STRONG SPLIT DOMINATION POLYNOMIAL OF PATHS

E. Selvi and R. Kala Department of Mathematics Manonmaniam Sundaranar University Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India email: selvie173@gmail.com karthipyi91@yahoo.co.in

Abstract

Let G = (V(G), E(G)) be a simple graph. A dominating set $D \subseteq V(G)$ is a strong split dominating set if the induced subgraph $\langle V - D \rangle$ is totally disconnected with at least two vertices. Let $\mathcal{D}_{ss}(G, i)$ be the family of strong split dominating sets of G of cardinality *i* and $|\mathcal{D}_{ss}(G, i)| = d_{ss}(G, i)$. We define the strong split domination polynomial of a graph G of order n as the polynomial $\mathcal{D}_{ss}(G, x) = \sum_{i=\gamma_{ss}(G)}^{n-2} d_{ss}(G, i) x^i$. In this paper, we determine the strong split domination polynomial of paths and obtain some of its properties.¹

1. Introduction

Let G = (V, E) be a simple graph with vertex set V = V(G) and edge set E = E(G). A set $D \subseteq V$ is a dominating set if every vertex in V - D is adjacent to a vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G. A dominating set with cardinality $\gamma(G)$ is called a γ -set. For a detailed treatment of this parameter the reader is referred to [2]. In [1], S Alikhani and Y H Peng has found the recursive relation for the domination polynomial of paths. Now in the same way we find the recursive relation for the strong split domination polynomial of paths.

A dominating set $D \subseteq V(G)$ is a strong split dominating set if the induced subgraph $\langle V - D \rangle$ is totally disconnected with at least two vertices. The strong split domination number is the minimum size of a strong split dominating set of *G* and is denoted by $\gamma_{ss}(G)$. Strong split domination in graph was introduced by Kulli and Janakiraman in [3]. For more details on strong split domination we refer [4]. It is immediate that for any path P_n , $\gamma_{ss}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor$ [4].

Definition 1. [5] Let $\mathcal{D}_{ss}(G, i)$ be the collection of strong split dominating sets of *G* of cardinality *i* and $|\mathcal{D}_{ss}(G, i)| = d_{ss}(G, i)$. The strong split domination polynomial of *G* is defined as $D_{ss}(G, x) = \sum_{i=\gamma_{ss}(G)}^{n-2} d_{ss}(G, i)x^{i}$.

¹ 2010 Mathematics Subject Classification: 05C69, 11B83.

Keywords: Strong split dominating sets, Strong split domination polynomial.

2. Construction of Strong Split Dominating Sets of Paths

A Path is a graph whose vertices can be listed in the order $\{u_1, u_2, ..., u_n\}$ such that the edges are $\{u_i u_{i+1}\}$ where i = 1, 2, 3, ..., n - 1. Let $\mathcal{D}_{ss}(P_n, i)$ be the collection of strong split dominating sets of P_n with cardinality *i*.

Observation 1. For any path P_n,

- 1. $\mathcal{D}_{ss}(P_n, i) = \emptyset$ if and only if i > n 2 or $i < \left|\frac{n}{2}\right|$
- 2. $\mathcal{D}_{ss}(P_n, i) \neq \emptyset$ if and only if $\left\lfloor \frac{n}{2} \right\rfloor < i < n-2$
- 3. To find a strong split domination polynomial of P_n with cardinality i, it is enough to consider $\mathcal{D}_{ss}(P_{n-1}, i-1)$ and $\mathcal{D}_{ss}(P_{n-2}, i-1)$. Thus we have to consider four combinations of whether these two collections are empty or not.

Lemma 1. If $\mathcal{D}_{ss}(P_{n-1}, i-1) = \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) = \emptyset$, then $\mathcal{D}_{ss}(P_n, i) = \emptyset$.

Proof. Suppose that $\mathcal{D}_{ss}(P_n, i) \neq \emptyset$. Let $\mathcal{A} \in \mathcal{D}_{ss}(P_n, i)$. Then at least one vertex n or n-1 is in \mathcal{A} . If $n \in \mathcal{A}$ then, at least one vertex n-2 or n-3 is in \mathcal{A} . If $n-2 \in \mathcal{A}$, then $\mathcal{A} - \{n\} \in \mathcal{D}_{ss}(P_{n-1}, i-1)$, which is a contradiction. If $n-3 \in \mathcal{A}$, then $\mathcal{A} - \{n\} \in \mathcal{D}_{ss}(P_{n-2}, i-1)$, which is a contradiction.

Now suppose that, $n - 1 \in \mathcal{A}$. Then at least one vertex n - 3 or n - 4 is in \mathcal{A} . If $n - 2 \in \mathcal{A}$, then $\mathcal{A} - \{n - 1\} \in \mathcal{D}_{ss}(P_{n-1}, i - 1)$, which is a contradiction. If $n - 3 \in \mathcal{A}$, then $\mathcal{A} - \{n - 1\} \in \mathcal{D}_{ss}(P_{n-2}, i - 1)$, which is a contradiction.

Hence $\mathcal{D}_{ss}(P_n, i) = \emptyset$.

Lemma 2. Suppose $\mathcal{D}_{ss}(P_n, i) \neq \emptyset$. Then

- 1. $\mathcal{D}_{ss}(P_{n-1}, i-1) = \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$ if and only if n = 2k + 1 and i = k for some $k \in \mathbb{N}$.
- 2. $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) = \emptyset$ if and only if i = n 2.
- 3. $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$ if and only if $\left|\frac{n-1}{2}\right| + 1 \le i \le n-2.$

Proof. 1. Assume that $\mathcal{D}_{ss}(P_{n-1}, i-1) = \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$. Since $\mathcal{D}_{ss}(P_{n-1}, i-1) = \emptyset$ by Observation 1, i-1 > n-3 or $i-1 < \left\lfloor \frac{n-1}{2} \right\rfloor$. If i-1 > n-3, then i > n-2 and by Observation 1, $\mathcal{D}_{ss}(P_n, i) = \emptyset$ a contradiction. So $i < \left\lfloor \frac{n-1}{2} \right\rfloor + 1$ and since $\mathcal{D}_{ss}(P_n, i) \neq \emptyset$ together with $\left\lfloor \frac{n}{2} \right\rfloor \le i < \left\lfloor \frac{n-1}{2} \right\rfloor + 1$, we have n = 2k + 1 and i = k for some $k \in \mathbb{N}$.

Conversely, if n = 2k + 1 and i = k for some $k \in \mathbb{N}$, then by Observation 1, Assume that $\mathcal{D}_{ss}(P_{n-1}, i-1) = \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$.

2. Assume that $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) = \emptyset$. Since $\mathcal{D}_{ss}(P_{n-2}, i-1) = \emptyset$, by Observation 1, i-1 > n-4 or $i-1 < \left\lfloor \frac{n-2}{2} \right\rfloor$. If $i-1 < \left\lfloor \frac{n-2}{2} \right\rfloor$, then $i-1 < \left\lfloor \frac{n-1}{2} \right\rfloor$ and hence $\mathcal{D}_{ss}(P_{n-1}, i-1) = \emptyset$, a contradiction. So i > n-3 and also since $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$, $i-1 \le n-3$. Therefore, i=n-2. Conversely, if i=n-2, then by Observation 1, $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) = \emptyset$.

3. Let us assume that $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$. Then by Observation 1, $\left\lfloor \frac{n-1}{2} \right\rfloor \leq i-1 \leq n-3$ and $\left\lfloor \frac{n-2}{2} \right\rfloor \leq i-1 \leq n-4$. So, $\left\lfloor \frac{n-1}{2} \right\rfloor \leq i-1 \leq n-4$ and hence $\left\lfloor \frac{n-1}{2} \right\rfloor + 1 \leq i \leq n-2$. Conversely, if $\left\lfloor \frac{n-1}{2} \right\rfloor + 1 \leq i \leq n-2$, then by Observation 1, $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$.

Theorem 1. Let $n \ge 5$ and $i \ge \left\lfloor \frac{n}{2} \right\rfloor$ 1. If $\mathcal{D}_{ss}(P_{n-1}, i-1) = \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \ne \emptyset$, then $\mathcal{D}_{ss}(P_n, i) = \{\{2, 4, 6, ..., n-3, n-1\}\}.$

- 2. If $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) = \emptyset$, then $\mathcal{D}_{ss}(P_n, i) = S \cup \{\{1, 2, 3, ..., n-1\} \{x\}/x \in \{1, 2, 3, ..., n-2\}\}$ where $S = \{X_1 \cup \{n\}/X_1 \in \mathcal{D}_{ss}(P_{n-1}, n-3)\}$.
- 3. If $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$, then $\mathcal{D}_{ss}(P_n, i) = S_1 \cup S_2$, where $S_1 = \{X_1 \cup \{n\}/X_1 \in \mathcal{D}_{ss}(P_{n-1}, i-1)\}$ and $S_2 = \{X_2 \cup \{n-1\}/X_2 \in \mathcal{D}_{ss}(P_{n-2}, i-1)\}$.

Proof. 1. Let $\mathcal{D}_{ss}(P_{n-1}, i-1) = \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$. By Lemma 2(1) n = 2k + 1 and i = k for some $k \in \mathbb{N}$. Then

 $\mathcal{D}_{ss}(P_n,i) = \mathcal{D}_{ss}(P_{2k+1},k) = \big\{\{2,4,6,\ldots,n-3,n-1\}\big\}.$

2. Let $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) = \emptyset$. By Lemma 2(2), i = n - 2. Therefore $\{\{1, 2, 3, ..., n-1\} - \{x\}/x \in \{1, 2, 3, ..., n-2\}\}$ be the collection of strong split dominating sets of P_n of cardinality n - 2 with the vertex n not included and $S = \{X_1 \cup \{n\}/X_1 \in \mathcal{D}_{ss}(P_{n-1}, n-3)\}.$

3. Let $\mathcal{D}_{ss}(P_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_{ss}(P_{n-2}, i-1) \neq \emptyset$ ad assume that $X_1 \in \mathcal{D}_{ss}(P_{n-1}, i-1)$. Then $X_1 \cup \{n\} \in \mathcal{D}_{ss}(P_n, i-1)$. Take $S_1 = \{X_1 \cup \{n\}/X_1 \in \mathcal{D}_{ss}(P_{n-1}, i-1)\}$. Then $S_1 \subseteq \mathcal{D}_{ss}(P_n, i)$.

Let us assume that $X_2 \in \mathcal{D}_{ss}(P_{n-2}, i-1)$. Then $X_2 \cup \{n-1\} \in \mathcal{D}_{ss}(P_n, i-1)$. Take $\mathcal{S}_2 = \{X_2 \cup \{n-1\}/X_2 \in \mathcal{D}_{ss}(P_{n-2}, i-1)\}$. Then $\mathcal{S}_2 \subseteq \mathcal{D}_{ss}(P_n, i)$. Thus $\mathcal{S}_1 \cup \mathcal{S}_2 \subseteq \mathcal{D}_{ss}(P_n, i)$.

Now suppose that $Y \in \mathcal{D}_{ss}(P_n, i)$. Then $n \in Y$ or $n \notin Y$. If $n \in Y$, then there exist $X_1 \in \mathcal{D}_{ss}(P_{n-1}, i-1)$ such that $Y = X_1 \cup \{n\}$. Hence $Y \in S_1$. If $n \notin Y$, then $n-1 \in Y$

otherwise $Y \notin \mathcal{D}_{ss}(P_n, i)$. If $n - 1 \in Y$, then there exist $X_2 \in \mathcal{D}_{ss}(P_{n-2}, i - 1)$ such that $X_2 \cup \{n - 1\} \in Y$. Thus $Y \in S_2$. Therefore $\mathcal{D}_{ss}(P_n, i) \subseteq S_1 \cup S_2$. Hence the Proof.

Example 1. Consider the Path P_7 on 7 vertices with $V(P_7) = \{1,2,3,4,5,6,7\}$. By using Theorem 1 we construct the strong split dominating sets of $\mathcal{D}_{ss}(P_7, i)$ for i = 3,4,5.

Since $\mathcal{D}_{ss}(P_6, 2) = \emptyset$ and $\mathcal{D}_{ss}(P_5, 2) \neq \emptyset$, by Theorem 1(1), $\mathcal{D}_{ss}(P_5, 2) = \{2, 4\}$. Therefore $\mathcal{D}_{ss}(P_7, 3) = \{2, 4, 6\}$.

Since $\mathcal{D}_{ss}(P_6, 3) = \{\{1,3,5\}, \{2,4,5\}, \{2,4,6\}, \{2,3,5\}\}$ and $\mathcal{D}_{ss}(P_5, 3) = \{\{1,3,5\}, \{2,3,4\}, \{2,3,5\}, \{1,2,4\}, \{2,4,5\}, \{1,3,4\}\},$ then by Theorem 1(3),

$$\mathcal{D}_{ss}(P_7,4) = \begin{cases} \{1,3,5,7\}, \{2,4,5,7\}, \{2,4,6,7\}, \{2,3,5,7\}, \\ \{1,3,5,6\}, \{2,3,4,6\}, \{2,3,5,6\}, \{1,2,4,6\}, \{2,4,5,6\}, \{1,3,4,6\} \end{cases} \}.$$

Since $\mathcal{D}_{ss}(P_6, 4) = \begin{cases} \{1,3,5,6\}, \{2,3,4,6\}, \{2,3,5,6\}, \{1,2,4,6\}, \{2,4,5,6\}, \{1,3,4,6\}, \\ \{1,2,3,5\}, \{1,2,4,5\}, \{1,3,4,5\}, \{2,3,4,5\} \end{cases}$

$$\mathcal{D}_{ss}(P_5, 4) = \emptyset, \text{ then by using Theorem 1(2)}, \\ \{X_1 \cup \{n\}/X_1 \in \mathcal{D}_{ss}(P_6, 4)\} = \begin{cases} \{1, 3, 5, 6, 7\}, \{2, 3, 4, 6, 7\}, \{2, 3, 5, 6, 7\}, \{1, 2, 4, 6, 7\}, \{2, 4, 5, 6, 7\}, \{1, 3, 4, 6, 7\}, \{1, 2, 3, 5, 7\}, \{1, 2, 4, 5, 7\}, \{1, 3, 4, 5, 7\}, \{2, 3, 4, 5, 7\}, \{1, 2, 4, 5, 7\}, \{1, 3, 4, 5, 7\}, \{2, 3, 4, 5, 7\} \end{cases}$$

and $\{\{1,2,3,\ldots,6\} - \{x\}/x \in \{1,2,3,4,5\}\} = \{\{1,2,3,4,6\}, \{1,2,3,5,6\}, \{1,2,4,5,6\}, \{1,3,4,5,6\}, \{2,3,4,5,6\}\}$

Thus
$$\mathcal{D}_{ss}(P_7, 5) = \begin{cases} \{1,3,5,6,7\}, \{2,3,4,6,7\}, \{2,3,5,6,7\}, \{1,2,4,6,7\}, \{2,4,5,6,7\}, \{1,3,4,6,7\}, \{1,2,3,5,7\}, \{1,2,4,5,7\}, \{1,3,4,5,7\}, \{2,3,4,5,7\}, \{1,2,3,4,6\}, \{1,2,3,5,6\}, \{1,2,4,5,6\}, \{1,2,4,5,6\}, \{1,3,4,5,6\}, \{2,3,4,5,6\} \end{cases}$$

3. Strong Split Domination Polynomial of Paths

In this section we determine the strong split domination Polynomial of Paths and some of its properties.

Definition 2. Let $\mathcal{D}_{ss}(P_n, i)$ be the collection of strong split dominating sets of P_n of cardinality *i* and $|\mathcal{D}_{ss}(P_n, i)| = d_{ss}(P_n, i)$. Then the strong split domination polynomial of path is defined as $D_{ss}(P_n, x) = \sum_{i=\lfloor \frac{n}{2} \rfloor}^{n-2} d_{ss}(P_n, i)x^i$.

Theorem 2. If $\mathcal{D}_{ss}(P_n, i)$ is the collection of strong split dominating set of cardinality i of P_n , then $|\mathcal{D}_{ss}(P_n, i)| = |\mathcal{D}_{ss}(P_{n-1}, i)| + |\mathcal{D}_{ss}(P_{n-2}, i)| + |\mathcal{D}|$ where $\mathcal{D} = \{\{1, 2, 3, ..., n-1\} - \{x\}/x \in \{1, 2, 3, ..., n-2\}\}.$

Proof. By using Theorem 1, the result follows.

Theorem 3. For every path $P_n (n \ge 5)$, $D_{ss}(P_n, x) = x (D_{ss}(P_{n-1}, x) + D_{ss}(P_{n-2}, x)) + (n-2)x^{n-2}$ with $D_{ss}(P_3, x) = x$ and $D_{ss}(P_4, x) = 3x^2$.

Proof. By using Theorem 2 and the definition of strong split domination polynomial we get the result.

Theorem 4. Let $D_{ss}(P_n, x)$ be the strong split domination polynomial of path P_n . Then the following properties hold.

- 1. For any positive integer n, $d_{ss}(P_n, n-1) = 0$ and $d_{ss}(P_n, n) = 0$.
- 2. $d_{ss}(P_n, i) = d_{ss}(P_{n-1}, i-1) + d_{ss}(P_{n-2}, i-1)$, for any positive integer $\left|\frac{n}{2}\right| \le i \le n-3$.
- 3. $d_{ss}(P_{2n+1}, n) = 1$, for every positive integer $n \ge 1$.
- 4. $d_{ss}(P_{2n}, n) = n + 1$, for every positive integer $n \ge 2$.
- 5. $d_{ss}(P_n, n-2) = \frac{(n-1)(n-2)}{2}$, for every positive integer $n \ge 3$.

Proof. 1. The result follows from Definition 2.

2. It follows from Theorem 2.

3. By Theorem 2(1), $\{\{2,4,6,\ldots,n-3,n-1\}\}\$ is the only strong split dominating set of size *n*. Hence $d_{ss}(P_{2n+1},n) = 1$.

4. For = 2, $\mathcal{D}_{ss}(P_4, 2) = \{\{1,3\}, \{2,4\}, \{2,3\}\}$. So, $d_{ss}(P_4, 2) = 3$ and n + 1 = 2 + 1 = 3. Therefore the result is true for n = 2. Assume that the result is true for all positive integers less than n. By (2) and induction hypothesis

$$d_{ss}(P_{2n},n) = d_{ss}(P_{2n-1},n-1) + d_{ss}(P_{2n-2},n-1)$$

= $d_{ss}(P_{2n-1+1-1},n-1) + d_{ss}(P_{2(n-1)},n-1)$
= $d_{ss}(P_{2(n-1)+1},n-1) + d_{ss}(P_{2(n-1)},n-1)$
 $d_{ss}(P_{2n},n) = n + 1.$

5. There are $\binom{n}{n-2}$ sets of cardinality n-2. In any path P_n , exactly (n-1) pair of vertices are adjacent. So, the number of strong split dominating sets of cardinality n-2 will be $d_{ss}(P_n, n-2) = \binom{n}{n-2} - (n-1) = \frac{(n-1)(n-2)}{2}$.

4. Conclusion

In this paper we have found the Strong Split Domination polynomial for Paths. In future we plan to investigate the polynomial for several graph products.

References

- [1] S. Alikhani and Y.H. Peng, Dominating Sets and Domination Polynomials of Paths, Int. J. Math. Math. Sci.(2009), Article ID 542040, 10 pages.
- [2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [3] V. R. Kulli and B. Janakiram, The strong split domination number of a graph, Acta Ciencia Indica, 32 M (2006), 715-720.
- [4] V. R. Kulli, Theory of domination in graphs, Vishwa international publications, 2010.
- [5] E. Selvi and R. Kala, A note on Strong Split Domination Polynomial of a Graph, Proceedings of ICAMMCT-2021, (ISBN:978-93-85434-84-6)(2021), 125-130.