
Turkish Journal of Computer and Mathematics Education   Vol.11 No.02 (2020), 1177-1183 

  

 

1177 

 

 

Research Article  

Cuckoo Search-Driven Feature Selection for Decision Tree Modelling 
 

Rajkumar S. Bhosale1, Archana R. Panhalkar2 
1Assistant Professor, Amrutvahini College of Engineering, Sangamner, India 
2Assistant Professor, Amrutvahini College of Engineering, Sangamner, India 
2archana10bhosale@rediffmail.com 

 
Abstract 

Features are fundamental components of decision tree modeling, and their relevance, quality, and selection are crucial 

determinants of the model's effectiveness and performance. However, decision trees can be computationally expensive, 

requiring a significant amount of memory to store the trees and their associated data structures. To address this limitation, we 

present a novel approach that utilizes a Cuckoo Search-based feature selection algorithm to construct efficient and optimal 

decision trees. The Cuckoo Search algorithm, inspired by the behavior of cuckoo birds, is a powerful metaheuristic 

algorithm that effectively selects high-quality features and creates accurate decision trees in the subforest. We evaluate the 

proposed method on a variety of datasets from the standard UCI learning repository with different domains and sizes, and 

our results demonstrate that the algorithm creates optimal decision trees with high performance. 

Keywords: Decision tree, Feature selection, Nature-inspired, Data mining, Cuckoo Search Optimization, C4.5, CART  

 

1. Introduction 

A decision tree is a flowchart-like structure used in decision-making and classification problems. It is a 

graphical representation of all the possible solutions to a decision, based on certain conditions and 

consequences. In a decision tree, the root node represents the initial decision or problem, and each branch 

represents a possible outcome or alternative solution. The branches are split based on certain conditions, which 

are represented by internal nodes, until a final outcome or solution is reached at the leaf nodes. Decision trees 

can be used for both classification and regression tasks. In classification tasks, the decision tree is used to 

categorize data into different classes, while in regression tasks, it is used to predict continuous numerical values. 

Decision trees are widely used in various fields, such as business, finance, medicine, and engineering, to aid in 

decision-making and problem-solving. They are also used in machine learning algorithms, such as Random 

Forests, Gradient Boosted Trees, and XGBoost. 

Features are the building blocks of decision tree modeling, and their quality, relevance, and selection 

are critical factors that can determine the performance and usefulness of the model. Features play a crucial role 

in decision tree modeling as they are used to make decisions or predictions about the target variable. Each node 

in the decision tree represents a decision based on a particular feature, and each branch represents the possible 

values or outcomes of that feature. The quality and relevance of the features directly affect the accuracy and 

complexity of the decision tree model. A good feature should be informative and discriminatory, meaning that it 

should have a strong association with the target variable and be able to differentiate between different classes or 

values of the target variable. The importance of each feature can be quantified using measures such as 

information gain, Gini index, or chi-squared test. These measures evaluate the impact of each feature on the 

target variable and can be used to rank the features and select the most relevant ones. In decision tree modeling, 

it is important to select the right set of features that can maximize the accuracy and interpretability of the model, 

while avoiding overfitting and complexity. Feature selection and optimization techniques can be used to identify 

and select the best subset of features for the model, based on their relevance, redundancy, and interdependence. 

When building a decision tree model, overfitting can occur when there are too many features, also known as 

the "curse of dimensionality" [2]. This can cause the model to become overly complex and make overly specific 

decisions that do not generalize well to new data. To avoid these we are selecting important features to construct 

decision tree using Cuckoo search optimization. Feature optimization is important in machine learning and data 

science, as it helps to improve the accuracy, efficiency, and interpretability of the model. Here are some reasons 

why feature optimization is important: 

1. Reduce Overfitting: Including too many irrelevant or redundant features in the model can lead to overfitting, 

where the model fits the training data too closely and fails to generalize to new data. Feature optimization helps 

to identify and remove such features, thereby reducing the risk of overfitting. 

2. Improve Model Performance: By selecting the most relevant and informative features for the model, feature 

optimization can improve the accuracy, precision, and recall of the model, and reduce the error rate. 
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3. Reduce Model Complexity: Feature optimization can also help to reduce the complexity of the model by 

removing features that do not contribute significantly to the target variable. This can make the model more 

interpretable and easier to understand. 

4. Save Computation Time: By reducing the number of features used in the model, feature optimization can also 

reduce the computation time required for model training, testing, and deployment. This can be especially 

important for large datasets or real-time applications. 

5. Improve Data Understanding: Feature optimization can also provide insights into the underlying data by 

identifying the most important variables and their relationships with the target variable. This can help to 

improve data understanding and guide further analysis and decision-making. 

This paper is organized into the following sections. A brief idea about various methods of feature selection 

and limitations are discussed in Section-2. Section-3 explains on Cuckoo Search Optimization algorithm . In 

Section-4 the proposed method of feature selection using cuckoo search optimization is discussed. The detailed 

experimental results with discussion are explained in Section-5. Finally, Section-6 concludes the proposed 

method with remarks.  

 

2. Literature Review  

In many situations, groups of features are highly correlated. This can lead to overfitting and poor generalization 

of the decision tree to new data. One way to address this issue is to carefully choose exemplars, which are 

representative features from the group that can stand in for the rest. 

Here are a few ways to prevent decision tree overfitting due to a large number of features: 

1. Feature Selection: Select only the most important features that are likely to have a strong impact on the target 

variable. You can use feature selection techniques such as correlation, mutual information, or regularization 

methods to select a subset of features. 

2. Feature Extraction: Transforming the features into a lower-dimensional space using techniques such as Principal 

Component Analysis (PCA) [4] or Linear Discriminant Analysis (LDA) [4]. This can help remove redundant or 

correlated features, which can reduce overfitting. 

3. Regularization: Regularization is a technique that adds a penalty term to the decision tree model's objective 

function. This can help reduce overfitting by discouraging the model from making overly complex decisions. 

4. Cross-validation: Use k-fold cross-validation to evaluate the decision tree model's performance on a validation 

set. This can help prevent overfitting by testing the model's ability to generalize to new data. 

5. Pruning: Pruning is a technique that removes nodes from the decision tree that do not contribute to its 

performance. This can help reduce the model's complexity and prevent overfitting. 

There are two common strategies for selecting features in machine learning: filters and wrappers. Filters aim to 

identify features that are related to or predictive of the target variable, and they do so independently of the 

learning algorithm. For example, Information Gain is a filter technique that was originally developed by Quinlan 

as a way to build concise decision trees but is now widely used for feature selection in general [5]. On the other 

hand, the wrapper method evaluates subsets of features based on the accuracy estimates provided by a classifier 

that was built with that feature subset. This approach is more computationally expensive than filtering 

techniques but can produce better results because it takes the bias of the classifier into account and evaluates 

features in context. A detailed presentation of the wrapper approach can be found in [6][7]. 

Hsu [8] discusses the development of a generic fitness function for validating input specifications and the use of 

this function to create two genetic algorithm wrappers. One wrapper is designed for variable selection in 

decision tree inducers, while the other is designed for variable ordering in Bayesian network structure learning. 

These methods aim to optimize the feature selection and feature ordering processes to improve the performance 

of these machine learning models. Theodoridis et. al. aims to leverage the strengths of both genetic algorithms 

and decision trees to improve the performance of the decision tree algorithm [9]. The genetic wrapper will 

optimize the feature selection and feature ordering process, while the decision tree algorithm will build a 

classification tree that is optimal for the given dataset. 

The PSO algorithm is used to efficiently explore the feature space and identify the feature subset that maximizes 

the F-measure objective function [10]. By using this approach, the paper aims to improve the performance of the 

machine learning model by selecting the most important features for the given task. 

In the traditional feature selection algorithm based on decision tree, the decision tree is easy to be 

influenced by the category and the irrelevant features. In such case, it is complex in constructing the decision 
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tree and is liable to be over fitting. Therefore, it is required to select the most relevant feature in building the 

decision tree. In this paper, we proposed feature selection using Cuckoo Search algorithm to construct accurate 

and efficient decision tree.  

 

3. Cuckoo Search Optimization Algorithm for Feature Selection 

Cuckoo search optimization (CSO) is a meta-heuristic algorithm that draws inspiration from the breeding 

behavior of cuckoo birds. Developed by Xin-She Yang and Suash Deb in 2009 [11], The CSO algorithm takes 

inspiration from the unique breeding behavior of cuckoo birds, where they lay their eggs in the nests of other 

birds to ensure the survival of their species. The algorithm mimics this behavior by generating a population of 

potential solutions, represented as "nests", and candidate solutions, represented as "eggs". The CSO algorithm 

then uses a set of search operators to iteratively update the candidate solutions and nests, with the objective of 

finding the optimal solution to a given problem. The algorithm's ability to efficiently explore the solution space 

and avoid local optima makes it a popular choice for solving complex optimization problems in various fields. 

Overall, the CSO algorithm's unique approach to optimization and its ability to adapt to changing environments 

have made it a powerful tool for solving challenging problems, from machine learning to engineering and 

beyond. 

 

The pseudo-code of the Cuckoo search algorithm is as follows: 

In this pseudocode, the algorithm begins by initializing a population of host nests randomly. It then sets various 

parameters, including the maximum number of iterations, the fraction of abandoned nests (pa), and the step size 

factor (alpha). The fitness of each host nest is then evaluated. The algorithm then enters a loop where it 

randomly chooses a cuckoo solution and generates a new solution using Lévy flights. It evaluates the fitness of 

the new solution and chooses a host nest randomly. If the fitness of the new solution is better than the fitness of 

the chosen host nest, the host nest is updated with the new solution.The host nests are then sorted by their 

fitness, and the pa fraction of the worst nests are replaced with new randomly generated ones. This process 

continues until a convergence criterion is met, and the best host nest found is returned as the solution. 

 Cuckoo search algorithm has been found to be promising for feature selection in various studies [12-

14]. This is because the cuckoo search algorithm can effectively explore the search space and find good feature 

subsets that can improve the performance of a classification model. The algorithm can also handle the issue of 

feature redundancy and can select a compact set of features that can achieve high classification accuracy. 

Additionally, the cuckoo search algorithm has been shown to be computationally efficient and can handle high-

dimensional feature spaces. We are using Binary Cuckoo Search optimization algorithm for important feature 

selection in decision tree. 

 

Algorithm-  1. Cuckoo Search Optimization (CSO) 

Initialize population of n host nests randomly 

Set maximum number of iterations 

Set fraction of abandoned nests (pa) 

Set step size factor (alpha) 

Evaluate fitness of each host nest 

While (not converged) do: 

    Choose a cuckoo solution randomly 

    Generate a new solution using Lévy flights 

    Evaluate fitness of the new solution 

    Choose a host nest randomly 

    If (fitness of new solution > fitness of host nest) then 

        Update the host nest with the new solution 

    End If 

    Sort the host nests by their fitness 

    Replace pa fraction of the worst nests with new randomly generated ones 

End While 

Return the best host nest found 
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4. Proposed System Methodology 

In this paper we are applying Cuckoo search algorithm for selecting features which creates efficient decision 

trees. The basic idea is to represent each feature subset as a "bird's egg" and each feature subset as a "bird's 

nest." The fitness of each feature subset is evaluated using a classification algorithm. The Cuckoo search 

algorithm is then used to search for the optimal feature subset. We propose Cuckoo search based Decision Tree 

(CSDT) using optimized features. 

Here is the pseudocode for CSDT: 

1. Define the problem and input data: 

o Let 𝑫𝒕 be the input data matrix of size (𝑟 𝑋 𝑐) where 𝑟 is the number of samples and 𝑐 is the number of 

features. 

o Let y be the corresponding class labels of size (𝑟 𝑋 1). 

2. Initialize the cuckoo search algorithm: 

o Set the population size 𝒏𝒆𝒔𝒕 𝒊 and the maximum number of iterations 𝑇. 

o Generate 𝒏𝒆𝒔𝒕 𝒊 random binary feature vectors 𝒙𝒊 of size (𝑚 𝑋 1)representing the candidate solutions. 

o Evaluate the fitness function 𝒇(𝒙𝒊) for each solution 𝒙𝒊, where 𝒇 is a performance metric such as classification 

accuracy. 

3. Repeat for 𝑡 = 1 𝑡𝑜 𝑇: 

o Generate a new candidate solution 𝒙𝒏𝒆𝒘by performing Lévy flights on a randomly selected solution 𝒙𝒊 . 
o Evaluate the fitness function 𝒇(𝒙𝒏𝒆𝒘)for the new solution. 

o If 𝒇(𝒙𝒏𝒆𝒘) > 𝑓(𝒙𝒊 ), then replace 𝒙𝒊 with 𝒙𝒏𝒆𝒘. 

o Abandon a fraction pa of the worst solutions and generate new solutions to replace them. 

o Sort the solutions in descending order of fitness and select the top N solutions to form the new population. 

4. Output the best solution found after 𝑇 iterations. 

CSDT is effective in selecting the number of features while maintaining or improving the performance of the 

decision tree. However, like all metaheuristic algorithms, its performance depends on the problem and the 

parameter settings, and it may not always find the optimal subset of features. The entire CSDT algorithm is 

defined in Algorithm 2 as follows:  
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Algorithm-2:Cuckoo Search based Decision Tree (CSODForest) 

Input: Training Dataset 𝑫𝒕            

Output: Global best position 𝒈⏞.  

Auxillary: Fitness vector 𝒇 with size 𝒎 and variables 𝒂𝒄𝒄_𝒕, 𝒎𝒇𝒊𝒕, 𝒈𝒇𝒊𝒕 and 𝒎𝒊𝒏𝒅𝒆𝒙. 

Begin 

1. for each nest 𝒏𝒆𝒔𝒕 𝒊 do (∀𝒊 = 𝟏, 𝟐, … . . 𝒎) do 

2.     for each dimension 𝒋 (∀𝒋 = 𝟏, 𝟐, … . . 𝒅) do  

3.           𝒙𝒋
𝒊(𝟎) ← 𝑹𝒂𝒏𝒅𝒐𝒎{𝟎, 𝟏};    

4.      end 

5.     f 𝒂𝒄𝒄_𝒕𝒊 ← −∞ ; 

6. end 

7. 𝒈𝒇𝒊𝒕 ← −∞ ; 

8. for each iteration 𝒌 (𝒌 = 𝟏, 𝟐, … . . 𝑲) do 

9.     for each nest 𝒏𝒆𝒔𝒕 𝒊  (∀𝒊 = 𝟏, 𝟐, … . . 𝒎) do 

10.           Evaluate 𝒏𝒆𝒔𝒕 𝒊  in which 𝒙𝒋
𝒊(𝒌) ≠ 𝟎 ∀𝒋 = 𝟏, 𝟐, … . . 𝒅 ; 

11.           Calculate 𝒂𝒄𝒄_𝒕  

12.            if(𝒂𝒄𝒄_𝒕 > 𝒇𝒂𝒄𝒄𝒊)  

13.                     𝒇𝒂𝒄𝒄𝒊 ← 𝒂𝒄𝒄_𝒕 ; 

14.                     for each dimension 𝒋 (∀𝒋 = 𝟏, 𝟐, … . . 𝒅) do 

15.                          𝒙𝒋
𝒊 = 𝒙𝒋

𝒊(𝒌)    

16.                     end 

17.              ifend 

18.        end 

19.        [𝒎𝒇𝒊𝒕, 𝒎𝒊𝒏𝒅𝒆𝒙] = 𝒎𝒂𝒙(𝒇) ; 

20.        if   (𝒎𝒇𝒊𝒕 >  𝒈𝒇𝒊𝒕) 

21.              𝒈𝒇𝒊𝒕 ← 𝒎𝒇𝒊𝒕 ; 

22.              for each dimension 𝒋 (∀𝒋 = 𝟏, 𝟐, … . . 𝒅) do 

23.                          �̂�𝑗 = 𝒙𝒎𝒊𝒏𝒅𝒆𝒙
𝒋

(𝒌)    

24.               end 

25.         ifend 

26.       for each nest 𝒏𝒆𝒔𝒕 𝒊 do (∀𝒊 = 𝟏, 𝟐, … . . 𝒎) do 

27.             for each dimension 𝒋 (∀𝒋 = 𝟏, 𝟐, … . . 𝒅) do  

28.                     𝒙𝒋
𝒊(𝒌) ← 𝒙𝒋

𝒊(𝒌 − 𝟏) + 𝜶 ⊕ 𝑳�́�𝒗𝒚  

29.                    if  (𝝈 <
𝟏

𝟏+𝒆
𝒙𝒋

𝒊(𝒌)
 )   then 

30.                              𝒙𝒋
𝒊(𝒌) ← 𝟏 

31.                    else 

32.                              𝒙𝒋
𝒊(𝒌) ← 𝟎 

33.                    ifend 

34.              end 

35.         end 

36.   end 

37. Evaluate tree using a testing set  𝑻𝒕𝒆𝒔𝒕 

 

 

CSDT algorithm is used to select the most important features in a binary feature space, where each feature can 

either be selected or not selected. The Binary Cuckoo Search algorithm works by first initializing a population 

of candidate feature subsets, where each subset is represented by a binary vector indicating which features are 

selected. Then, the algorithm performs a series of iterations to refine the feature subsets, guided by a fitness 

function that evaluates the performance of each subset. During each iteration, the algorithm randomly generates 

new candidate solutions by performing a random walk using the Lévy flight distribution. The algorithm then 
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evaluates the fitness of the new solutions and replaces the worst-performing solutions in the population with the 

new solutions.  To enforce the binary constraint on the feature selection, the algorithm uses a threshold function 

to convert the real-valued solutions generated by the Lévy flight into binary vectors. The threshold function 

maps values above a certain threshold to 1 (selected), and values below the threshold to 0 (not selected). The 

algorithm continues iterating until a stopping criterion is met, such as a maximum number of iterations or 

convergence of the best solution. Finally, the best feature subset found by the algorithm is returned as the 

solution. 

Overall, the Binary Cuckoo Search optimization algorithm provides a powerful and efficient way to perform 

feature selection in binary feature spaces, and has been shown to outperform other feature selection methods on 

a range of benchmark datasets. 

 

5. Experimental Results 

5.1 Dataset Description 

The efficacy of the CSDT algorithm is assessed on six distinct benchmark datasets sourced from the UCI 

machine learning repository. The performance of pruned CSDT is evaluated on 6 standard datasets obtained 

from the UCI machine learning repository, which include numerical and categorical attributes from various 

domains. These datasets differ in size, and more information about them can be found in Table 1.  

 

Table 1. Summary of datasets 

Dataset Instances Attributes Classes 

Chess 3196 36 2 

Credit Approval 653 15 2 

Image Segmentation 2310 19 7 

Ionosphere 351 34 2 

Statlog Vehicle 846 18 4 

Sonar 208 60 2 

5.2 Comparison of Accuracy of CSDT with other decision tree algorithms 

A comparison of the outcomes of CSDT is done with C4.5 [5], CART [16], and Random Tree[17] to 

demonstrate the effectiveness. To assess the performance of the proposed approach, a 10-fold cross-validation 

technique is employed, where each dataset is partitioned into ten subsets of equal size. In every fold, training is 

done on nine parts of the dataset and one part is used for evaluating the performance on the CSDT algorithm. 

Table 2 shows the Accuracy of the proposed CSDT with other methods.  

 

Table 2.  Comparison of Accuracy of CSDT with  other methods 

Dataset C4.5 CART RandomTree CSDT 

Chess 76.74 74.12 77.34 79.24 

Credit Approval 86.09 86.01 80.57 87.21 

Image Segmentation 96.92 97.12 95.40 97.23 

Ionosphere 91.45 91.23 87.74 90.86 

Statlog Vehicle 86.74 87.42 86.56 88.42 

Sonar 72.57 72.36 73.12 74.38 

 

From Table 2, we can observe that accuracy for many dataset is better in the CSDT algorithm. CSDT algorithm 

gives more than 2% greater accuracy datasets. 

   

6. Conclusion 

We present a novel approach to feature selection using the Cuckoo search optimization algorithm. The goal is to 

select a subset of features from a large set that can improve the accuracy of decision trees while reducing 

computational and storage costs. Our proposed algorithm, CSDT, uses the Cuckoo search algorithm to select 

high-quality features, which are then used to create efficient and accurate decision trees. We evaluate the 

performance of CSDT on six datasets from the UCI machine learning repository using a 10-fold cross-validation 

method. Results show that CSDT prunes decision trees with higher accuracy and avoids overfitting compared to 

other decision trees algorithms. 
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