
Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 1177-1183

1177

Research Article

Cuckoo Search-Driven Feature Selection for Decision Tree Modelling

Rajkumar S. Bhosale1, Archana R. Panhalkar2
1Assistant Professor, Amrutvahini College of Engineering, Sangamner, India
2Assistant Professor, Amrutvahini College of Engineering, Sangamner, India
2archana10bhosale@rediffmail.com

Abstract

Features are fundamental components of decision tree modeling, and their relevance, quality, and selection are crucial

determinants of the model's effectiveness and performance. However, decision trees can be computationally expensive,

requiring a significant amount of memory to store the trees and their associated data structures. To address this limitation, we

present a novel approach that utilizes a Cuckoo Search-based feature selection algorithm to construct efficient and optimal

decision trees. The Cuckoo Search algorithm, inspired by the behavior of cuckoo birds, is a powerful metaheuristic

algorithm that effectively selects high-quality features and creates accurate decision trees in the subforest. We evaluate the

proposed method on a variety of datasets from the standard UCI learning repository with different domains and sizes, and

our results demonstrate that the algorithm creates optimal decision trees with high performance.

Keywords: Decision tree, Feature selection, Nature-inspired, Data mining, Cuckoo Search Optimization, C4.5, CART

1. Introduction

A decision tree is a flowchart-like structure used in decision-making and classification problems. It is a

graphical representation of all the possible solutions to a decision, based on certain conditions and

consequences. In a decision tree, the root node represents the initial decision or problem, and each branch

represents a possible outcome or alternative solution. The branches are split based on certain conditions, which

are represented by internal nodes, until a final outcome or solution is reached at the leaf nodes. Decision trees

can be used for both classification and regression tasks. In classification tasks, the decision tree is used to

categorize data into different classes, while in regression tasks, it is used to predict continuous numerical values.

Decision trees are widely used in various fields, such as business, finance, medicine, and engineering, to aid in

decision-making and problem-solving. They are also used in machine learning algorithms, such as Random

Forests, Gradient Boosted Trees, and XGBoost.

Features are the building blocks of decision tree modeling, and their quality, relevance, and selection

are critical factors that can determine the performance and usefulness of the model. Features play a crucial role

in decision tree modeling as they are used to make decisions or predictions about the target variable. Each node

in the decision tree represents a decision based on a particular feature, and each branch represents the possible

values or outcomes of that feature. The quality and relevance of the features directly affect the accuracy and

complexity of the decision tree model. A good feature should be informative and discriminatory, meaning that it

should have a strong association with the target variable and be able to differentiate between different classes or

values of the target variable. The importance of each feature can be quantified using measures such as

information gain, Gini index, or chi-squared test. These measures evaluate the impact of each feature on the

target variable and can be used to rank the features and select the most relevant ones. In decision tree modeling,

it is important to select the right set of features that can maximize the accuracy and interpretability of the model,

while avoiding overfitting and complexity. Feature selection and optimization techniques can be used to identify

and select the best subset of features for the model, based on their relevance, redundancy, and interdependence.

When building a decision tree model, overfitting can occur when there are too many features, also known as

the "curse of dimensionality" [2]. This can cause the model to become overly complex and make overly specific

decisions that do not generalize well to new data. To avoid these we are selecting important features to construct

decision tree using Cuckoo search optimization. Feature optimization is important in machine learning and data

science, as it helps to improve the accuracy, efficiency, and interpretability of the model. Here are some reasons

why feature optimization is important:

1. Reduce Overfitting: Including too many irrelevant or redundant features in the model can lead to overfitting,

where the model fits the training data too closely and fails to generalize to new data. Feature optimization helps

to identify and remove such features, thereby reducing the risk of overfitting.

2. Improve Model Performance: By selecting the most relevant and informative features for the model, feature

optimization can improve the accuracy, precision, and recall of the model, and reduce the error rate.

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 1177-1183

1178

Research Article

3. Reduce Model Complexity: Feature optimization can also help to reduce the complexity of the model by

removing features that do not contribute significantly to the target variable. This can make the model more

interpretable and easier to understand.

4. Save Computation Time: By reducing the number of features used in the model, feature optimization can also

reduce the computation time required for model training, testing, and deployment. This can be especially

important for large datasets or real-time applications.

5. Improve Data Understanding: Feature optimization can also provide insights into the underlying data by

identifying the most important variables and their relationships with the target variable. This can help to

improve data understanding and guide further analysis and decision-making.

This paper is organized into the following sections. A brief idea about various methods of feature selection

and limitations are discussed in Section-2. Section-3 explains on Cuckoo Search Optimization algorithm . In

Section-4 the proposed method of feature selection using cuckoo search optimization is discussed. The detailed

experimental results with discussion are explained in Section-5. Finally, Section-6 concludes the proposed

method with remarks.

2. Literature Review

In many situations, groups of features are highly correlated. This can lead to overfitting and poor generalization

of the decision tree to new data. One way to address this issue is to carefully choose exemplars, which are

representative features from the group that can stand in for the rest.

Here are a few ways to prevent decision tree overfitting due to a large number of features:

1. Feature Selection: Select only the most important features that are likely to have a strong impact on the target

variable. You can use feature selection techniques such as correlation, mutual information, or regularization

methods to select a subset of features.

2. Feature Extraction: Transforming the features into a lower-dimensional space using techniques such as Principal

Component Analysis (PCA) [4] or Linear Discriminant Analysis (LDA) [4]. This can help remove redundant or

correlated features, which can reduce overfitting.

3. Regularization: Regularization is a technique that adds a penalty term to the decision tree model's objective

function. This can help reduce overfitting by discouraging the model from making overly complex decisions.

4. Cross-validation: Use k-fold cross-validation to evaluate the decision tree model's performance on a validation

set. This can help prevent overfitting by testing the model's ability to generalize to new data.

5. Pruning: Pruning is a technique that removes nodes from the decision tree that do not contribute to its

performance. This can help reduce the model's complexity and prevent overfitting.

There are two common strategies for selecting features in machine learning: filters and wrappers. Filters aim to

identify features that are related to or predictive of the target variable, and they do so independently of the

learning algorithm. For example, Information Gain is a filter technique that was originally developed by Quinlan

as a way to build concise decision trees but is now widely used for feature selection in general [5]. On the other

hand, the wrapper method evaluates subsets of features based on the accuracy estimates provided by a classifier

that was built with that feature subset. This approach is more computationally expensive than filtering

techniques but can produce better results because it takes the bias of the classifier into account and evaluates

features in context. A detailed presentation of the wrapper approach can be found in [6][7].

Hsu [8] discusses the development of a generic fitness function for validating input specifications and the use of

this function to create two genetic algorithm wrappers. One wrapper is designed for variable selection in

decision tree inducers, while the other is designed for variable ordering in Bayesian network structure learning.

These methods aim to optimize the feature selection and feature ordering processes to improve the performance

of these machine learning models. Theodoridis et. al. aims to leverage the strengths of both genetic algorithms

and decision trees to improve the performance of the decision tree algorithm [9]. The genetic wrapper will

optimize the feature selection and feature ordering process, while the decision tree algorithm will build a

classification tree that is optimal for the given dataset.

The PSO algorithm is used to efficiently explore the feature space and identify the feature subset that maximizes

the F-measure objective function [10]. By using this approach, the paper aims to improve the performance of the

machine learning model by selecting the most important features for the given task.

In the traditional feature selection algorithm based on decision tree, the decision tree is easy to be

influenced by the category and the irrelevant features. In such case, it is complex in constructing the decision

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 1177-1183

1179

Research Article

tree and is liable to be over fitting. Therefore, it is required to select the most relevant feature in building the

decision tree. In this paper, we proposed feature selection using Cuckoo Search algorithm to construct accurate

and efficient decision tree.

3. Cuckoo Search Optimization Algorithm for Feature Selection

Cuckoo search optimization (CSO) is a meta-heuristic algorithm that draws inspiration from the breeding

behavior of cuckoo birds. Developed by Xin-She Yang and Suash Deb in 2009 [11], The CSO algorithm takes

inspiration from the unique breeding behavior of cuckoo birds, where they lay their eggs in the nests of other

birds to ensure the survival of their species. The algorithm mimics this behavior by generating a population of

potential solutions, represented as "nests", and candidate solutions, represented as "eggs". The CSO algorithm

then uses a set of search operators to iteratively update the candidate solutions and nests, with the objective of

finding the optimal solution to a given problem. The algorithm's ability to efficiently explore the solution space

and avoid local optima makes it a popular choice for solving complex optimization problems in various fields.

Overall, the CSO algorithm's unique approach to optimization and its ability to adapt to changing environments

have made it a powerful tool for solving challenging problems, from machine learning to engineering and

beyond.

The pseudo-code of the Cuckoo search algorithm is as follows:

In this pseudocode, the algorithm begins by initializing a population of host nests randomly. It then sets various

parameters, including the maximum number of iterations, the fraction of abandoned nests (pa), and the step size

factor (alpha). The fitness of each host nest is then evaluated. The algorithm then enters a loop where it

randomly chooses a cuckoo solution and generates a new solution using Lévy flights. It evaluates the fitness of

the new solution and chooses a host nest randomly. If the fitness of the new solution is better than the fitness of

the chosen host nest, the host nest is updated with the new solution.The host nests are then sorted by their

fitness, and the pa fraction of the worst nests are replaced with new randomly generated ones. This process

continues until a convergence criterion is met, and the best host nest found is returned as the solution.

 Cuckoo search algorithm has been found to be promising for feature selection in various studies [12-

14]. This is because the cuckoo search algorithm can effectively explore the search space and find good feature

subsets that can improve the performance of a classification model. The algorithm can also handle the issue of

feature redundancy and can select a compact set of features that can achieve high classification accuracy.

Additionally, the cuckoo search algorithm has been shown to be computationally efficient and can handle high-

dimensional feature spaces. We are using Binary Cuckoo Search optimization algorithm for important feature

selection in decision tree.

Algorithm- 1. Cuckoo Search Optimization (CSO)

Initialize population of n host nests randomly

Set maximum number of iterations

Set fraction of abandoned nests (pa)

Set step size factor (alpha)

Evaluate fitness of each host nest

While (not converged) do:

 Choose a cuckoo solution randomly

 Generate a new solution using Lévy flights

 Evaluate fitness of the new solution

 Choose a host nest randomly

 If (fitness of new solution > fitness of host nest) then

 Update the host nest with the new solution

 End If

 Sort the host nests by their fitness

 Replace pa fraction of the worst nests with new randomly generated ones

End While

Return the best host nest found

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 1177-1183

1180

Research Article

4. Proposed System Methodology

In this paper we are applying Cuckoo search algorithm for selecting features which creates efficient decision

trees. The basic idea is to represent each feature subset as a "bird's egg" and each feature subset as a "bird's

nest." The fitness of each feature subset is evaluated using a classification algorithm. The Cuckoo search

algorithm is then used to search for the optimal feature subset. We propose Cuckoo search based Decision Tree

(CSDT) using optimized features.

Here is the pseudocode for CSDT:

1. Define the problem and input data:

o Let 𝑫𝒕 be the input data matrix of size (𝑟 𝑋 𝑐) where 𝑟 is the number of samples and 𝑐 is the number of

features.

o Let y be the corresponding class labels of size (𝑟 𝑋 1).

2. Initialize the cuckoo search algorithm:

o Set the population size 𝒏𝒆𝒔𝒕 𝒊 and the maximum number of iterations 𝑇.

o Generate 𝒏𝒆𝒔𝒕 𝒊 random binary feature vectors 𝒙𝒊 of size (𝑚 𝑋 1)representing the candidate solutions.

o Evaluate the fitness function 𝒇(𝒙𝒊) for each solution 𝒙𝒊, where 𝒇 is a performance metric such as classification

accuracy.

3. Repeat for 𝑡 = 1 𝑡𝑜 𝑇:

o Generate a new candidate solution 𝒙𝒏𝒆𝒘by performing Lévy flights on a randomly selected solution 𝒙𝒊 .
o Evaluate the fitness function 𝒇(𝒙𝒏𝒆𝒘)for the new solution.

o If 𝒇(𝒙𝒏𝒆𝒘) > 𝑓(𝒙𝒊), then replace 𝒙𝒊 with 𝒙𝒏𝒆𝒘.

o Abandon a fraction pa of the worst solutions and generate new solutions to replace them.

o Sort the solutions in descending order of fitness and select the top N solutions to form the new population.

4. Output the best solution found after 𝑇 iterations.

CSDT is effective in selecting the number of features while maintaining or improving the performance of the

decision tree. However, like all metaheuristic algorithms, its performance depends on the problem and the

parameter settings, and it may not always find the optimal subset of features. The entire CSDT algorithm is

defined in Algorithm 2 as follows:

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 1177-1183

1181

Research Article

Algorithm-2:Cuckoo Search based Decision Tree (CSODForest)

Input: Training Dataset 𝑫𝒕

Output: Global best position 𝒈⏞.

Auxillary: Fitness vector 𝒇 with size 𝒎 and variables 𝒂𝒄𝒄_𝒕, 𝒎𝒇𝒊𝒕, 𝒈𝒇𝒊𝒕 and 𝒎𝒊𝒏𝒅𝒆𝒙.

Begin

1. for each nest 𝒏𝒆𝒔𝒕 𝒊 do (∀𝒊 = 𝟏, 𝟐, … . . 𝒎) do

2. for each dimension 𝒋 (∀𝒋 = 𝟏, 𝟐, … . . 𝒅) do

3. 𝒙𝒋
𝒊(𝟎) ← 𝑹𝒂𝒏𝒅𝒐𝒎{𝟎, 𝟏};

4. end

5. f 𝒂𝒄𝒄_𝒕𝒊 ← −∞ ;

6. end

7. 𝒈𝒇𝒊𝒕 ← −∞ ;

8. for each iteration 𝒌 (𝒌 = 𝟏, 𝟐, … . . 𝑲) do

9. for each nest 𝒏𝒆𝒔𝒕 𝒊 (∀𝒊 = 𝟏, 𝟐, … . . 𝒎) do

10. Evaluate 𝒏𝒆𝒔𝒕 𝒊 in which 𝒙𝒋
𝒊(𝒌) ≠ 𝟎 ∀𝒋 = 𝟏, 𝟐, … . . 𝒅 ;

11. Calculate 𝒂𝒄𝒄_𝒕

12. if(𝒂𝒄𝒄_𝒕 > 𝒇𝒂𝒄𝒄𝒊)

13. 𝒇𝒂𝒄𝒄𝒊 ← 𝒂𝒄𝒄_𝒕 ;

14. for each dimension 𝒋 (∀𝒋 = 𝟏, 𝟐, … . . 𝒅) do

15. 𝒙𝒋
𝒊 = 𝒙𝒋

𝒊(𝒌)

16. end

17. ifend

18. end

19. [𝒎𝒇𝒊𝒕, 𝒎𝒊𝒏𝒅𝒆𝒙] = 𝒎𝒂𝒙(𝒇) ;

20. if (𝒎𝒇𝒊𝒕 > 𝒈𝒇𝒊𝒕)

21. 𝒈𝒇𝒊𝒕 ← 𝒎𝒇𝒊𝒕 ;

22. for each dimension 𝒋 (∀𝒋 = 𝟏, 𝟐, … . . 𝒅) do

23. �̂�𝑗 = 𝒙𝒎𝒊𝒏𝒅𝒆𝒙
𝒋

(𝒌)

24. end

25. ifend

26. for each nest 𝒏𝒆𝒔𝒕 𝒊 do (∀𝒊 = 𝟏, 𝟐, … . . 𝒎) do

27. for each dimension 𝒋 (∀𝒋 = 𝟏, 𝟐, … . . 𝒅) do

28. 𝒙𝒋
𝒊(𝒌) ← 𝒙𝒋

𝒊(𝒌 − 𝟏) + 𝜶 ⊕ 𝑳�́�𝒗𝒚

29. if (𝝈 <
𝟏

𝟏+𝒆
𝒙𝒋

𝒊(𝒌)
) then

30. 𝒙𝒋
𝒊(𝒌) ← 𝟏

31. else

32. 𝒙𝒋
𝒊(𝒌) ← 𝟎

33. ifend

34. end

35. end

36. end

37. Evaluate tree using a testing set 𝑻𝒕𝒆𝒔𝒕

CSDT algorithm is used to select the most important features in a binary feature space, where each feature can

either be selected or not selected. The Binary Cuckoo Search algorithm works by first initializing a population

of candidate feature subsets, where each subset is represented by a binary vector indicating which features are

selected. Then, the algorithm performs a series of iterations to refine the feature subsets, guided by a fitness

function that evaluates the performance of each subset. During each iteration, the algorithm randomly generates

new candidate solutions by performing a random walk using the Lévy flight distribution. The algorithm then

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 1177-1183

1182

Research Article

evaluates the fitness of the new solutions and replaces the worst-performing solutions in the population with the

new solutions. To enforce the binary constraint on the feature selection, the algorithm uses a threshold function

to convert the real-valued solutions generated by the Lévy flight into binary vectors. The threshold function

maps values above a certain threshold to 1 (selected), and values below the threshold to 0 (not selected). The

algorithm continues iterating until a stopping criterion is met, such as a maximum number of iterations or

convergence of the best solution. Finally, the best feature subset found by the algorithm is returned as the

solution.

Overall, the Binary Cuckoo Search optimization algorithm provides a powerful and efficient way to perform

feature selection in binary feature spaces, and has been shown to outperform other feature selection methods on

a range of benchmark datasets.

5. Experimental Results

5.1 Dataset Description

The efficacy of the CSDT algorithm is assessed on six distinct benchmark datasets sourced from the UCI

machine learning repository. The performance of pruned CSDT is evaluated on 6 standard datasets obtained

from the UCI machine learning repository, which include numerical and categorical attributes from various

domains. These datasets differ in size, and more information about them can be found in Table 1.

Table 1. Summary of datasets

Dataset Instances Attributes Classes

Chess 3196 36 2

Credit Approval 653 15 2

Image Segmentation 2310 19 7

Ionosphere 351 34 2

Statlog Vehicle 846 18 4

Sonar 208 60 2

5.2 Comparison of Accuracy of CSDT with other decision tree algorithms

A comparison of the outcomes of CSDT is done with C4.5 [5], CART [16], and Random Tree[17] to

demonstrate the effectiveness. To assess the performance of the proposed approach, a 10-fold cross-validation

technique is employed, where each dataset is partitioned into ten subsets of equal size. In every fold, training is

done on nine parts of the dataset and one part is used for evaluating the performance on the CSDT algorithm.

Table 2 shows the Accuracy of the proposed CSDT with other methods.

Table 2. Comparison of Accuracy of CSDT with other methods

Dataset C4.5 CART RandomTree CSDT

Chess 76.74 74.12 77.34 79.24

Credit Approval 86.09 86.01 80.57 87.21

Image Segmentation 96.92 97.12 95.40 97.23

Ionosphere 91.45 91.23 87.74 90.86

Statlog Vehicle 86.74 87.42 86.56 88.42

Sonar 72.57 72.36 73.12 74.38

From Table 2, we can observe that accuracy for many dataset is better in the CSDT algorithm. CSDT algorithm

gives more than 2% greater accuracy datasets.

6. Conclusion

We present a novel approach to feature selection using the Cuckoo search optimization algorithm. The goal is to

select a subset of features from a large set that can improve the accuracy of decision trees while reducing

computational and storage costs. Our proposed algorithm, CSDT, uses the Cuckoo search algorithm to select

high-quality features, which are then used to create efficient and accurate decision trees. We evaluate the

performance of CSDT on six datasets from the UCI machine learning repository using a 10-fold cross-validation

method. Results show that CSDT prunes decision trees with higher accuracy and avoids overfitting compared to

other decision trees algorithms.

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 1177-1183

1183

Research Article

References

[1] Tirelli, T. and Pessani, D., 2011. Importance of feature selection in decision-tree and artificial-neural-network

ecological applications. Alburnus alburnus alborella: A practical example. Ecological informatics, 6(5), pp.309-

315.

[2] Ying, X., 2019, February. An overview of overfitting and its solutions. In Journal of physics: Conference series

(Vol. 1168, p. 022022). IOP Publishing.

[3] Malhi, A. and Gao, R.X., 2004. PCA-based feature selection scheme for machine defect classification. IEEE

transactions on instrumentation and measurement, 53(6), pp.1517-1525.

[4] Kasliwal, B., Bhatia, S., Saini, S., Thaseen, I.S. and Kumar, C.A., 2014, February. A hybrid anomaly detection

model using G-LDA. In 2014 IEEE International Advance Computing Conference (IACC) (pp. 288-293). IEEE.

[5] Quinlan, J.R., 1993. Program for machine learning. C4. 5.

[6] Kohavi, R. and John, G.H., 1997. Wrappers for feature subset selection. Artificial intelligence, 97(1-2), pp.273-

324.

[7] Loughrey, J. and Cunningham, P., 2005. Overfitting in wrapper-based feature subset selection: The harder you

try the worse it gets. In Research and Development in Intelligent Systems XXI: Proceedings of AI-2004, the

Twenty-fourth SGAI International Conference on Innovative Techniques and Applications of Artificial

Intelligence (pp. 33-43). Springer London.

[8] Hsu, W.H., 2004. Genetic wrappers for feature selection in decision tree induction and variable ordering in

Bayesian network structure learning. Information Sciences, 163(1-3), pp.103-122.

[9] Theodoridis, P.K. and Gkikas, D.C., 2020. Optimal feature selection for decision trees induction using a genetic

algorithm wrapper-a model approach. In Strategic Innovative Marketing and Tourism: 8th ICSIMAT, Northern

Aegean, Greece, 2019 (pp. 583-591). Springer International Publishing.

[10] Zhang, Y., Wang, S. and Wu, L., 2012. Spam detection via feature selection and decision tree. Advanced

Science Letters, 5(2), pp.726-730.

[11] Yang, X.S. and Deb, S., 2009, December. Cuckoo search via Lévy flights. In 2009 World congress on nature &

biologically inspired computing (NaBIC) (pp. 210-214). IEEE.

[12] Rodrigues, D., Pereira, L.A., Almeida, T.N.S., Papa, J.P., Souza, A.N., Ramos, C.C. and Yang, X.S., 2013,

May. BCS: A binary cuckoo search algorithm for feature selection. In 2013 IEEE International symposium on

circuits and systems (ISCAS) (pp. 465-468). IEEE.

[13] Gunavathi, C. and Premalatha, K., 2015. Cuckoo search optimisation for feature selection in cancer

classification: a new approach. International journal of data mining and bioinformatics, 13(3), pp.248-265.

[14] Aziz, M.A.E. and Hassanien, A.E., 2018. Modified cuckoo search algorithm with rough sets for feature

selection. Neural Computing and Applications, 29, pp.925-934.

[15] Dua, D., & Graff, C. (2017). UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml.

[16] L. Breiman, J. Friedman, R. Olshen, C. Stone, “Classification and Regression Trees”, Wadsworth International

Group, CA, U.S.A, 1985.

[17] Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA Workbench. Online Appendix for "Data

Mining: Practical Machine Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition, 2016.

http://archive.ics.uci.edu/ml

