
Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

491

Research Article

BotChase: Integrated Unsupervised Learning with Decision Tree Classifier

for Graph-Based Bot Detection

V. Krishna Sahithi
1
, R. Jyothika

1
, S. Preethi

1
, Dr. A. R. Siva Kumaran

2

1
UG Student,

2
Professor,

1,2
Department of Computer Science and Engineering

1,2
Malla Reddy Engineering College for Women (UGC-Autonomous), Maisammaguda, Secunderabad,

Telangana, India

ABSTRACT

Bot detection using machine learning (ML), with network flow-level features, has been extensively

studied in the literature. However, existing flow-based approaches typically incur a high

computational overhead and do not completely capture the network communication patterns, which

can expose additional aspects of malicious hosts. Recently, bot detection systems that leverage

communication graph analysis using ML have gained attention to overcome these limitations. A

graph-based approach is rather intuitive, as graphs are true representation of network

communications. To overcome from the issues arisen from existing models, this project uses

supervised and unsupervised algorithms, and these algorithms will be trained and generate a model

and this model will be applied on new request data to identify whether request is normal or attack.

Using unsupervised (K-means) algorithm, we will separate dataset into Bot (attack) and BENIGN

(normal) records. K-means will arrange similar records in one cluster, and we will filter out all those

records which has a smaller number of requests. All high request number of records will consider as

BOT or attack. After separating records, it uses graph-based features extraction technique to extract

features from dataset. Dataset will be passed to graph and each IP will be consider as VERTEX and

then connect source and destination with edges. Edges will have weight based on its incoming and

outgoing link connections. To get edge weight we will calculate between_ness centrality, incoming

edge weight, outgoing edge weight and alpha_centrality weight. After all this calculation we will

extract in_degree, out_degree, in_degree_weight, out_degree_weight, between_ness, clustering and

alpha_centrality as features. Any record which has high number of connections will mark its label as 1

(BOT) otherwise 0 (normal). After features extraction from graph, we will go for normalization to get

mean values of each feature. Normalized features will be used to train decision tree classifier and this

model can be used to predict type of future requests.

Keywords: Bot detection, machine learning, DoS attack, K-means clustering

1. INTRODUCTION

Undoubtedly, organizations are constantly under security threats, which not only costs billions of

dollars in damage and recovery, it often also detrimentally affects their reputation. A botnet-assisted

attack is a widely known threat to these organizations. According to the U.S. Federal Bureau of

Investigation, “Botnets caused over $9 billion in losses to U.S. victims and over $110 billion globally.

Approximately 500 million computers are infected each year, translating into 18 victims per second.”

The most infamous attack, called Rustock, infected 1 million machines, sending up to 30 billion spam

emails a day [1]. Hence, it is imperative to defend against these botnet-assisted attacks. A botnet is a

collection of bots, agents in compromised hosts, controlled by botmasters via command and control

(C2) channels. A malevolent adversary controls the bots through botmaster, which could be

distributed across several agents that reside within or outside the network. Hence, bots can be used for

tasks ranging from distributed denial-of-service (DDoS) to massive-scale spamming, to fraud and

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

492

Research Article

identify theft. While bots thrive for different sinister purposes, they exhibit a similar behavioral

pattern when studied up-close. The intrusion kill-chain [2] dictates the general phases a malicious

agent goes through in-order to reach and infest its target.

Anomaly-based methods are widely used in both detection [3], [4]. They first establish a baseline of

normal behavior for the protected system and model a decision engine. The decision engine

determines and alerts any divergence or statistical deviations from the norm as a threat. Machine

learning (ML) [3] is an ideal technique to automatically capture the normal behavior of a system. The

use of ML has boosted the scalability and accuracy of anomaly-based IDSs [4]. The most widely

employed learning paradigms in ML include supervised and unsupervised. Supervised learning uses

labeled training datasets to create models. It is employed to learn and identify patterns in the known

training data. However, labeling is non-trivial and typically require domain experts to manually label

the datasets [3]. This can be cumbersome and prone to error, even for small datasets. On the other

hand, unsupervised learning uses unlabelled training datasets to create models that can discriminate

between patterns in the data.

An important step prior to learning, or training a ML model, is feature extraction. These features act

as discriminators for learning and inference, reduce data dimensionality, and increase the accuracy of

ML models. The most commonly employed features in bot detection are flow-based (e.g., source and

destination IPs, protocol, number of packets sent and/or received, etc.). However, these features do

not capture the topological structure of the communication graph, which can expose additional aspects

of malicious hosts. In addition, flowlevel models can incur a high computational overhead, and can

also be evaded by tweaking behavioral characteristics e.g., by changing packet structure [5].

Graph-based features, derived from flow-level information, which reflect the true structure of

communications, interactions, and behavior of hosts, are an alternate that overcome these limitations.

We show that incorporating graph-based features into ML yields robustness against complex

communication patterns and unknown attacks. Moreover, it allows for cross-network ML model

training and inference. The major contributions of this paper are as follows:

• We propose BotChase, an anomaly-based bot detection system that is protocol agnostic,

robust to zero-day attacks, and suitable for large datasets.

• We employ a two-phased ML approach that leverages both supervised and unsupervised

learning. The first phase filters presumable benign hosts. This is followed by the second phase

on the pruned hosts, to achieve bot detection with high precision.

• We propose feature normalization (F-Norm) on top of graph-based features in BotChase and

evaluate various ML techniques. Our graph-based features, inspired from the literature and

derived from network flows, undergo F-Norm to overcome severe topological effects. These

effects can skew bot behavior in different networks, exacerbating ML prediction.

Furthermore, these features allow to combine data from different networks and promote

spatial stability [6] in the ML models.

• We compare the performance of our graph-based features with flow-based features from

BotMiner [7] and BClus [8] in a prototype implementation of BotChase. Furthermore, we

compare BotChase with BotGM [9] and the end-to-end system proposed for BClus.

• We evaluate the BotChase prototype system in an online setting that recurrently trains and

tests the ML models with new data. We also leverage the Hoeffding Adaptive Tree (HAT)

[10] classifier for incremental learning. This is crucial to account for changes in network

traffic and host behavior.

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

493

Research Article

2. LITERATURE SURVEY

Botnet detection has been an active area of research that has generated a substantial body of work.

Common botnet detection approaches are passive. They assume successful intrusions and focus on

identifying infected hosts (bots) or detecting C2 communications, by analyzing system logs and

network data, using signature- or anomaly-based techniques. Signature-based techniques have

commonly been used to detect pre-computed hashes of existing malware in hosts and/or network

traffic. They are also used to isolate IRC-based bots by detecting bot-like IRC nicknames [12], and to

identify C2-related DNS requests by detecting C2-like domain names [13].

Metadata such as regular expressions based on packet content and target IP occurrence tuples [14] is

an example of what could be employed in a signature and pattern detection algorithm. More generally,

signature-based techniques have been employed to identify C2 by comparison with known C2

communication patterns extracted from observed C2 traffic, and infected hosts by comparison with

static profiles and behaviours of known bots [15]. However, they can be easily subverted by unknown

or modified threats, such as zero-day attacks and polymorphism [15], [16]. This undermines their

suitability to detect sophisticated modern botnets.

On the other hand, anomaly-based techniques use heuristics to associate certain behaviour and/or

statistical features extracted from system or network logs, with bots and/or C2 traffic. C2 occurs at the

early stages of a botnet’s lifecycle, thus its detection is deemed essential to prevent malicious

activities. Most existing anomaly-based C2 detection techniques are based on the statistical features of

packets and flows [7], [12], [17]–[27]. Works like [17], [18] are focused on specific communication

protocols, such as IRC, providing narrow-scoped solutions. Whereas, BotMiner [7] is a

protocolindependent solution, which assumes that bots within the same botnet are characterized by

similar malicious activities and communication patterns. This assumption is an over simplification,

since botnets often randomize topologies [15] and communication patterns as we observe in newer

malwares, such as Mirai [28]. Other works, such as [23], [27], leverage ML and traffic-based

statistical features, for detecting C2 with low error rates. However, such techniques require that all

flows are compared against each other to detect C2 traffic, which incurs a high computational

overhead. In addition, they are unreliable, as they can be evaded with encryption and by tweaking

flow characteristics [5]. Therefore, it is evident that a non-protocol-specific, more efficient, and less

evadable detection method is desired.

Anomaly-based bot detection solutions that do not focus on detecting C2 per se, but rather identify

bots by observing and analyzing their activities and behaviour, address some of the aforementioned

issues. Graph-based approaches, where host network activities are represented by communication

graphs, extracted from network flows and host-to-host communication patterns, have been proposed

in this regard [5], [9], [29]– [40]. Le et al. [37] present a strong case for leveraging SelfOrganizing

Maps (SOMs) in the context of bot detection with recall rates beyond 90%. However, SOM remains

an unsupervised learning algorithm that ultimately requires manual expertise to distinguish unknown

network traffic.

BotGM [9] builds host-to-host communication graphs from observed network flows, to capture

communication patterns between hosts. A statistical technique, the inter-quartile method, is then used

for outlier detection. Their results exhibit moderate accuracy with low false positives (FPs) based on

different windowing parameters. However, BotGM generates multiple graphs for every single host.

That is, for every pair of unique IPs, a graph is constructed, such that every node in the graph

represents a unique 2-tuple of source and destination ports, with edges signifying the time sequence of

communication. However, this entails a high overhead.

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

494

Research Article

Khanchi et al. [41] propose botnet detection on non-stationary stream of data using incremental non-

overlapping window. They propose to use a team of genetic programs to predict on records in a

stream of data. These records are archived to build a data subset to further train the classifier. The true

labels of the records are requested from human operators as long as the label budget is met. However,

if records from minor classes are targeted for true label queries, minor classes are promoted

aggressively, reducing the performance of major classes.

Chowdhury et al. [39] use ML for clustering the nodes in a graph, with a focus on dimensionality and

topological characterization. Their assumption is that most benign hosts will be grouped in the same

cluster due to similar connection patterns, hence can be eliminated from further analysis. Such a

crucial reduction in nodes effectively minimize detection overhead. However, their graph-based

features are plagued by severe topological effects (cf., Section IV). They use statistical means and

user-centric expert opinion to tag the remaining clusters as malicious or benign. However, leveraging

expert opinion can be cumbersome, error prone and infeasible for large datasets. Recently, rule-based

host clustering and classi- fication [40] have been proposed, where pre-defined thresholds are used to

discriminate between benign and suspicious hosts. Unfortunately, relying on static thresholds make

the technique prone to evasion and less robust to ML-based outlier detection.

Big Data has received a lot of attention lately, which is also often paired with streaming. Employing

ML in a streaming context [42] undoubtedly yields better result than batching. Keen statistical

techniques, such as concept drifts and ADWIN windowing, help surmount the challenges facing

classification in data streaming. However, retraining the ML model only when a concept drift occurs

may require specific threshold tuning, which does not generalize.

3. EXISTING SYSTEM

Fuzzy C-Means Clustering (FCM) Algorithm

Fuzzy logic principles can be used to cluster multidimensional data, assigning each point a

membership in each cluster center from 0 to 100 percent. This can be very powerful compared to

traditional hard-threshold clustering where every point is assigned a crisp, exact label. This algorithm

works by assigning membership to each data point corresponding to each cluster center on the basis of

distance between the cluster center and the data point. More the data is near to the cluster center more

is its membership towards the particular cluster center. Clearly, summation of membership of each

data point should be equal to one.

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

495

Research Article

It is an unsupervised clustering algorithm that permits us to build a fuzzy partition from data. The

algorithm depends on a parameter m which corresponds to the degree of fuzziness of the solution.

Large values of m will blur the classes and all elements tend to belong to all clusters. The solutions of

the optimization problem depend on the parameter m. That is, different selections of m will typically

lead to different partitions. Given below is a gif that shows the effect of the selection of m obtained

from the fuzzy c-means.

K-Means versus Fuzzy C-Means

Let us compare these two powerful algorithms to get a clear idea of where the fuzzy c-means

algorithm fits in.

Attribution to a cluster: In fuzzy clustering, each point has a probability of belonging to each cluster,

rather than completely belonging to just one cluster as it is the case in the traditional k-means. In

Fuzzy-C Means clustering, each point has a weighting associated with a pardticular cluster, so a point

doesn’t sit “in a cluster” as much as has a weak or strong association to the cluster, which is

determined by the inverse distance to the center of the cluster.

Speed: Fuzzy-C means will tend to run slower than K means, since it’s actually doing more work.

Each point is evaluated with each cluster, and more operations are involved in each evaluation. K-

Means just needs to do a distance calculation, whereas fuzzy c means needs to do a full inverse-

distance weighting.

Personal Opinion: FCM/Soft-K-Means is “less stupid” than Hard-K-Means when it comes to

elongated clusters (when points otherwise consistent in other dimensions tend to scatter along a

particular dimension or two).

Steps in Fuzzy C-Means

Assume a fixed number of clusters k.

Initialization: Randomly initialize the k-means μk associated with the clusters and compute the

probability that each data point xi is a member of a given cluster k, P (point xi has label k|xi, k).

Iteration: Recalculate the centroid of the cluster as the weighted centroid given the probabilities of

membership of all data points xi

Termination: Iterate until convergence or until a user-specified number of iterations has been reached

(the iteration may be trapped at some local maxima or minima).

K-Nearest Neighbor (KNN) Algorithm

 K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on

Supervised Learning technique.

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

496

Research Article

 K-NN algorithm assumes the similarity between the new case/data and available cases and

put the new case into the category that is most similar to the available categories.

 K-NN algorithm stores all the available data and classifies a new data point based on the

similarity. This means when new data appears then it can be easily classified into a well suite

category by using K- NN algorithm.

 K-NN algorithm can be used for Regression as well as for Classification but mostly it is used

for the Classification problems.

 K-NN is a non-parametric algorithm, which means it does not make any assumption on

underlying data.

 It is also called a lazy learner algorithm because it does not learn from the training set

immediately instead it stores the dataset and at the time of classification, it performs an action

on the dataset.

 KNN algorithm at the training phase just stores the dataset and when it gets new data, then it

classifies that data into a category that is much similar to the new data.

Steps

1. Get labeled data: The labeled data consists of features and labels. Features are the

characteristics or the property of the object whereas labels are the class of the object with

those features.

2. Convert labeled data to encoded data: Usually computations are based on numerical form so

we convert the data to numeric form by encoding them.

3. Create feature set: Creating a set of features by packing the features.

4. Split the data for train and test: The data are split training and testing. Usually, 80% for

training and 20% for testing but can select based on need.

5. Train the classifier: Training the classifier with the training data by specifying the value of k.

Use k =3 for binary classification, i.e., two labels classification. If used k =1 then it is simply

a nearest neighbor classifier.

6. Test the classifier: Testing the classifier with the testing data.

7. Evaluate: Evaluating the classifier using confusion matrix and its evaluation metrics i.e.,

accuracy, precision, recall, et cetera.

Disadvantages of existing system

 Apriori specification of the number of clusters.

 With lower value of β we get the better result but at the expense of a greater number of

iterations.

 Euclidean distance measures can unequally weight underlying factors.

4. PROPOSED SYSTEM

4.1 CTU dataset

The CTU-13 is a dataset of botnet traffic that was captured in the CTU University, Czech Republic, in

2011. The goal of the dataset was to have a large capture of real botnet traffic mixed with normal

traffic and background traffic. The CTU-13 dataset consists in thirteen captures (called scenarios) of

different botnet samples. On each scenario we executed a specific malware, which used several

protocols and performed different actions. Each scenario was captured in a pcap file that contains all

the packets of the three types of traffic. These pcap files were processed to obtain other type of

information, such as NetFlows, WebLogs, etc.

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

497

Research Article

4.2 K-Means Clustering Algorithm

K-Means Clustering is an unsupervised learning algorithm that is used to solve the clustering

problems in machine learning or data science. In this topic, we will learn what is K-means clustering

algorithm, how the algorithm works, along with the Python implementation of k-means clustering.

What is K-Means Algorithm?

K-Means Clustering is an Unsupervised Learning algorithm, which groups the unlabelled dataset into

different clusters. Here K defines the number of pre-defined clusters that need to be created in the

process, as if K=2, there will be two clusters, and for K=3, there will be three clusters, and so on.

 It allows us to cluster the data into different groups and a convenient way to discover the

categories of groups in the unlabelled dataset on its own without the need for any training.

 It is a centroid-based algorithm, where each cluster is associated with a centroid. The main

aim of this algorithm is to minimize the sum of distances between the data point and their

corresponding clusters.

Fig. 4.1: Block diagram of proposed system.

The algorithm takes the unlabelled dataset as input, divides the dataset into k-number of clusters, and

repeats the process until it does not find the best clusters. The value of k should be predetermined in

this algorithm.

The k-means clustering

algorithm mainly performs two tasks:

 Determines the best value for K center points or centroids by an iterative process.

 Assigns each data point to its closest k-center. Those data points which are near to the

particular k-center, create a cluster.

Hence each cluster has datapoints with some commonalities, and it is away from other clusters.

How does the K-Means Algorithm Work?

The working of the K-Means algorithm is explained in the below steps:

Step-1: Select the number K to decide the number of clusters.

Step-2: Select random K points or centroids. (It can be other from the input dataset).

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

498

Research Article

Step-3: Assign each data point to their closest centroid, which will form the predefined K clusters.

Step-4: Calculate the variance and place a new centroid of each cluster.

Step-5: Repeat the third steps, which means reassign each datapoint to the new closest centroid of

each cluster.

Step-6: If any reassignment occurs, then go to step-4 else go to FINISH.

Step-7: The model is ready.

Decision Tree Algorithm

 Decision Tree is a Supervised learning technique that can be used for both classification and

Regression problems, but mostly it is preferred for solving Classification problems. It is a

tree-structured classifier, where internal nodes represent the features of a dataset, branches

represent the decision rules, and each leaf node represents the outcome.

 In a Decision tree, there are two nodes, which are the Decision Node and Leaf Node. Decision

nodes are used to make any decision and have multiple branches, whereas Leaf nodes are the

output of those decisions and do not contain any further branches.

 The decisions or the test are performed based on features of the given dataset.

 It is a graphical representation for getting all the possible solutions to a problem/decision

based on given conditions.

 It is called a decision tree because, like a tree, it starts with the root node, which expands on

further branches and constructs a tree-like structure.

 To build a tree, we use the CART algorithm, which stands for Classification and Regression

Tree algorithm.

 A decision tree simply asks a question and based on the answer (Yes/No), it further split the

tree into subtrees.

 Below diagram explains the general structure of a decision tree:

Features of Decision Tree Learning

 Method for approximating discrete-valued functions (including boolean).

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

499

Research Article

 Learned functions are represented as decision trees (or if-then-else rules).

 Expressive hypotheses space, including disjunction.

 The decision tree is robust to noisy data.

Diagram

 Each non-leaf node is connected to a test that splits its set of possible answers into subsets

corresponding to different test results.

 Each branch carries a particular test result's subset to another node.

 Each node is connected to a set of possible answers.

Advantages of proposed system

 Simple to understand and to interpret.

 Requires little data preparation.

 The cost of using the tree is logarithmic in the number of data points used to train the

tree.

 Able to handle both numerical and categorical data.

 Able to handle multi-output problems.

5. RESULTS AND DISCUSSION

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

500

Research Article

In above screen click on ‘Upload CTU Dataset’ button and upload dataset

In above screen dataset contains total 2824636 records and each record contain 15 columns and below

it I am displaying some dataset records. Now click on ‘Apply Unsupervised Learning (K-means) to

separate Bot & Benign Data’ button to remove benign records

In above screen we can see dataset size before removing benign records and after removing benign

records. By removing some benign records, we can reduce dataset size. Now click on ‘Run Flow

Ingestion & Graph Transformation’ button to generate graph

In above screen we can see progress bar which indicates graph-based features extraction and while

applying this technique it will open 2 empty windows and you just close those 2 empty windows to

get below screen

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

501

Research Article

In above screen we can see total nodes and edges generated and time taken to calculate between_ness,

alpha centrality, and clustering. Now we generate graphs and now click on ‘Features Extraction &

Normalization’ button to extract features and to perform normalization on extracted features.

In above screen after normalization, I am displaying few records with out_degree, in degree and

weight details. In above screen ‘bc’ refers to between_ness and ‘lcc’ refers to clustering and ‘ac’

refers to alpha centrality. All normalized records are saved inside ‘normalize_data.csv’ file and you

can open and see that file from code folder. Now click on ‘Run Decision Tree Algorithm’ button to

generate training model with decision tree classifier and to calculate metrics such as accuracy,

precision etc.

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

502

Research Article

In above screen after normalization, we got total records as 3159 with 7 columns (in_degree,

out_degree, weight etc.) and application split total records into train size as 2527 and test size as 632.

After building train model we apply test records and got accuracy as 100%. Below screen showing

normalization progressing steps

6. CONCLUSION

In this paper, we proposed BotChase, a system that is capable of efficiently transforming network

flows into an aggregated graph model. It leverages two ML phase to differentiate bots from benign

hosts. Using the results of the phase favour DT, showcasing high TPs and low FPs. BotChase is also

able to detect bots that rely on different protocols, proves robust against unknown attacks and cross-

network ML model training and inference. Flow-based features employed in BotChase under perform

in comparison to graph-based features. BotChase also outperforms an end-to-end system that employs

flow-based features, and performs well against the graph-based BotGM system. In an online setting,

BotChase leverages HAT for incremental learning to process data on-the-fly. While the model takes

longer to converge, it exhibits superior classification performance in its final state. To implement this

project, we are using CTU-13 dataset and this dataset contains 13 observation and each observation

contains PCAP files (This file contains all network information) and capture file (this file contains

extracted information from PCAP files, and this file contains data such as source address, destination

address, time, packet size etc.). To generate graph, we need to used capture file not PCAP file, so I

downloaded some observation and saved inside ‘CTU-13-dataset’ folder.

REFERENCES

[1] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring payper-install: the

commoditization of malware distribution,” in USENIX Security, 2011, p. 13.

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

503

Research Article

[2] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven computer network

defense informed by analysis of adversary campaigns and intrusion kill chains,” Information

Warfare & Security Research, vol. 1, no. 1, p. 80, 2011.

[3] R. Boutaba et al., “A comprehensive survey on machine learning for networking: evolution,

applications and research opportunities,” Journal of Internet Services and Applications, vol. 9,

no. 1, pp. 1–99, 2018.

[4] G. Creech and J. Hu, “A Semantic Approach to Host-Based Intrusion Detection Systems Using

Contiguous and Discontiguous System Call Patterns,” IEEE Trans. on Computers, vol. 63, no.

4, pp. 807–819, 2014.

[5] B. Venkatesh, S. H. Choudhury, S. Nagaraja, and N. Balakrishnan, “BotSpot: fast graph-based

identification of structured P2P bots,” Journal of Computer Virology and Hacking Techniques,

vol. 11, no. 4, pp. 247–261, 2015.

[6] Y. Jin et al., “A modular machine learning system for flow-level traffic classification in large

networks,” ACM TKDD, vol. 6, no. 1, p. 4, 2012.

[7] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering Analysis of Network Traffic

for Protocol-and Structure-Independent Botnet Detection,” in USENIX Security, 2008, pp.

139–154.

[8] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of botnet detection

methods,” Computers & Security, vol. 45, pp. 100–123, 2014.

[9] S. Lagraa et al., “BotGM: Unsupervised graph mining to detect botnets in traffic flows,” in

IEEE CSNet, 2017, pp. 1–8.

[10] A. Bifet and R. Gavalda, “Adaptive learning from evolving data streams,” ` in Intl. Sym. on

Intelligent Data Analysis, 2009, pp. 249–260.

[11] A. Abou Daya, M. Salahuddin, N. Limam, and R. Boutaba, “A GraphBased Machine

Learning Approach for Bot Detection,” in IFIP/IEEE IM, 2019.

[12] J. Goebel and T. Holz, “Rishi: Identify Bot Contaminated Hosts by IRC Nickname

Evaluation,” HotBots, vol. 7, p. 8, 2007.

[13] A. Ramachandran, N. Feamster, and D. Dagon, “Revealing botnet membership using dnsbl

counter-intelligence,” SRUTI, vol. 6, pp. 49–54, 2006.

[14] M. Hagan, B. Kang, K. McLaughlin, and S. Sezer, “Peer based tracking using multi-tuple

indexing for network traffic analysis and malware detection,” in IEEE PST, 2018, pp. 1–5.

[15] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam, “A taxonomy of botnet

behavior, detection, and defense,” IEEE COMST, vol. 16, no. 2, pp. 898–924, 2014.

[16] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion detection systems,”

Computer Networks, vol. 31, no. 8, pp. 805–822, 1999.

[17] J. R. Binkley and S. Singh, “An Algorithm for Anomaly-based Botnet Detection,” SRUTI,

vol. 6, p. 7, 2006.

[18] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-Scale Botnet Detection and

Characterization,” HotBots, vol. 7, p. 7, 2007.

[19] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, “Botnet detection based on network

behavior,” in Botnet detection. Springer, 2008, pp. 1–24.

[20] R. Villamar´ın-Salomon and J. C. Brustoloni, “Identifying botnets using ´ anomaly detection

techniques applied to dns traffic,” in IEEE CCNC, 2008, pp. 476–481.

[21] W. Lu, M. Tavallaee, G. Rammidi, and A. A. Ghorbani, “BotCop: An online botnet traffic

classifier,” in IEEE Comm. Networks and Serv. Research, 2009, pp. 70–77.

[22] H. R. Zeidanloo, A. B. Manaf, P. Vahdani, F. Tabatabaei, and M. Zamani, “Botnet detection

based on traffic monitoring,” in ICNIT, 2010, pp. 97– 101.

Turkish Journal of Computer and Mathematics Education Vol.14 No.02 (2023),491-504

504

Research Article

[23] S. Saad et al., “Detecting P2P botnets through network behavior analysis and machine

learning,” in IEEE PST, 2011, pp. 174–180.

[24] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting stealthy P2P botnets using

statistical traffic fingerprints,” in IEEE/IFIP DSN, 2011, pp. 121–132.

[25] W. Lu, G. Rammidi, and A. A. Ghorbani, “Clustering botnet communication traffic based on

n-gram feature selection,” Computer Comm., vol. 34, no. 3, pp. 502–514, 2011.

[26] H. Choi and H. Lee, “Identifying botnets by capturing group activities in DNS traffic,”

Computer Networks, vol. 56, no. 1, pp. 20–33, 2012.

[27] D. Zhao et al., “Botnet detection based on traffic behavior analysis and flow intervals,”

Computers & Security, vol. 39, pp. 2–16, 2013.

[28] M. Antonakakis et al., “Understanding the Mirai Botnet,” in USENIX Security, 2017, pp.

1093–1110.

[29] M. P. Collins and M. K. Reiter, “Hit-list worm detection and bot identification in large

networks using protocol graphs,” in RAID, 2007, pp. 276–295.

[30] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “BotGrep: Finding P2P Bots

with Structured Graph Analysis,” in USENIX Security, vol. 10, 2010, pp. 95–110.

[31] J. Franc¸ois, S. Wang, W. Bronzi, R. State, and T. Engel, “Botcloud: Detecting botnets using

mapreduce,” in IEEE Intl. Workshop on Info. Forensics and Security, 2011, pp. 1–6.

[32] H. Hang, X. Wei, M. Faloutsos, and T. Eliassi-Rad, “Entelecheia: Detecting p2p botnets in

their waiting stage,” in IEEE/IFIP Networking, 2013, pp. 1–9.

[33] K. Henderson et al., “Rolx: structural role extraction & mining in large graphs,” in ACM

KDD, 2012, pp. 1231–1239.

[34] Q. Ding, N. Katenka, P. Barford, E. Kolaczyk, and M. Crovella, “Intrusion as (anti) social

communication: characterization and detection,” in ACM KDD, 2012, pp. 886–894.

[35] J. Franc¸ois, S. Wang, and T. Engel, “BotTrack: tracking botnets using NetFlow and

PageRank,” in Intl. Conf. on Research in Networking, 2011, pp. 1–14.

[36] P. Jaikumar and A. C. Kak, “A graph-theoretic framework for isolating botnets in a network,”

Security and communication networks, vol. 8, no. 16, pp. 2605–2623, 2015.

[37] D. C. Le, A. N. Zincir-Heywood, and M. I. Heywood, “Data analytics on network traffic

flows for botnet behaviour detection,” in IEEE SSCI, 2016, pp. 1–7.

[38] D. Zhuang and J. M. Chang, “Peerhunter: Detecting peer-to-peer botnets through community

behavior analysis,” in IEEE DSC, 2017, pp. 493–500.

[39] S. Chowdhury et al., “Botnet detection using graph-based feature clustering,” Journal of Big

Data, vol. 4, no. 1, p. 14, 2017.

[40] D. Zhuang and J. M. Chang, “Enhanced peerhunter: Detecting peer-topeer botnets through

network-flow level community behavior analysis,” IEEE TIFS, vol. 14, no. 6, pp. 1485–1500,

2019.

[41] S. Khanchi, A. Vahdat, M. I. Heywood, and A. N. Zincir-Heywood, “On botnet detection

with genetic programming under streaming data label budgets and class imbalance,” Swarm

and evolutionary computation, vol. 39, pp. 123–140, 2018.

[42] P. Mulinka and P. Casas, “Stream-based machine learning for network security and anomaly

detection,” in ACM Workshop on Big Data Analytics and ML for Data Comm. Networks,

2018, pp. 1–7.

