On Minimal ? dense Sets and its Applications

Sharmistha
Bhattacharya (Halder)
Professor, Dept of
Mathematics Tripura
University
Tripura-799022
Email: sharmisthabhattacharyahalder@gmail.com

Abstract

The aim of this paper is to introduce a new concept of Λ dense set and to study its topological structure. It can be shown that the collection of all this Λ - dense set forms a supra topological space if ϕ is introduced. Also the concept of minimal Λ dense set is introduced and some of its applications are shown. Lastly introducing the concept of Λ sub maximal space various important properties of minimal Λ dense sets are studied in a Λ - sub maximal space.

Key words: Λ dense set, minimal Λ dense set, Λ - sub maximal space etc
2000 MSC: 54C08, 54A05

1. Introduction:

The concept of dense set has been introduced earlier by various researchers as, A is a dense set in (X, T) if ClA $=\mathrm{X}$. But in this paper in place of closed set introducing open sets a new concept of Λ - dense set is introduced. The concept of Λ set has been introduced by Maki in [7].
In the second section of this paper preliminaries are given
In the third section of the paper the concept of Λ dense set and the topological space obtained from the collection of this set is studied. Also the concept of minimal Λ dense set is introduced and the topological structure for various minimal Λ dense sets is studied. It is shown that every superset of a Λ dense set is a Λ dense set and no open set except X can be a Λ dense set. It is shown that the collection of all Λ dense set forms a supra topological space and it is denoted by T_{Λ}. Some important theorems were proved related to the structural behaviour of this new space.
It is shown that (X, T) is a discrete topological space iff T_{Λ} is the power set of X. Also (X, T) is a power set of X iff $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \phi\}$. Similarly many important theorems were proved in this section of the paper. Then the concept of minimal Λ dense set is introduced and some theorems were proved. The concept of Λ submaximal space is introduced and some of its properties were studied.
Lastly the applications of this newly defined set are studied

2.Preliminaries:

In this section some important concept required to go further through this paper is studied. 2.1[6] A subset A of X is a generalized closed set if for any open set U containing $\mathrm{A}, \mathrm{ClA} \subseteq \mathrm{U} 2.2[8]$ Let Abe a subset of X then $\Lambda(\mathrm{A})=\cap\{\mathrm{G}: \mathrm{G} \supseteq \mathrm{A}, \mathrm{G}$ is an open subset of $X\}$ and if $\Lambda(\mathrm{A})=\mathrm{A}$ then A is a Λ set.
2.3[3] A topological space (X, T) is sub maximal if every dense subset of X is T open
2.4[7] An open set A of X is said to be minimal open set if it doesn't contains any open set except
ϕ
:[5] A space (X, T) is said to be an Alexandroff space if
(i) X and ϕ are members of (X, T)
(ii) Arbitrary union of the members of (X, T) are in (X, T)
(iii) Arbitrary intersection of the members of (X,T) are in (X,T)
[9] A space(X,T) is said to be a Supra topological space if
(i) X and ϕ are members of (X,T)
(ii) Arbitrary union of the members of (X, T) are in (X, T)
[12] A set A in (X, T) is said to be a dense set if $\mathrm{Cl}(\mathrm{A})=\mathrm{X}$
[10] In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such a space is sometimes called an indiscrete space, and its topology sometimes called an indiscrete topology.

3. On Λ - dense set

In this section the concept of Λ-dense set is introduced and the corresponding topological space is studied.Also the connection of Λ dense set with other sets is introduced in this section. Lastly the concept of minimal
Λ dense set is introduced and some of its properties are studied.
Definition 3.1: A subset A of X is said to be a Λ dense set if $\Lambda(A)=X$
Example 3.2: Let $X=\{a, b, c\}$ and the corresponding topological space be $T=\{X, \phi,\{a\}\}$. Let $A=\{b, c\}$ bea subset of X. Obviously $\Lambda(A)=X$ i.e. A is a Λ dense set.
Theorem 3.3: A subset A of X is a Λ dense set. Then

1. $\Lambda \mathrm{Cl}(\mathrm{A})=\mathrm{X}$
2. C
$1 \Lambda(\mathrm{~A})$
$=\mathrm{X}$
Proof
is
obvio
us
Remark 3.4: Converse of the above theorem need not be true which follows from the following example. $\operatorname{Let} X=\{a, b, c\}$ and the corresponding topological space be $T=\{X, \phi,\{a, b\},\{b\},\{b$, c\}\}
Let $\mathrm{A}=\{\mathrm{b}\}$ then $\Lambda \mathrm{ClA}=\mathrm{X}$ but $\Lambda(\mathrm{A})=\{\mathrm{b}\}$ i.e. A is not a Λ dense set.
Theorem 3.5: Let A be a closed subset of X.Let $\Lambda C l A=X$ then A is a Λ dense set.
Proof: Since A is a closed subset of $\mathrm{X}, \mathrm{ClA}=\mathrm{A}$ i.e. $\Lambda \mathrm{ClA}=\Lambda(\mathrm{A})$. Since $\Lambda \mathrm{ClA}=\mathrm{X}, \Lambda(\mathrm{A})=\mathrm{X}$ i.e. A is a Λ dense set.

Remark 3.6: From theorem 3.3 and theorem 3.5 it is clear that:
Let A be a closed subset of X . Then $\Lambda \mathrm{ClA}=\mathrm{X}$ iff A is a Λ
dense set. Theorem 3.7: A subset A of X is a Λ dense set iff
$\Lambda(\mathrm{A})$ is a Λ dense setProof is obvious
Theorem 3.8: In an Alexandroff space a set is a Λ dense set if it is a generalized closed set and a dense set. Proof: Let A be a generalized closed set then for any open set U such that $A \subseteq U, C l A$ $\subseteq \mathrm{U}$. Since $\Lambda(A)$ is theintersection of all open sets containing A, so, $\mathrm{A} \subseteq \Lambda(A) \subseteq \mathrm{U}$.
In an Alexandroff space $\Lambda(\mathrm{A})$ is an open set. So, $\mathrm{ClA} \subseteq \Lambda(\mathrm{A})$, A being dense subset of $\mathrm{X}, \mathrm{ClA}=\mathrm{X}$
i.e. $\Lambda(\mathrm{A})=\mathrm{X}$ i.e. A is a Λ dense set.

Theorem 3.9: A subset A of X is a Λ dense set and a dense set then A is a generalized closed set.
Proof: Let if possible A be a Λ dense set and a dense set. Then $\Lambda(\mathrm{A})=\mathrm{X}$ and $\mathrm{ClA}=\mathrm{X}$ i.e. $\mathrm{ClA}=$ Λ (A).
Now let if possible $A \subseteq U$, U being an open subset of X then $\Lambda(A) \subseteq U$. Since $\Lambda(A)$ is the intersection of allopen sets containing A therefore $\mathrm{ClA}=\Lambda(\mathrm{A}) \subseteq \mathrm{U}$. i.e. A is a generalized closed set.
Remark 3.10: Converse of the above theorem need not be true. It follows since if $\mathrm{ClA}=\mathrm{X} \subseteq \mathrm{U}$ then $\mathrm{U}=\mathrm{X}$
i.e. the only open set containing A is X .

Remark 3.11: From the theorem 3.8 and theorem 3.9 the following statement may be written In an Alexandroff space a subset A of X is a dense set. Then the following statements are equivalent:

1. A is a Λ dense set
2. A is a generalized closed set
3. $\mathrm{Cl} \Lambda(\mathrm{A})=\mathrm{X}$

Theorem 3.12:Every superset of a Λ dense set is a
Λ dense set.Proof is obvious

Theorem 3.13:If $A \subseteq B \subseteq \Lambda(A)$, where B is a Λ dense set then A is also so.
Proof: Let $A \subseteq B \subseteq \Lambda(A)$ i.e. $\Lambda(A) \subseteq \Lambda(B) \subseteq \Lambda \Lambda(A)=\Lambda(A)$ i.e. $\Lambda(A)=\Lambda(B)$. Since B is a Λ dense set $\Lambda(\mathrm{B})=\mathrm{X}$ i.e. $\Lambda(\mathrm{A})=\mathrm{X}$ i.e. A is also a Λ dense set.
Remark 3.14: No open set except X can be a Λ dense set.

Theorem 3.15:

(i) ϕ is not a Λ dense set but X is so.
(ii) Arbitrary union of Λ dense set in (X, T) is a Λ dense set in (X, T)

Proof:

(i) is
obvious
To
Prove(i
i)

Let $A=\left\{A_{i}: i \in I\right\}$ be a collection of Λ dense set i.e. $\left\{\Lambda\left(A_{i}\right): i \in I\right\}=X$
Then $\Lambda\left(\cup A_{i}: i \in I\right)=\cup\left\{\Lambda\left(A_{i}\right): i \in I\right\}=$ X i.e. $\Lambda(A)=X$ i.e. arbitrary union of Λ dense set is a Λ dense set. Remark 3.16: Finite intersection of Λ dense set need not be a Λ dense set. It follows from the followingexample:
Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{T}=\{\phi, \mathrm{X},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\}$ be the corresponding topology
Let $A=\{a, c\}$ and $B=\{b, c\}$ be two subsets of X then $\Lambda(A)=X, \Lambda(B)=X$. But $A \cap B=\{c\}$, $\Lambda(\mathrm{A} \cap \mathrm{B})=\{\mathrm{c}\}$
$\neq \mathrm{X}$ i.e. $\mathrm{A} \cap \mathrm{B}$ is not a Λ dense set though A and B are Λ dense set.
Remark 3.17: The collection of all Λ dense set in (X, T) with ϕ forms a supra topological space denoted as $\left(X, T_{\Lambda}\right)$. This space is named as Λ dense supra topological space. In the above example $T_{\Lambda}=\{\phi, X, A, B\}$ Theorem 3.18: (X, T) is an indiscrete topological space iff T_{Λ} is the power set of X.
Proof: Since (X, T) is an indiscrete topological space, So, $T=\{X, \phi\}$. The power set of X contains all subsetsof X and they are all Λ dense set.
Conversely if $\mathrm{T}_{\Lambda}=\mathrm{P}(\mathrm{X})$ and since no open sets can be a Λ dense set except X . So, $\mathrm{T}=\{\mathrm{X}, \phi\}$

Theorem 3.19: (X, T) be a topological space such that $T=P(X)$ iff $T_{\Lambda}=\{X, \phi\}$
Proof: Since from Remark 3.14 no open set except X and ϕ can be a member of $T_{\Lambda} . S o, T_{\Lambda}=\{X$, $\phi\}$ Conversely if $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \phi\}$ then, T must contain all elements whose order is one less then that of X . Also Tmust contain their finite intersection i.e. all the elements whose order is two less then that of X and soon i.e. T
$=\mathrm{P}(\mathrm{X})$
Definition 3.20: A topology T is said to be a maximal topology of any set $A \subseteq P(X)$, if it is a subset of A butcontained in no other topology which is a subset of A.
Theorem 3.21: $T_{\Lambda}=\{X, A, \phi\}$ iff T is the maximal topology of $P(X) \backslash A$, where A is a subset of X of order $\mathrm{n}-1, \mathrm{n}$ is the order of X
Proof: Let if possible we consider that, $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \mathrm{A}, \phi\}$. Since the superset of all Λ dense set is a Λ dense set.So, if there exist any superset of A then that should be a member of T_{Λ}. But T_{Λ} contains only A except X and
ϕ. So, the order of A is one less then that of X i.e. $\mathrm{n}-1$. The corresponding topology must be a subset of $\mathrm{P}(\mathrm{X})$ \
A. Let $\mathrm{T}_{1} \subseteq \mathrm{P}(\mathrm{X}) \backslash \mathrm{A}$ be another topology containing T . Then there is some open set, which is not in T. So either $\mathrm{T}_{1 \Lambda} \supseteq\{\mathrm{X}, \mathrm{A}, \phi\}$ or $\mathrm{T}_{1 \Lambda}=\{\mathrm{X}, \mathrm{A}, \phi\}$.The first one is not possible and if the second one is true then we convert T by T_{1} which is the maximal topology.
Conversely let T is the maximal topology of $P(X) \backslash A$, where A is a subset of X of order $n-1, n$ is the order of X then obviously $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \mathrm{A}, \phi\}$.
Theorem 3.22: $T=\{X, A, \phi\}$ iff $T_{\Lambda}=P(X) \backslash\{G: G \subseteq A\}$
Proof: Let if possible $T=\{X, A, \phi\}$ then T_{Λ} will contain all the subsets of $\mathrm{P}(\mathrm{X})$ except the set A and itssubsets i.e. $T_{\Lambda}=P(X) \backslash\{G: G \subseteq A\}$
Converse is obviously true
Theorem 3.23: $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \mathrm{A}, \mathrm{B}, \phi\}$ iff

1. T is the maximal topology of $\{P(X) \backslash A\} \backslash B$, where A is a subset of X of order $n-1$, and B is a subset of A oforder $n-2, n$ is the order of X
2. T is the maximal topology of $\{P(X) \backslash A\} \backslash B$, where A and B both are of order $n-2, n$ is the order of X

Proof: Let if possible, $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \mathrm{A}, \mathrm{B}, \phi\}$. Since T_{Λ} forms a supra topological space so finite intersection ofthe elements need not be a member of the set T_{Λ}. Hence two cases may arise
Case 1: A and B are related to each other and B is a subset of A. Obviously from theorem 3.21 A is a subset
of X of order $\mathrm{n}-1$ and by the help of the similar logic B is of order $\mathrm{n}-2$. Clearly T is the maximal topology of
$\{\mathrm{P}(\mathrm{X}) \backslash \mathrm{A}\} \backslash \mathrm{B}$
Case 2:If A and B are not related then $A \cup B=X$, and both of them are of order $n-1$ and T is the maximaltopology of $\{\mathrm{P}(\mathrm{X}) \backslash \mathrm{A}\} \backslash \mathrm{B}$
Converse is obvious
Theorem 3.24: $\mathrm{T}=\{\phi, \mathrm{X}, \mathrm{A}, \mathrm{B}\}$ iff
1.If A is a superset of B then $T_{\Lambda}=P(X) \backslash\{G: G \subseteq A\}$
2. If A and B are not related then $\mathrm{T}_{\Lambda}=\phi$.

Proof: Here T is a topological space. So we have the following cases
Case1. A is a superset of B then $T_{\Lambda}=P(X) \backslash\{G: G \subseteq A\}$
Case2: If A and B are not related then $A \cup B=X$ and $A \cap B=\phi$ then $T_{\Lambda}=P(X) \backslash\{G: G$
$\subseteq \mathrm{A}\} \backslash\{\mathrm{G}: \mathrm{G} \subseteq \mathrm{B}\}$ Here $\mathrm{B}=\mathrm{A}^{\mathrm{C}}$. Thus $\mathrm{T}_{\Lambda}=\phi$.

Converse is obvious
Let us now introduce a new concept of minimal Λ dense set. Since the superset of a Λ dense set is a Λ dense set, so, the upper bound of the set of all Λ dense set in (X, T) is X but there must exist at least one minimal element, which is contained in, all the Λ dense set in (X, T). This set is known as minimal Λ dense set.
Example 3.25: Let $X=\{a, b, c\}$ and $T=\{\phi, X,\{a\},\{a, c\},\{c\}\}$ be the corresponding topology. Let $A=\{a, b\}$ then $\Lambda(A)=X, B=\{b, c\}, \Lambda(B)=X$. Obviously $A \cap B=\{b\}, \Lambda(A \cap B)=X$ and this is the minimal Λ dense set in (X, T). Here $T_{\Lambda}=\{\phi, X,\{a, b\},\{b, c\},\{b\}\}$ which is a topology.
Theorem 3.26: Every minimal Λ dense set in (X, T) are minimal supra open set in ($\mathrm{X}, \mathrm{T}_{\Lambda}$)
Proof: Since every Λ dense set in (X, T) are supra open set in ($\mathrm{X}, \mathrm{T}_{\Lambda}$)

Remark 3.27:

1. Let if possible T_{Λ} contains only one minimal Λ dense set X i.e. $T_{\Lambda}=\{\phi, X\}$. From theorem 3.19, $\mathrm{T}=\mathrm{P}(\mathrm{X})$.Here T_{Λ} is a discrete topology.
2. Let $\mathrm{T}_{\Lambda}=\{\phi, \mathrm{X}, \mathrm{A}\}$. From theorem 3.21, T is the maximal topology subset of $\mathrm{P}(\mathrm{X}) \backslash \mathrm{A}$ Here A is theminimal Λ dense set. Here T_{Λ} is a topological space where A is a minimal open set in ($\mathrm{X}, \mathrm{T}_{\Lambda}$)
3. Let $T_{\Lambda}=\{\phi, \mathrm{X}, \mathrm{A}, \mathrm{B}\}$. From theorem 3.24, if B is the minimal Λ dense set then T is the maximal topology of $\{P(X) \backslash A\} \backslash B$, where A is a subset of X of order $n-1$, and B is a subset of A of order $\mathrm{n}-2$,
n is the order
of X
4. Let T_{Λ} contains only one minimal Λ - dense set i.e. $\mathrm{T}_{\Lambda}=\{\phi, \mathrm{X},\{\mathrm{G}: \mathrm{G} \supseteq \mathrm{A}\}, \cup\{\mathrm{G}: \mathrm{G} \supseteq \mathrm{A}\}\}$ Since all the superset of a Λ dense set is a Λ dense set and there exist only one minimal Λ dense set. So, all the other Λ dense sets intersection must be the set A or its superset and hence is a Λ dense set. We know that arbitrary union of Λ dense set is a Λ dense set. Therefore we may conclude that if a Λ dense supra topological space contains only one minimal Λ dense set then that supra topological space forms a topological space The corresponding topological space T is a subset of the power set of X such that it doesn't contains A and all its supersets.
5. If T_{Λ} contains r number of minimal Λ dense set then it forms a supra topological space. The correspondingtopological space T contains ϕ, X and all elements of order one less than that of X except r number of sets. Remark 3.28: According to the theorem 3.13, $\mathrm{A} \subseteq \mathrm{B} \subseteq \Lambda(\mathrm{A})$ and B is a Λ dense set then A is also so. But if Bis a minimal Λ dense set then A can't be a proper subset of B i.e. there can't exist any proper subset A of B
such that $\mathrm{A} \subseteq \mathrm{B} \subseteq \Lambda(\mathrm{A})$ where B is a minimal Λ dense set.
Definition 3.29: A topological space (X, T) is a Λ sub-maximal space if every element of $\left(X, T_{\Lambda}\right)$ is also a closed subset of (X, T)

Example 3.30: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{T}=\{\phi, \mathrm{X},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\{\mathrm{b}, \mathrm{d}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$. Here $A=\{a, b, d\} B=\{a, d\}$ are Λ dense set and obviously it is a closed subset of (X, T) Here $\mathrm{T}_{\Lambda}=\{\phi, \mathrm{X}, \mathrm{A}, \mathrm{B}\}$ which are all closed subsets of (X, T) i.e. (X, T) is a Λ sub maximal space Here A isalso a minimal Λ dense set.
Remark 3.31:Let (X, T) is a Λ sub maximal space. Then from Remark 3.6 we can write that A subset A of (X, T) is a Λ dense set iff $\Lambda \mathrm{Cl}(\mathrm{A})=\mathrm{X}$.

Theorem 3.32: In a sub maximal space (X, T) no dense set can be a Λ dense set except X
Proof: Let (X, T) be a sub maximal space i.e. every dense subsets of X are open sets. But no open set can be a
Λ dense set except X. Hence the theorem
Theorem 3.33: If $\left(X, T_{\Lambda}\right)$ is an indiscrete topological space then (X, T) is a Λ sub maximal space.
Proof: Let $\left(X, T_{\Lambda}\right)$ is an indiscrete topological space i.e. $T_{\Lambda}=\{X, \phi\}$ which are both closed set of (X, T). So, (X, T) is a Λ sub maximal space.
Theorem 3.34: If (X, T) is a Λ sub maximal discrete topological space then (X, T_{Λ}) is also so.
Proof: Since the only closed sets in (X,T) are X and ϕ. So, all the Λ dense set must be X only. Hence thetheorem.
Theorem 3.35: Let (X, T) be a topological space with only one element A other then X and ϕ.Then (X, T) is a
Λ sub maximal space iff the order of X is two and $\mathrm{T}_{\Lambda}=\left\{\phi, \mathrm{X}, \mathrm{A}^{\mathrm{C}}\right\}$
Proof: Let if possible (X, T) be a Λ sub maximal space with only one element A except ϕ and X . Then A^{C} is the only closed set except ϕ and $\mathrm{X} . \mathrm{A}^{\mathrm{C}}$ is a Λ dense set or the only Λ dense set is X . Since no other closed set exist in (X, T). Therefore $T_{\Lambda}=\{X, \phi\}$ or $T_{\Lambda}=\left\{X, A^{C}, \phi\right\}$. But from Remark 3.27(1) if $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \phi\}$ then the topological space contains all open subsets of X whose order is one less than that of X . We know that if the order of X is n then it has n subsets of order $(\mathrm{n}-1)$ i.e. if $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \phi\}$ then T must have n elements except X and ϕ. So, T_{Λ} cannot be $\{\mathrm{X}, \phi\}$. Sine T has only one element except X and ϕ.
If $\mathrm{T}_{\Lambda}=\left\{\mathrm{X}, \phi, \mathrm{A}^{\mathrm{C}}\right\}$ then from Remark 3.27(2), since A^{C} is the minimal Λ dense set T must have all open subsets of X whose order is one less than that of X except one which is a super set of A^{C}.
Let X be of order n then T must contain $n-1$ elements other than X and ϕ
But here T contains only one element other than X, ϕ. i.e. the order of X should be 2.
Hence (X, T) is a Λ sub-maximal space with only one element if the order of X is two and the corresponding $\mathrm{T}_{\Lambda}=\left\{\mathrm{X}, \phi, \mathrm{A}^{\mathrm{C}}\right\}$
Converse is obvious.
Theorem 3.36: Let (X, T) be a Λ sub maximal space containing $\mathrm{r}(>1)$ elements other then X and ϕ. Then

1. If T contains r minimal Λ dense sets then the order of X is $2 r$ and $T_{\Lambda}=\left\{G: G^{C} \in T\right\}$
2. If T contains no minimal Λ dense set other than X then the order of T is at least (n 1) $(n+2) / 2$ where n isthe total number of elements in X except X and ϕ
3. If T contains only one minimal Λ dense set other than X then $r \geq(n-2)(n+1) / 2$ where n is the total number of elements in X
4. If T contains $1<m<r$ number of minimal Λ dense set then $r \geq n(m-1)-(m-2)(3 m-1) / 2$

Proof: Let (X, T) be a topological space such that T contains more than one element other than X and ϕ. Let Tcontains $r(>1)$ elements other then X and ϕ. Then there are r number of closed sets other then X and ϕ. Since (X, T) is a Λ sub maximal space T_{Λ} may contain elements less than or equal to r other than X and ϕ.

1. Let if possible T_{Λ} contains $\mathrm{r}+2$ elements. If all the r elements are minimal Λ dense set then from remark $3.20(5)$ the topological space T contains ϕ, X and all elements whose order are one less then that of X except r number of sets. But T has r elements except X and ϕ. So, the order of X is 2 r and T_{Λ}
$=\left\{G: G^{C} \in T\right\}$
2. Let $T_{\Lambda}=\{X, \phi\}$ then from remark $3.20(1) \mathrm{T}$ must contain all the subsets of X whose order is one less than that of X . Here T contains r elements except X and ϕ. Let the order of X is
n then the number of elements of X whose order is $\mathrm{n}-1$ is n . Obviously the finite intersection of these n elements need not be
ϕ but a member of T. Their union is X . The intersection of n elements will form $\mathrm{n}-1$ elements and soon i.e.

$$
\begin{aligned}
\mathrm{r} & \geq \mathrm{n}+(\mathrm{n}-1)+(\mathrm{n}-2)+(\mathrm{n}-3)+\ldots .+2(=\mathrm{n}-(\mathrm{n}-2)) \\
& =\mathrm{n}(\mathrm{n}-1)-\{1+2+3+\ldots .+(\mathrm{n}-2)\} \\
& =\mathrm{n}(\mathrm{n}-1)-(\mathrm{n}-2)(\mathrm{n}-1) / 2 \\
& =(\mathrm{n}-1)\{2 \mathrm{n}-\mathrm{n}+2\} / 2 \\
& =(\mathrm{n}-1)(\mathrm{n}+2) / 2
\end{aligned}
$$

i.e. the number of elements in T should be at least $(n-1)(n+2) / 2$ except X and ϕ
3. Let T_{Λ} contains only one minimal Λ dense set. Then the topological space contains (n 1) elementswhose order is one less then that of X.

So the topological space contains ($\mathrm{n}-1$) elements and the elements obtained by their intersection .Since their union is X . So,

$$
\begin{aligned}
r & \geq(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots \\
& =(\mathrm{n}-2) \mathrm{n}-(\mathrm{n}-2)(\mathrm{n}-1) / 2 \\
& =(\mathrm{n}-2)(2 \mathrm{n}-\mathrm{n}+1) / 2 \\
& =(\mathrm{n}-2)(\mathrm{n}+1) / 2
\end{aligned}
$$

$$
+2(=n-(n-2))
$$

i.e. the number of elements in T must be at least $(n-2)(n-1) / 2$ except X and ϕ
4. If T contains $1<\mathrm{m}<\mathrm{r}$ number of minimal Λ dense set then T must contain ($\mathrm{n}-\mathrm{m}$) number of elementswhose order is one less than that of X

$$
\begin{aligned}
r & \geq(n-m)+(n-m-1)+\ldots+2(=n-m-(m-2)) \\
& =n(m-1)-m(m-2)-(m-2)(m-1) / 2 \\
& =n(m-1)-(m-2)(3 m-1) / 2
\end{aligned}
$$

Theorem 3.37: If (X, T) be a Λ - sub maximal topological space such that every open sets are also closed set then $\mathrm{T}_{\Lambda}=\{\mathrm{X}, \phi\}$
Proof: It follows from remark 3.14
Theorem 3.38: Let (X, T) be a Λ sub maximal space. Then every Λ dense set in (X, T) are also generalized closed set in (X, T)
Proof: In a Λ sub maximal space (X, T) every element of $\left(X, T_{\Lambda}\right)$ are closed subsets of X i.e. for any subset A of X such that $\Lambda(\mathrm{A})=\mathrm{X}, \mathrm{ClA}=\mathrm{A}$. We know that $\Lambda(\mathrm{A})$ is the intersection of all open sets containing X i.e. A
$\subseteq \Lambda(\mathrm{A})=\mathrm{X}$ i.e. $\mathrm{ClA}=\mathrm{A} \subseteq \Lambda(\mathrm{A})=\mathrm{X}$ i.e. A is a generalized closed set.
Remark 3.39:Converse of the above theorem need not be true which follows from the example 3.25. Let us consider a generalized closed set $C=\{d\}$. Here $C \subseteq\{b, d\},\{b, d, c\}, X, C l C=\{d\}$ $\subseteq\{b, d\},\{b, d, c\}, X$. But C is not a Λ dense set.

4. Application

In this section the concept of Λ dense continuous function and minimal Λ dense continuous function is introduced and its properties are studied.
Definition 4.1: A function $\mathrm{f}:\left(\mathrm{X}, \mathrm{T}_{1}\right) \rightarrow\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ is said to be a Λ dense continuous function if the inverse image of any set in $\mathrm{T}_{2 \Lambda}$ is a closed set in T_{1}.
Example 4.2: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and the corresponding topology be $\mathrm{T}_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$.
Let $\mathrm{Y}=\{1,2,3\}$ and the corresponding topology be $\mathrm{T}_{2}=\{\mathrm{Y}, \phi,\{1\},\{2,1\}\}, \mathrm{T}_{2 \Lambda}=\{\mathrm{Y}, \phi,\{3\}$, $\{1,3\},\{2,3\}\}$. Let $\mathrm{f}:\left(\mathrm{X}, \mathrm{T}_{1}\right) \rightarrow\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ be such that $\mathrm{f}(\mathrm{X})=\mathrm{Y}, \mathrm{f}(\phi)=\phi, \mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=2, \mathrm{f}(\mathrm{c})=3$. Obviously f is a Λ dense continuous function.

Remark 4.3: A) From theorem 3.18 if Y is an indiscrete topological space then $\mathrm{T}_{2 \Lambda}=\mathrm{P}(\mathrm{Y})$ and the mapping $\mathrm{f}:\left(\mathrm{X}, \mathrm{T}_{1}\right) \rightarrow\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ is a Λ dense continuous function if

$$
\begin{array}{ll}
\text { i. } & \mathrm{f}^{-1}(\mathrm{~A})=\mathrm{X} \text { for any } \mathrm{A} \subseteq \mathrm{Y} \\
\text { ii. } & \mathrm{T}_{1}=\mathrm{P}(\mathrm{X}) \text { and } \mathrm{f}^{-1}(\mathrm{Y})=\mathrm{X}
\end{array}
$$

B) From theorem 3.19: if $T_{2}=P(X), T_{2}^{C}=P(X)$ then $T_{2 \Lambda}=\{X, \phi\}$ and $f:\left(X, T_{1}\right)$ $\rightarrow\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ is a
Λ dense continuous function.
C) From theorem 3.21: $T_{2}=P(X) \backslash A$ then $T_{2 \Lambda}=\{X, A, \phi\}$. Here A is the odd term whose inverse image need not be open in T_{1}.
D) From theorem 3.22: if $\mathrm{T}_{2}=\{\mathrm{X}, \mathrm{A}, \phi\} \mathrm{T}_{2}{ }^{\mathrm{C}}=\left\{\mathrm{X}, \mathrm{A}^{\mathrm{C}}, \phi\right\}$ then $\mathrm{T}_{2 \Lambda}=\mathrm{P}(\mathrm{X})$ $\backslash\{G: G \subseteq A\}\}$ iff $:\left(X, T_{1}\right) \rightarrow\left(Y, T_{2}\right)$ be such that $f^{-1}(A)=X$ for any $A \subseteq Y$ then f is a Λ dense continuous function.
Theorem 4.4: Let $\mathrm{f}:\left(\mathrm{X}, \mathrm{T}_{1}\right) \rightarrow\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ be a continuous function then f is a Λ dense continuous function if Y is a Λ sub maximal space.
Proof: From definition 3.29, a topological space $\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ is a Λ sub-maximal space if every element of $\left(Y, T_{2 \Lambda}\right)$ is also a closed subset of $\left(Y, T_{2}\right)$. Let $f:\left(X, T_{1}\right) \rightarrow\left(Y, T_{2}\right)$ be a continuous function. Let A be a Λ dense set in Y. Since Y is a Λ sub maximal space A is a closed set in Y and f being continuous function $\mathrm{f}^{-1}(\mathrm{~A})$ is also a closed set in X . Hence from definition f is a Λ dense continuous function.
Definition 4.5: A function $\mathrm{f}:\left(\mathrm{X}, \mathrm{T}_{1}\right) \rightarrow\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ is said to be a minimal Λ dense continuous function if the inverse image of any minimal set in $T_{2 \Lambda}$ is a closed set in T_{1}.
Example 4.6: Consider example 4.2, Here $\{3\}$ is the minimal set in $T_{2 \Lambda}$. Obviously its inverse image is a closed set in T_{1}. Thus f is a minimal Λ dense continuous function.
Theorem 4.7: A function $\mathrm{f}:\left(\mathrm{X}, \mathrm{T}_{1}\right) \rightarrow\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ is a Λ dense continuous function then it is a minimal Λ dense continuous function
Proof: Since f is a Λ dense continuous function so inverse image of any set in $\mathrm{T}_{2 \Lambda}$ is a closed set in T_{1} andthus inverse image of any minimal set in $T_{2 \Lambda}$ is also a closed set in T_{1}. Thus the theorem.
Remark 4.8: Converse of the above theorem need not be true which follows from the following example:
Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and the corresponding topology be $\mathrm{T}_{1}=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}$. Let Y
$=\{1,2,3\}$ and thecorresponding topology be $\mathrm{T}_{2}=\{\mathrm{Y}, \phi,\{1\},\{1,3\}\}$.
Let $\mathrm{f}:\left(\mathrm{X}, \mathrm{T}_{1}\right) \rightarrow\left(\mathrm{Y}, \mathrm{T}_{2}\right)$ be a mapping such that $\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=2, \mathrm{f}(\mathrm{c})=3, \mathrm{f}(\phi)=\phi, \mathrm{f}(\mathrm{X})=\mathrm{Y}$.
Here $\mathrm{T}_{2 \Lambda}=\{\mathrm{Y}$,
$\phi,\{2\},\{2,3\},\{1,2\}\}$ Here the minimal set in $\mathrm{T}_{2 \Lambda}$ is $\{2\}$ whose inverse image $\{b\}$ is a closed set in T_{1}, but the inverse image of $\{1,2\}$ is $\{\mathrm{a}, \mathrm{b}\}$ which is not a closed set in T_{1}.i.e. f is a minimal Λ dense continuous function but not a Λ dense continuous function.

Reference

1. M. Alimohammady and M. Roohi; Λ_{m} set in fuzzy minimal structure; Journal of Basic science3No.2(2006); 11-17
2. G. Balasubramanian; On some generalization of compact spaces; Glasnik Mat; 17(37)(1982); $367-380$
3. N.Bourbaki; Elements De Mathematique, topologie Generale($3^{\text {rd }}$ Edition) (Actualities ScientifiquesEtIndustrielles 1142; Hermann, Paris 1961.
4. J Dontchev; On Submaximality spaces; Tamhang J Math; 3(26) (1995); 243 - 250
5. I.M James; Alexandroff spaces; Rend CircMatPalermo(2) suppl(1992) no. 29, 475-481, Internationalmeeting onTopology in Italy (Italian)(Lecce, 1990/Otranto,1990) MR 94g: 54020, Zbl 793.54006
6. N.Levine; Generalized closed sets in Topology; Rend Circ Math Palermo; 19(1970); 89 96
7. F Nakaoka and N.Oda; some applications of minimal open sets; Int J Math Sci; 27(8); 2001; 471-476
8. H.Maki; Generalized Λ sets and the associated closure operator; The special issue in commemorationof Prof Kazusada Ikedas Retirement 1 Oct; 1986; 139-146
9. A . S. Mashhour, et.al; OnSupra topological spaces; Indian Journal of Pure andApplied Math; 14(14);April 1983; 502-510
10. Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Doverreprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 507446
11. A Varhangelskitand P. J. Colins; On sub maximal space; Topology Appl; 64(1995); 219 241
12. S. Williard; General topology; Addison Wesley Publishing; 1970
