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ABSTRACT : Present study explored the influence of stretching constraint in addition with inclusion of energy. 

An analytical solution for the system of non-linear equations of motion is worked out by adopting Homotopy 

Perturbation method (HPM). Physical and graphical reflections various parameters are demonstrated in the 

present problem. Utility of this model has been perceived in diverse industrial and chemical processes. 
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Introduction 

Investigation of heat transfer in boundary layer has got tremendous application in Engineering, Plasma 

physics etc. and become an important subject for many researchers at the present time. In 1911, Hiemenz [9] 

considered the 2-D fluid flow near the point of stagnation and used similarity transformation. Thereafter, mass 

transfer, heat transfer, stagnation point flow, different physical effects, and stagnation point, calculation of skin-

friction was exercised numerous ways. 

The analytic form of 2-D steady flow of incompressible fluid because of the stretch sheet was 

estimated by Crane [5] with varying velocity. Also, Crane and Carragher [2] discussed the transfer of heat in 

above given flow model. Discussion of two-dimensional flow of stagnation point on the stretch surface of an 

incompressible viscous fluid was initiated by Chiam [4] and Mahapatra et al. [12] carried out the investigation 

by introducing temperature distribution.  The pioneer work regarding the study of heat generation on a 

stretching surface was introduced in references [2], [7], [6], [13] and carried out their research by following the 

different phases of the problem. 

The present research includes the experiment in laminar flow in a porous media when a viscous and 

incompressible fluid was used on a stretch surface with generation of heat considering the stream and wall 

temperatures to be constant. In this proposed study, the results of Attia [1], S. Kazem et al. [11] were modified 

by employing Homotopy Perturbation Method (HPM) He J. H. [8] to obtain almost exact solution of the energy 

and momentum governing equations. HPM is a constructive tool to covenant with nonlinear differential 

equation, has been established by many authors like A. K. Jhankal [10]. Though a huge calculation is involved 

in this analytic method (HPM), but always provides a convenient solution to discuss the behavior of the 

parameters. We sketched and discussed the obtained results for discussing the heat and flow characteristics. In 

addition to this, the outcomes were compared with those of Attia [1] and S. Kazem et al. [11] to verify the 

accuracy of our result. Moreover, we have shown and discussed one comparison graph related to temperature 

with the graph obtained by Attia [1], to establish the accuracy of the method adopted here. 

Mathematical formulation of the problem: 

 A 2-dimensional steady stagnation flow of point for an incompressible and viscous, electrically 

conducting fluid near O the stagnation point, on a surface which is considered along the plane y = 0 (x-axis). 

The substantial circumstances describing the model with initial velocity
wu ,

wT  be the temperature whereas 

( )wu x  , ( )T x  are the flow velocity and temperature which are calculated externally for a boundary layer as 

given in Figure 1. 

Figure 1: Physical model of the problem 

Figure 1: Physical model of the problem 
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Figure 1: Physical model of the problem 

Momentum equation, Continuity equation and the governing equation for two-dimensional steady flow, 

using standard boundary layer approximations Nazar et. al. [13], reduces “as follows: 
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Where ‘K’ is the Darcy Permeability; μ’ is coefficient of viscosity, &‘ρ’ is fluid density of a fluid. 

Neglecting the dissipation, the governing energy equation with the temperature vales that depends on the 

absorption and generation of heat as per White M. F. [14], 
2
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Where, the symbols have their usual meaning 

 The boundary limitations describing the flow are given by: 

 
( ) , 0; 0

4
( ) ;

w w

e
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Here c is any positive constant, and  𝑇𝑤 is the temperature at the wall. 

Using, υ= μ / ρ as kinematic viscosity, using similarity transformations: 

( , ) ( ), ( , ) ( ), , (5)
c

u x y cxf v x y c f y   


     

Here the prime denotes the derivative value as per the value of η. For normalizing this model of flow, 

the non-dimensional temperature given below is introduced: 

( ) , Pr , , , (6)
p

w p

cT T Q
M C B

T T K cK c c C

  
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
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The following nonlinear coupled differential equations are produced by applying (5), (6) in (2), (3) and 

(4): 
2 2( ) ( ). ( ) ( ) ( ( )) 0 (7)f f f f M C f C               
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c
stretching parameter M porosity parameter
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Solution of the problem 

The nonlinear coupled differential equations (7) and (8) can be rewritten as: 
2

1. . 0 (10)f f f f M f M          

2Pr. . 0 (11)f M        

Constants are mentioned in the appendix 

Applying HPM, the equations (10), (11) can take the following form: 

 2
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We consider “f” and “θ”  are considered as under: 
2
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Using (14) in (12) and (13) and equating the terms free from ‘p’,  the following ordinary differential equations 

are obtained: 

0 0 1

0 2 0

. (15)

. 0 (16)

f M f M
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Solving these ordinary differential equations with the boundary conditions for zeroth order i.e.,

0 0 0 0 0( ) 0, (0) 1, (6) ; (0) 1, (6) 0f o f f C        we obtain the following solutions: 

1
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Again, equating the terms involving coefficients of ‘p’ from the equation obtained by using (14) in (12) and 

(13), the following ordinary differential equations are obtained: 

2
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Solving these equations with the boundary conditions for 1st order                          

 i.e.  1 1 1 1 1( ) 0, (0) 0, (6) 0; (0) 0, (6) 0f o f f       
 
we obtain the following solutions: 
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Neglecting higher order perturbed terms we finally obtain:
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And,  
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The terminologies for viscous drag  (  ) and  Nusselt number  (Nu) are articulated as:  
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Findings 

The present analysis reveals the expressions of boundary layer equations with viscous drag and Nusselt number 

are piled up to get a variety of graphs with their substantial interprtations by taking some standard values of 

different parameters implicated in the problem.  

 
 

 

  

 

 

 

Figures 2 and 3 demonstrate the impact of stretch parameter on the profile of the velocity. The f and f/ 

velocity profiles areaccelerated for differetnt values of stretching parameter ( C = 0.5, 1, 1.5 ). Furthermore, both 

the figure shows the fact that the velocity distribution is directly proportional to the stretching parameter C.  

 

Figure 2: Velocity   f(η)   versus η under M =3, P 

= 0.1 
Effect of parameter C on velocity f  

Figure 3: Velocity f / (η)  versus η  under , M 

= 3, p = 0.1 
Effect of parameter C on velocity  f / 
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Figures 4 depicts the consequence of stretching parameter on profile of temperature. It was noted that 

temperature profileis continuously reducedfor varying the stretching parameter ( C = 0.5, 1, 1.5 ) i.e. the 

temperature distribution is continuously moves down on account of stretching parameter.  

Figure 5, shows the temperature profile for differentparameter values for heat generation and stretching 

parameter. It was observed that fluid temperature of the present flow problem is enlarged for boosting the heat 

generation which clearly satisfies the physical reality. 

 
 

 

Comparison of results  

 

 

 

For comparing the results of the presenet research, the experiment of H. A. Attia [1] was considered. When 

figure 6 and 7 were compared (Figure 5 of the work done by H. A. Attia [1] ), we observed the same kind of 

behavior due to the effects of Pr and C on temperature profile for fixed M = 1 and B  =0.1. i.e., there is a 

significant impact of Prandtl number on thickness of thermal boundary layer. Higher value of Pr lower is the 

thickness for consequent number of stretching parameter. Similarly, the fluid temperature falls for enhancing 

values of stretching parameter. Thus, an excellent agreement exists among the results achieved by H. A. Attia 

[1] and the present authors. 

 

Figure 4: Température θ(η) versus η  Under M 

= 1, Pr = 0.7, B  =0.1, P =0.1 

Effect of parameter C on θ 

 

Figure 5: Température θ(η) versus η  Under 

M=0.5 , Pr =0.7, B =0.1, P = 0.1  

Effect of parameter C and B on θ 

 

Figure 6: Temperature versusη  under  M=1,  

=0.1, P =0.1 
Effects of parameter Pr and C on the profile of θ 

 

Figure 7 : (Fig 5 of H. A. Attia[9]): Temperature  

versus  under M = 1, B  =0.1 
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Concluding remarks 

 

(a)  The velocity distribution is directly proportional to the stretching parameter. 

(b) The temperature distribution is continuously moves down on account of stretching parameter.  

(c) The fluid temperature is enlarged for boosting the heat generation. 

(d) High Prandtl number values condensed the thickness of thermal boundary layer for consequent values of 

stretching parameter. 

References 

Attia, H. A. (2006).  Stagnation point flow towards a stretching surface through a porous medium with heat 

generation, Turkish J. Eng. Env. Sci. 30, 299-306. 

Ariel, P. D. (2003). Generalized three-dimensional flow due to a stretching sheet, Z. Angew. Math. Mech.       

83, 12, 844-852. 

Carragher, P., Crane, L. J. (1982) .Heat transfer on a continuous stretching sheet, ZAMM. 62, 564-577. 

Chiam, T. C. (1994). Stagnation point flow towards a stretching plate, J. Phys. Soc. Jpn. 63, 2443-2444. 

Crane, L. J. (1970). Flow past a stretching plate, ZAMP. 21, 645-647. 

Dutta, B. K. et al (1985). Temperature field in flow over a stretching sheet with uniform heat flux, Int. Comm. 

Heat Mass Transfer. 12, 1, 89-94. 

        Gupta, P. S. and Gupta, A. S., (1977).  Heat and mass transfer on a stretching sheet with suction or 

blowing, Can. J. Chem. Eng. 55, 6, 744-746.  

He, J. H. (2009). An elementary introduction to the homotopy perturbation method, Computers & Mathematics 

with Applications. 57, 3, 410-412.  

Hiemenz, H., Die Grenzschicht (1911).  an einem in den gleich formigen flussig eingetacuhten geraden 

krebzylinder  Dingl, Polytech. J. 32, 321-342. 

Jankhal, A. K. (2014). Homotopy Perturbation Method for MHD boundary layer flow with low pressure 

gradient, Journal of Applied Fluid Mechanics 7, 1, 177-185. 

Kazem, S., Shaban, M. and Abbasbandy, S. (2011).  Improved analytical solutions to a stagnation-point flow 

past a porous stretching sheet with heat generation. Journal of the Franklin Institute. 348, 2044-2058.  

Mahapatra, T. R., Gupta A. S. (2002).  Heat transfer in stagnation-point flow towards a stretching    sheet, Heat 

Mass Transfer. 38, 6, 517-521. 

Nazar, R., Amin, N., Filip, D. and Pop, I. (2004).  Stagnation point flow of a micropolar fluid towards a 

stretching sheet, Int. J. of Non-linear Mech. 39, 1227-1235. 

White, M. F.  (1991). Viscous Fluid Flow, McGraw-Hill, New York. 

 

Appendix 
 

1 .( )M C C M 
 2 PrM B   

3 2M M M 
 4 2M M M 

 

1
5 1

M
M

M
   

1 2 3C C C  
 

5

2 3

M
C C

M
 

  

6 1
5

3
6 6

M

M M

M
M e C

MC
M e e

 




 

2
4 12

1

1
M

C
e


  

212

5 4

M
C C e 

 
2

1 2 3 2 3 12 2A C C M C C C    

1
2 12

M
A C

M
 

 

2

1

3 2

M
A

M
 

 

4 1 2 ( 2)A C C M   

5 1 3 ( 2)A C C M 
 

2

6 2 ( 1)A C M 
 

2

7 3 ( 1)A C M   

8 2 1

2
(1 )A C M

M
 

 

9 3 1

2
(1 )A C M

M
 

 

2
10

2

A
A

M
  

3

11
3

A
A

M


 

3

12 1

21
( )

A
A A

M M
 

 

4
13

2

A
A

M
  



Homotopy Perturbation Analysis in an energy transit problem closed to a Stretching Surface 

 

295 

    

5

14
2

A
A

M


 

6

15
6

A
A

M M


 

7

16
6

A
A

M M
  

8

17
4

A
A

M


 

9

18
4

A
A

M


 

8

19

3

4

A
A

M M
  

9

20

3

4

A
A

M M


 

1 13 19E A A 
 2 14 20E A A   

3 15 16E A A 
 

12 15 16 1 2

4

2 ( ) ( )A M A A E E
E

M

    
  

12 12 6 610 11 12

5 15 16 1 1

6 6 6 6 6 6

1 2 17 18 17 18

12 108
2( ) 6( )

1 12
( ) 36( ) ( )

M M M M

M M M M M M

A A A
E A e A e E e E e

M

E e E e A e A e A e A e
M M

 

  

 
     

     

 

6 3 7 8C E C C  

 

6

5 4

7 6 6

M

M M

E E e
C

e e








 ,              

6

5 4

8 6 6

M

M M

E E e
C

e e




    

21 1 4 2Pr. . .A C C M
 22 1 5 2Pr. . .A C C M

 
23 2 4 2Pr. . .A C C M

 24 3 5 2Pr. . .A C C M
 25 2 5 2Pr. . .A C C M  

26 3 4 2Pr. . .A C C M
 

1 2

27 4Pr. .
M M

A C
M



 

1 2

28 5Pr. .
M M

A C
M



 
2

2 2

6

2 1
9 6 6

M

M M

B B e
C

e e








  

2

2 2

6

1 2
10 6 6

M

M M

B e B
C

e e





  
1 31 32 33 34B A A A A     

2 2 2 2

3 3 4 4

6 6 6 6

2 39 40 35 36

6 6 6 6
31 32 33 34

6( ) 36( )

( ) ( )

M M M M

M M M M

B A e A e A e A e

A e A e A e A e

 

 

    

   
,  

21

29

22

A
A

M


 

22

30

22

A
A

M
 23

31 2

3 2

A
A

M M



,          

24

32 2

3 2

A
A

M M



,            

25

33 2

4 2

A
A

M M



,                

26

34 2

4 2

A
A

M M



 

27

35

24

A
A

M


 

28

36

24

A
A

M


 

27

37

24

A
A

M
  

28

38

24

A
A

M


 

39 29 37A A A  
 40 30 38A A A    

 


