting visualization of the distance scores. The experimental study
of our proposed method involved large datasets of about 75,000 samples with more than two-thirds
consisting of malware samples and benign samples forming the rest. By performing similarity mining
of the innumerable obfuscations of extended x86 1A-32 (opcodes) found in these malware samples,
we were successfully able to detect and classify unknown malware that had escaped from traditional
detection methods. Te proposed method is efficient and accurate in identifying malware visually due
to three main properties observed through our experimental results: (1) Malware opcodes exhibit
significant dissimilarity of behaviour patterns as compared to the benign opcodes and hence result in
very high true positives (2) For malware programs belonging to the same family, the uniqueness and
closeness in similarity can be visually deciphered through the colour-coded distance measures of the
similarity matrix and each malware family exhibits a unique visual pattern of the similarity matrix.

Machine Learning Based Botnet Identification Traffic.
AUTHORS: Ahmad Azab, Mamoun Alazab and Mahdi Aiash

Botnet is currently the main threat in the internet against individuals and organizations, causing large
losses for both parties. Botnet C&C channel traffic identification is a vital task to treat the infected
devices, take C&C server down and track down cybercriminals. Researchers proposed approaches as
DPI, DNS request behavior, temporal, correlation and machine learning to detect the C&C channel
traffic. The approaches addressed the solutions in terms of online classification capability by
monitoring a few packets in a flow, supporting various transport and application protocols as TCP,

945

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

UDP, HTTP and IRC, avoiding accessing packet’s content, relying on a single phase’s traffic for the
detection process by monitoring only C&C channel traffic, monitoring a single device’s network
traffic and detecting untrained versions for the targeted application by analyzing and building the
classifier on a different single version. None of the approaches fulfilled these characteristics in a
single solution. The novel methodology, CONIFA, was used to overcome this gap, by fulfilling all the
aforementioned characteristics in a single solution. CONIFA mainly relies on the machine learning
approach and aims in filling its gap by the fact that the machine learning approach performance does
degrade if the untrained versions have statistical values that are dissimilar from the one used by the
built classifier. CONIFA deploys cost sensitive algorithms and different feature combinations
concepts. These two concepts are used to maximize the detection of the trained version, thus
increasing the likelihood in detecting the untrained version.

Disclosure of Cyber Security Vulnerabilities: Time Series Modelling
AUTHORS: Tang.M,Alazab.M, Luo.Y and Donlon.M

Computer systems are vulnerable to cyber-attack from both inside and outside of the system network.
During the process of producing software products and website design, vendors and developers
unintentionally create vulnerabilities that can be exploited later by cyber criminals. The continued
growth of the Internet has resulted in the increasing sophistication of tools and methods for
identification and prevention of new vulnerabilities during the development lifecycle of the emerging
inter-connected systems, such as networked and intelligent cars and industrial control systems. In this
paper, we seek to minimise the potential harm caused by the exploitation of disclosed vulnerabilities.
We particularly tackled a challenging real-world cyber security problem in the domain of discovering
and modelling vulnerability disclosure trend. Weproposed a novel and rigorous statistical framework
towards deepening our understanding about the disclosure dynamics. By leveraging the proposed
framework, we formally discovered the existence of volatility clustering (ARCH effect) in our case
study on long-term NVD data. We also thoroughly studied the persistence of ARCH effect by
utilising different GARCH models.

Machine Learning and Deep Learning Methods for Cybersecurity
AUTHORS: Yang Xi, Lingshuang Kong and Yuling Chen

This paper presents a literature review of ML and DL methods for network security. The paper, which
has mostly focused on the last three years, introduces the latest applications of ML and DL in the field
of intrusion detection. Unfortunately, the most effective method of intrusion detection has not yet
been established. Each approach to implementing an intrusion detection system has its own
advantages and disadvantages, a point apparent from the discussion of comparisons among the
various methods. Thus, it is difficult to choose a particular method to implement an intrusion
detection system over the others. Datasets for network intrusion detection are very important for
training and testing systems. The ML and DL methods do not work without representative data, and
obtaining such a dataset is difficult and time-consuming.

Host based intrusion detection system using frequency analysis of n-gram terms.
AUTHORS: Subba. B, Biswas.S & Karmakar. S

In this paper, we proposed a HIDS framework for detecting intrusive system processes based on
frequency analysis of n-gram terms in the system call trace files. The proposed framework initially
transforms the system call traces to a ngram vector representation model. It then uses a dimensionality
reduction process to reduce the size of the input feature vectors by selecting only those n-gram terms,

946

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

whose frequencies are greater than the predefined threshold value. Finally, the dimensionality reduced
vectors are processed by different classifiers (Naive Bayes, SVM, MLP and C4.5 Decision Tree) to
determine whether the corresponding system call traces are normal and intrusive. Experimental results
on the benchmark ADFA-LD dataset show that the proposed framework accurately identifies the
normal and intrusive system processes, while at the same time minimizes the overall computational
overhead of the HIDS. For our future work, we aim to improve and fine tune various parameters of
the proposed framework to further enhance its performance.

Random forests-based network intrusion detection systems
AUTHORS: Zhang, Jiong, Mohammad Zulkernine, and Anwar Haque

In this paper, we outline three data-mining-based frameworks for network intrusion detection. We
apply the random forests algorithm in misuse, anomaly, and hybrid detection. To address the
problems of rule-based systems, we employ the random forests algorithm to build patterns of
intrusions. By learning over training data, the random forests algorithm can build the patterns
automatically instead of coding rules manually. The proposed approaches are implemented in Java
program using the WEKA environment [5] and the Fortran 77 program [2]. We evaluate the
implementations over different datasets obtained from the KDD’99 datasets, and the experimental
results show that the performances of our approaches are better than the best KDD’99 results. In our
misuse detection framework, patterns of intrusions are built in the offline phase, and the system can
automatically detect intrusions in real time using the built patterns. To improve the accuracy of the
system, we use the feature selection algorithm and optimize the parameters of the random forests
algorithm.

AdaBoost-Based Algorithm for Network Intrusion Detection
AUTHORS: Hu, Weiming, Wei Hu, and Steve Maybank.

We have proposed an AdaBoost-based algorithm for intrusion detection. In the algorithm, decision
stumps are used as weak classifiers. The decision rules are provided for both categorical and
continuous features. The relations between categorical and continuous features are handled naturally,
without any forced conversions between these two types of features. A simple overfitting handling is
used to improve the learning results. In the specific case of network intrusion detection, we use
adaptable initial weights to make the tradeoff between the detection and false-alarm rates.

A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks
AUTHORS: Yin. C, Zhu. Y, Fei. J & He.X

The RNN-IDS model not only has a strong modelling ability for intrusion detection, but also has high
accuracy in both binary and multiclass classification. Compared with traditional classification
methods, such as J48, naive bayesian, and random forest, the performance obtains a higher accuracy
rate and detection rate with a low false positive rate, especially under the task of multiclass
classification on the NSL-KDD dataset. The model can effectively improve both the accuracy of
intrusion detection and the ability to recognize the intrusion type. Of course, in the future research, we
will still pay attention to reduce the training time using GPU acceleration, avoid exploding and
vanishing gradients, and study the classification performance of LSTM, Bidirectional RNNs
algorithm in the field of intrusion detection.

Enhanced Network Anomaly Detection Based on Deep Neural Networks

AUTHORS: Naseer. S, Saleem. Y, Khalid. S, Bashir. M. K, Han. J, Igbal. M. M & Han. K

947

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
e Research Article

In this paper, Intrusion Detection models were proposed, implemented and trained using different
deep neural network architectures including Convolutional Neural Networks, Autoencoders, and
Recurrent Neural Networks. These deep models were trained on NSLKDD training dataset and
evaluated on both test datasets provided by NSLKDD namely NSLKDDTest+ and NSLKDDTest21.
For training and evaluation of deep models, a GPU powered test-bed using keras with theano backend
was employed. To make model comparisons more credible, we implemented conventional ML IDS
models with different well-known classification techniques including Extreme Learning Machine, k-
NN, Decision-Tree, RandomForest, Support VVector Machine, Naive-Bays, and QDA. Both DNN and
conventional ML models were evaluated using wellknown classification metrics including RoC
Curve, Area under RoC, Precision-Recall Curve, mean average precision and accuracy of
classification. Both DCNN and LSTM models showed exceptional performance with 85% and 89%
Accuracy on test dataset which demonstrates the fact that Deep learningis not only viable but rather
promising technology for information security applications like other application domains. Our future
research will be directed towards investigating deep learning as feature extraction tool to learn
efficient data representations for anomaly detection problem.

3. PROPOSED SYSTEM

Machine learning techniques are being widely used to develop an intrusion detection system (IDS) for
detecting and classifying cyberattacks at the network-level and the host-level in a timely and
automatic manner. However, many challenges arise since malicious attacks are continually changing
and are occurring in very large volumes requiring a scalable solution. There are different Intrusion
datasets available publicly for further research by cyber security community. However, no existing
study has shown the detailed analysis of the performance of various machine learning algorithms on
various publicly available datasets. Due to the dynamic nature of Intrusion with continuously
changing attacking methods, the Intrusion datasets available publicly are to be updated systematically
and benchmarked. This work evaluates the performance of various classical algorithms such as SVM,
Random Forest and Deep Neural Network (DNN) etc to detect attacks on network using KDD, NSL
datasets. The existing classical algorithms (SVM, Random Forest) are unable to predict dynamic (if
attacker introduce new attacks with changes in attack parameter) attacks and needs to be trained in
advance.

DOS T8

o DNN training _5 % §'

a o g Probe 5 ok
a 2 g § g S5
NE = @ DNN Trained features » R2L g S8
v A o i 4 2=
2 £ U2R g & g
DNNtesting < i“; G

Normal o=

Fig. 1: Proposed IDS methodology.

Figure 1 shows the block diagram of proposed method. Initially, NSL-KDD dataset is split into 80%
for training and 20% for testing. Then, dataset preprocessing operation is performed to normalize the
entire dataset. Further, DNN classifier is used for prediction of attacks from test sample. The
performance evaluation is carried out to show supremacy of the proposed method. The DNN is a
famous algorithm which has high predicting ratio in all fields such as image processing, data
classification etc. Therefore, DNN model is capable of detecting such attacks and to overcome from

948

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

these attacking problems with dynamic attack signatures. The proposed DNN model contains multiple
number of layers. The DNN algorithm keeps filtering training algorithm with hidden layer to form
most accurate model to predict testing class. The common classes are Normal, Remote to user (R2L),
Denial-of-Service (DOS), User to Root (U2R), Probe but in dataset we have other names, but all those
names come under these classes.

3.1 Dataset

NSL-KDD is a data set suggested to solve some of the inherent problems of the KDD'99 data set.
Although, this new version of the KDD data set still suffers from some of the problems discussed by
McHugh and may not be a perfect representative of existing real networks, because of the lack of
public data sets for network based IDSs, we believe it still can be applied as an effective benchmark
data set to help researchers compare different intrusion detection methods.

Furthermore, the number of records in the NSL-KDD train and test sets are reasonable. This
advantage makes it affordable to run the experiments on the complete set without the need to
randomly select a small portion. Consequently, evaluation results of different research work will be
consistent and comparable.

Data files
e KDDTraint+.ARFF: The full NSL-KDD train set with binary labels in ARFF format.

e KDDTrain+.TXT: The full NSL-KDD train set includes attack-type labels and difficulty level
in CSV format.

e KDDTraint+ 20Percent. ARFF: A 20% subset of the KDDTrain+.arff file
e KDDTraint+ 20Percent. TXT: A 20% subset of the KDDTrain+.txt file
o KDDTest+.ARFF: The full NSL-KDD test set with binary labels in ARFF format

e KDDTest+.TXT: The full NSL-KDD test set includes attack-type labels and difficulty level in
CSV format.

e KDDTest-21.ARFF: A subset of the KDDTest+.arff file which does not include records with
difficulty level of 21 out of 21

e KDDTest-21.TXT: A subset of the KDDTest+.txt file which does not include records with
difficulty level of 21 out of 21.

The NSL-KDD data set has the following advantages over the original KDD data set:

e It does not include redundant records in the train set, so the classifiers will not be biased
towards more frequent records.

e There is no duplicate records in the proposed test sets; therefore, the performance of the
learners are not biased by the methods which have better detection rates on the frequent
records.

e The number of selected records from each difficulty level group is inversely proportional to
the percentage of records in the original KDD data set. As a result, the classification rates of
distinct machine learning methods vary in a wider range, which makes it more efficient to
have an accurate evaluation of different learning techniques.

949

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

e The number of records in the train and test sets are reasonable, which makes it affordable to
run the experiments on the complete set without the need to randomly select a small portion.
Consequently, evaluation results of different research works will be consistent and
comparable.

3.2 Preprocessing

Data preprocessing is a process of preparing the raw data and making it suitable for a machine
learning model. It is the first and crucial step while creating a machine learning model. When creating
a machine learning project, it is not always a case that we come across clean and formatted data. And
while doing any operation with data, it is mandatory to clean it and put it in a formatted way. So, for
this, we use data preprocessing tasks.

Need of Data Preprocessing: A real-world data generally contains noises, missing values, and maybe
in an unusable format which cannot be directly used for machine learning models. Data preprocessing
is required tasks for cleaning the data and making it suitable for a machine learning model which also
increases the accuracy and efficiency of a machine learning model.

e Getting the dataset
e Importing libraries
e Importing datasets
e Finding Missing Data
e Encoding Categorical Data
e Splitting dataset into training and test set
e Feature scaling
3.3 Splitting the Dataset

In machine learning data preprocessing, we divide our dataset into a training set and test set. This is
one of the crucial steps of data preprocessing as by doing this, we can enhance the performance of our
machine learning model. Suppose if we have given training to our machine learning model by a
dataset and we test it by a completely different dataset. Then, it will create difficulties for our model
to understand the correlations between the models. If we train our model very well and its training
accuracy is also very high, but we provide a new dataset to it, then it will decrease the performance.
So we always try to make a machine learning model which performs well with the training set and
also with the test dataset. Here, we can define these datasets as:

44— Dataset ———p

Training Set Test Set

Fig. 2: Splitting the dataset.

Training Set: A subset of dataset to train the machine learning model, and we already know the
output.

Test set: A subset of dataset to test the machine learning model, and by using the test set, model
predicts the output.

950

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

For splitting the dataset, we will use the below lines of code:

from sklearn.model selection import train_test_split

X_train, X_test, y_train, y_test= train_test split(x, y, test_size= 0.2, random_state=0)
3.4 DNN

A typical architecture of DNN model for intrusion recognition is shown in Figure 4.5. DNNs are
generally composed of three parts. Dense layer for feature extraction. The convergence layer, also
known as the pooling layer, is mainly used for feature selection. The number of parameters is reduced
by reducing the number of features. The full connection layer carries out the summary and output of
the characteristics. A dense layer is consisting of a dense process and a nonlinear activation function
ReLU.

- 5
& — = 7
S 5 &8 @ <
a 2 a3 A — o
et = + e *5'
a = o X + =4
w2
= a8 2 =
[0] o =}
- al

Fig. 3: Proposed DNN model.

The leftmost data is the input layer, which the computer understands as the input of several matrices.
Next is the dense layer, the activation function of which uses ReLU. The pooling layer has no
activation function. The combination of dense and pooling layers can be constructed many times. The
combination of dense layer and dense layer or dense layer and pool layer can be very flexibly, which
is not limited when constructing the model. But the most common DNN is a combination of several
dense layers and pooling layers. Finally, there is a full connection layer, which acts as a classifier and
maps the learned feature representation to the sample label space.

DNN mainly solves the following two problems.

1) Problem of too many parameters: It is assumed that the size of the input test data is 50 * 50 * 3. If
placed in a fully connected feedforward network, there are 7500 mutually independent links to the
hidden layer. And each link also corresponds to its unique weight parameter. With the increase of the
number of layers, the size of the parameters also increases significantly. On the one hand, it will easily
lead to the occurrence of over-fitting phenomenon. On the other hand, the neural network is too
complex, which will seriously affect the training efficiency. In DNNSs, the parameter sharing
mechanism makes the same parameters used in multiple functions of a model, and each element of the
denseal kernel will act on a specific position of each local input. The neural network only needs to
learn a set of parameters and does not need to optimize learning for each parameter of each position.

2) Data stability: Data stability is the local invariant feature, which means that the natural data will not
be affected by the scaling, translation, and rotation of the data size. Because in deep learning, data
enhancement is generally needed to improve performance, and fully connected feedforward neural is
difficult to ensure the local invariance of the data. This problem can be solved by dense operation in
DNN.

ReLU layer: Networks those utilizes the rectifier operation for the hidden layers are cited as ReLU.
This ReLU function G(*) is a simple computation that returns the value given as input directly if the

951

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

value of input is greater than zero else returns zero. This can be represented as mathematically using
the function max(-) over the set of 0 and the input x as follows:

G(x) = max{0, x}

SoftMax classifier: Generally, SoftMax function is added at the end of the output since it is the place
where the nodes are meet finally and thus, they can be classified as shown in Figure 4.5. Here, X is
the input of all the models and the layers between X and Y are the hidden layers and the data is passed
from X to all the layers and Received by Y. Suppose, we have 10 classes, and we predict for which
class the given input belongs to. So, for this what we do is allot each class with a particular predicted
output. Which means that we have 10 outputs corresponding to 10 different class and predict the class
by the highest probability it has.

SOFTMAX FUNCTION

@

Fig. 4: Intrusion class prediction using SoftMax classifier.

In Figure 4, and we must predict what is the object that is present in the test data. In the normal case,
we predict whether the Intrusion is A. But in this case, we must predict what is the object that is
present in the test data. This is the place where SoftMax comes in handy. As the model is already
trained on some data. So, as soon as the test data is given, the model processes the test data, send it to
the hidden layers and then finally send to SoftMax for classifying the test data. The SoftMax uses a
One-Hot encoding Technique to calculate the cross-entropy loss and get the max. One-Hot Encoding
is the technique that is used to categorize the data. In the previous example, if SoftMax predicts that
the object is class A then the One-Hot Encoding for:

Class A will be [1 0 0]
Class B will be [0 1 0]
Class C will be [0 0 1]

Feature Extraction Network

logits Probabilities
1 | 023 .
Clazz(A)
St N GNN = | kO = unear | 2 0.63
=stdatz —— /| 1ayers | 1% lg‘:b‘:' +—=—»! Softmax| >
3 Clzz3(B)
0.5 0.14
—

Fig. 5: Example of SoftMax classifier.

952

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

From the Fig. 6, we see that the predictions are occurred. But generally, we don’t know the
predictions. But the machine must choose the correct predicted object. So, for machine to identify an
object correctly, it uses a function called cross-entropy function. So, we choose more similar value by
using the below cross-entropy formula.

Feature Extraction Metwork
logits Probabilities
|1 0.23
' P(A
; g, () Loss value
I‘raﬂ'.[v i ¥ | poes = '_':'r:l:' | 2 ol 0.63 > =-'r.._\-:|,r _.
data PEB) Loss Funcion ~logib.63)
= 0.462
:D.S 0.14 J
' P(C)
[0.1.0
¥=1
test datz | 1-hot

| encoder

Fig. 6: Example of SoftMax classifier with test data.

In the above example we see that 0.462 is the loss of the function for class specific classifier. In the
same way, we find loss for remaining classifiers. The lowest the loss function, the better the prediction
is. The mathematical representation for loss function can be represented as: -

LOSS = np.sum(=Y * np.log(Y_pred))
4. RESULT AND DISCUSSION

This project evaluates the performance of various classical algorithms such as SVM, and Random
Forest to detect attacks on network using IDS datasets such as KDD, NSL but these classical
algorithms unable to predict dynamic (if attacker introduce new attacks with changes in attack
parameter) attacks and need to be trained in advance to detect such attacks. To overcome this problem,
this work evaluates performance of customized neural network (CNN) model with dynamic attack
signatures. The obtained detection accuracy of CNN shown to be better as compared to all classical
algorithms.

Here to implement this concept, KDD and NSL dataset combination is used with SVM, Random
Forest and CNN model. CNN models keep filtering training algorithms with hidden layers to form the
most accurate model to predict testing class. It is a famous model which has a high predicting ratio in
all fields such as image processing, data classification etc.

Below are the column names of dataset.

duration,protocol_type,service,flag,src_bytes,dst bytes,Jand,wrong fragment,urgent,hot,num_f

ailed_logins,logged_in,num_compromised,root_shell,su_attempted,num_root,num_file creation

s,num_shells,num_access files,num_outbound_cmds.,is_host login,is guest login,count,srv_cou

nt,serror_rate,srv_serror_rate,rerror_rate,srv_rerror_rate,same_srv_rate,diff srv_rate,srv_diff
_host_rate,dst_host_count,dst_host_srv_count,dst_host_same_srv_rate,dst_host_diff srv_rate,d
st_host_same_src_port_rate,dst_host_srv_diff _host_rate,dst_host_serror_rate,dst_host_srv_ser

ror_rate,dst host rerror_rate,dst host srv_rerror_rate,label

In the above dataset columns label is the name of attacks, all above comma separated names in bold
format are the names of request signature.

953

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

Below are the values of the above dataset columns.

0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,1,0,0,150,25,0.17,0.03,0.17,0,0,0,0.
05,0,normal

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,166,9,1,1,0,0,0.05,0.06,0,255,9,0.04,0.05,0,0,1,1,0,
0,Neptune

The above two records are the signature values and the last value contains class label such as normal
request signature or attack signature. In the second record ‘Neptune’ is the name of attack. Similarly
in dataset you can find nearly 30 different names of attacks.

In the above dataset records we can see some values are in string format such as tcp, ftp_data and
these values are not important for prediction and these values will be remove out by applying
PREPROCESSING Concept. All attack names will not be identified by algorithm if it’s given in
string format, so we need to assign numeric value for each attack. All this will be done in
PREPROCESS steps and then a new file will be generated called ‘clean.txt’ which will be used to
generate training model.

In below line i am assigning numeric id to each attack

"normal'":0," neptune':1,"warezclient':2,"ipsweep'':3," portsweep'':4," teardrop'':5," nmap"':6,
"satan':7,"smurf":8,"pod":9,"back':10," guess_passwd":11,"ftp_write':12,"multihop':13,"ro
otkit":14,"buffer_overflow":15,"imap":16,"warezmaster':17," phf":18,"land":19,""loadmodul
e':20,"spy":21,"perl":22,"saint":23,"mscan"":24," apache2":25," snmpgetattack':26," processta
ble":27,"httptunnel':28," ps'':29," snmpguess'':30,"' mailbomb':31," 'named":32," sendmail"' : 33,
"xterm'':34,"worm'":35,"xlock":36," xsnoop'':37,"sqlattack':38," udpstorm':39

In the above lines we can see normal is having id 0 and Neptune 1 and goes on for all attacks.

In the paper author describe about Normal, R2L, DOS, U2R, DOS, Probe but in dataset we have other
names but all those names comes under 5 categories such as Normal, R2L, DOS, U2R, DOS, Probe.

Attack category Attack name
Denial of service Apache2, Smurf, Neptune, Back,
(DoS) Teardrop, Pod, Land, Mailbomb,
Processtable, UDPstorm
Remote to local WarezClient, Guess_Password,
(R2L) WarezMaster, Imap, Ftp_Write, Named,

MultiHop, Phf, Spy, Sendmail, |
SnmpGetAttack, SnmpGuess, Worm,

Xsnoop, Xlock
User to root Buffer_Overflow, Httptuneel, Rootkit,
(U2R) LoadModule, Perl, Xterm, Ps, SQLattack
Probe Satan, Saint, Ipsweep, Portsweep, Nmap,
Mscan

List of attacks presented in NSL-KDD dataset

From the above screen shots we can understand that Neptune attack belongs to DOS category.
Similarly other attacks belong to different categories.

954

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

UI OUTPUT

Customized Neaural Network Based Intrusion Detection System

Upload NSL-KDD Dataset

Preprocessing ‘ Generate Training Model ‘ Apply SVM | Apply Random Forest

Apply CNN Model Accuracy Graph

In above screen click on ‘Upload NSL-KDD Dataset’ to upload dataset.
™ <« |DSfo.. » dataset % Search dataset

m @

Name Date modified Type

([
4

Organize v+ New folder

» @l Desktop

- Documents | dataset 01-0 Text Do

> Downloads
> @ Music

> N Pictures

> i Videos

) = 0S(C)

> = DATA (D)

Libraries
File name: | dataset

Open Cancel

After uploading dataset will get below screen.

Customized Neaural Network Based Intrusion Detection System

Upload NSL-KDD Dataset D:/2023 Major/IDS for US/dataset/dataset.txt

Preprocessing J Generate Training Model ‘ Apply SVM J Apply Random Forest

Apply CNN Model ‘ Accuracy Graph ‘

Dataset loaded

Now click on ‘Preprocessing’ to assign numeric values to each attack names as algorithms will not
understand string names.

955

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

€ ized Neaural N '’k Based I Detection System
Upload NSL-KDD Dataset | Dv/2023 Maj for Ut xt
Preprocessing | Generate Training Model ‘ Apply SVM ‘ Apply Random Forest

Apply CNN Model Accuracy Graph

Removed non numeric characters from dataset and saved inside clean.txt file

Dataset Information

0,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.0,0.0,0.0,0.0,1.0,0.0,0.0,150,25,0.17,0.03,0.17,0.0,0.0,0.0,0.05,0.0,0
0,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,1,0.0,0.0,0.0,0.0,0.08,0.15,0.0,255,1,0.0,0.6,0.88,0.0,0.0,0.0,0.0,0.0,0
0,000, 123

023 01,0
0,199, . S .0
0,0,0,0,0,0,0,0,0,0,0,0.0.0,0,0.0,0,0,121,19,0.0,0.0,1.0,1.0,0.16,0.06,0.0,255,19,0.07,
0,0,0,0,0,0,0,0,0,0,0,0.0,0,0,0,0,0,0,166.9,1.0,1.0,0.0,0.0,0.05,0.06,0.0,255.9,0.04,0.0:
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,117,16,1.0,1.0,0.0,0.0,0.14,0.
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,270,23,1.0,1.0,0.0,0.0,0.09

0, £

0, 0.06,

0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,199,3,1.0,1.0,0.0,0.0,0.02,0.06.0.0,255,13,0.0: .0,
0,287,2251,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,7,0.0,0.0,0.0,0.0,1.0,0.0,0.43,8,219,1.0,0.0,0.12,
,1.0,0.0,0.0,2,20,1.0,0.0,1.0,0.2,0.0,0.0,0.0,0.
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,233,1,1.0,1.0,0.0,0.0,0.0,0.06,0.0,255,1,0.0,0.07,0.0,0.0,1.0,1.0,0.0,0.0,1
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,96,16,1.0,1.0,0.0,0.0,0.17,0.05,0.0,255,2,0.01,0.06,0.0,0.0,1.0,1.0,0.0,0.0,1

In above screen we can see we assign numeric id to each attack and will get below graph which
display number of different attacks.

B Figure 1 m] x

5000 -

4000 -

3000 -

2000 4

1000 4

0 T T T T
“j;e‘\w:;:‘::;—ﬂs"*a @-o‘:s "ei:) \“‘\c:ev‘_\\;\z ma@ﬂo “‘\b\ i:s"‘c&(o"“\\ '9@“ 4(“?:}‘6‘091(‘\\:“ a,;.e(
o

€ P Q=

In above graph x-axis represents attack name found in dataset and y-axis represents count of that
attack type. Now click on ‘Generate Training Model’ to split dataset into train and test part where
application used 80% dataset to train algorithms and 20% to test algorithms prediction accuracy.

Ci Neaural Based Detection System
Upload NSL-KDD Dataset D:/2023 MajorIDS for US/dataset/dataset.xt
Preprocessing | Generate Training Model I Apply SVM J Apply Random Forest

Apply CNN Model Accuracy Graph

Training model generated

Total records found in dataset s : 10137
80% records used to train deep learning algorithm : $109
20% records used fo train deep learning algorithm : 2028

956

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

In above screen we can see dataset contains total 10137 records and application using 8109 records
for training and 2028 records for testing algorithm prediction accuracy. Now train and test data is
ready and click on ‘Apply SVM’ to get its prediction accuracy.

Customized Neaural Network Based Intrusion Detection System

Upload NSL-KDD Dataset | D+/2023 Major/IDS for US/dataset/dataset.txt

Preprocessing ‘ Generate Training Model ‘ Apply SVM | Apply Random Forest

Apply CNN Model ‘ Accuracy Graph I

Prediction Results

SVM Accuracy, Classification Report & Confusion Matrix
Accuracy : 52.26824457593688

Report : precision recall fl-score support

0.0 052 100 069 1061
10 000 0.00 000 680
20 000 000 000 17
30 o000 000 000 63
40 000 000 000 49
50 000 000 000 11
6.0 000 000 0.00 25
7.0 000 000 0.00 62
80 000 000 000 46
9.0 000 000 000 2
100 0.00 000 0.00 8
110 0.00 0.00 0.00 1

In above screen with SVM we got 52.26% accuracy and scroll down above screen text area to get
confusion matrix. Now click on ‘Apply Random Forest’ to get its accuracy.

Customized Neaural Network Based Intrusion Detection System

Upload NSL-KDD Dataset | D¥2023 Major/IDS for US/dataset/dataset.tst

Preprocessing Generate Training Model Apply SVM Apply Random Forest

Apply CNN Model Accuracy Graph
Prediction Results
Random Forest Algorithm Accuracy, Classification Report & Confusion Matrix
Accuracy : 52.31755424063116

Report : precision recall fl-score support

In above screen we can see random forest got 52.31% accuracy. Now apply proposed CNN Model.

Customized Neaural Network Based Intrusion Detection System

Upload NSLKDD Dataset | D:2023 Major/IDS for US/dataset/dataset.txt

Preprocessing ‘ Generate Training Model | Apply SVM Apply Random Forest

Apply CNN Model Accuracy Graph

DNN Accuracy : 93.77527532984924

In above screen we can see DNN accuracy is 93.77% which is better than other two algorithms. Now
click on ‘Accuracy Graph’ to get below graph

957

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

SVM Random Forest

€3 + Q= B

In above graph x-axis represents algorithm name and y-axis represents accuracy and DNN is the
proposed technique which got high accuracy compared to traditional algorithms such SVM and
random forest.

5. CONCLUSION AND FUTURE SCOPE

This project proposed a hybrid intrusion detection system using a highly scalable framework on
commodity hardware server which has the capability to analyze the network and host-level activities.
The framework employed distributed deep learning model with DNNs for handling and analyzing
very large-scale data in real time. The DNN model was chosen by comprehensively evaluating their
performance in comparison to classical machine learning classifiers on various benchmark IDS
datasets. In addition, we collected host-based and network-based features in real-time and employed
the proposed DNN model for detecting attacks and intrusions. In all the cases, we observed that
DNNs exceeded in performance when compared to the classical machine learning classifiers. Our
proposed architecture is able to perform better than previously implemented classical machine
learning classifiers in both HIDS and NIDS. To the best of our knowledge this is the only framework
which has the capability to collect network-level and host-level activities in a distributed manner
using DNNs to detect attacks more accurately. The performance of the proposed framework can be
further enhanced by adding a module for monitoring the DNS and BGP events in the networks. The
execution time of the proposed system can be enhanced by adding more nodes to the existing cluster.

In addition, the proposed system does not give detailed information on the structure and
characteristics of the malware. Overall, the performance can be further improved by training complex
DNNs architectures on advanced hardware through distributed approach. Due to extensive
computational cost associated with complex DNNs architectures, they were not trained in this
research using the benchmark IDS datasets. This will be an important task in an adversarial
environment and is considered as one of the significant directions for future work.

REFERENCES

[1] Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994). Network intrusion detection. IEEE
network, 8(3), 26-41.

[2] Larson, D. (2016). Distributed denial of service attacks-holding back the flood. Network
Security, 2016(3), 5-7.

958

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),943- 959
Research Article

[3] Staudemeyer, R. C. (2015). Applying long short-term memory recurrent neural networks to
intrusion detection. South African Computer Journal, 56(1), 136-154.

[4] Venkatraman, S., Alazab, M. "Use of Data Visualisation for Zero-Day Malware Detection,"
Security and Communication Networks, vol. 2018, Article ID 1728303, 13 pages, 2018.
https://doi.org/10.1155/2018/1728303

[5] Mishra, P., Varadharajan, V., Tupakula, U., & Pilli, E. S. (2018). A detailed investigation and
analysis of using machine learning techniques for intrusion detection. IEEE Communications
Surveys & Tutorials.

[6] Azab, A., Alazab, M. & Aiash, M. (2016) "Machine Learning Based Botnet Identification
Traffic" The 15th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (Trustcom 2016), Tianjin, China, 23-26 August, pp. 1788-
1794,

[7] Vinayakumar R. (2019, January 19). vinayakumarr/Intrusion-detection v1 (Version vl).
Zenodo. http://doi.org/10.5281/zenodo.2544036

[8] Tang, M., Alazab, M., Luo, Y., Donlon, M. (2018) Disclosure of cyber security
vulnerabilities: time series modelling, International Journal of Electronic Security and Digital
Forensics. Vol. 10, No.3, pp 255 - 275.

[9] V. Paxson. Bro: A system for detecting network intruders in realtime. Computer networks,
vol. 31, no. 23, pp. 24352463, 1999. DOI http://dx.doi. org/10.1016/S1389-1286(99)00112-7

[10] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

959

