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1 Introduction 

 
The development of ‘abstract convexity’ has emanated from different sources in differentways; 

the first type of development basically banked on generalization of particular problems such as 

separation of convex sets [3], extremality [4] ; [2], or continuous selection [10]. The second type 

of development lay before the reader such axiomatizations, which, in every case of design, 

express a particular point of view of convexity. With the view point of generalized topology 

which enters into convexity via the closure or hull operator, Schmidt[1953] and Hammer[1955], 

[1963], [1963b] introduced some axioms to explain abstract convexity. The arising of convexity 

from algebraic operations and the related property of domain finiteness received attentions in 

Birkhoff and Frink[1948] Schmidt[1953] and Hammer[1963]. 

Throughout this paper the axiomatizations as proposed by M. L. J. Van De Vel in his 

papers in the seventies and finally incorporated in Theory of Convex Structure [15] will be 

followed. 

In [16] the author has discussed ‘Topology and Convexity on the same set’ and introduced 

the compatibility of the topology with a convexity on the same underlying set. At the very 

early stage of this paper we have set aside the concept of compatibility and started just witha 

triplet (X, τ, C) and called it convex topological space only to bring back ’compatibility’ in 

another way subsequently. With his compatibility, however, Van De Vel has called the triplet 

(X, τ, C) a topological convex structure. 

In this paper, section 2 deals with some early definitions and in section 3, we have 

discussed about C-regular open sets and mainly nearly C-compact spaces. The last section 

deals with relationship between nearly C-compact space and almost C-compact space ; 

different typesof functions are also introduced here. 
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2 Prerequisites 

 
Definition 2.1 [16] Let X be a nonempty set. A family ✔ of subsets of the set X is calleda 

convexity on X if 

1. ∅, X ∈ ✔ 

2. ✔ is stable for intersection, i. e. if D ⊆ ✔ is nonempty then ∩D ∈ ✔. 

3. ✔ is stable for nested unions, i. e. if D ⊆ ✔ is nonempty and totally ordered by set 

inclusion then 𝖴D ∈ ✔. 

The pair (X, ✔) is called a convex structure. The members of ✔ are called convex sets 

and their complements are called concave sets. 

 
Definition 2.2 [16] Let ✔ be a convexity on a set X. Let A ⊆ X. The convex hull of A is 

denoted by co(A) and defined by 

co(A) = ∩{C : A ⊆ C ∈ ✔ }. 

Note 2.3 [16] Let (X, ✔) be a convex structure and let Y be a subset of X. The family of 

sets ✔ Y = {C ∩ Y : C ∈ ✔ } is a convexity on Y ; it is called the relative convexity of Y 

. 

Note  2.4 [16]  The  hull  operator  coY of  a  subspace  (Y, ✔ Y )  satisfies  the  following  :  ∀A  ⊆ 

Y : coY (A) = co(A) ∩ Y . 

Definition 2.5 [5] Let (X, τ ) be a topological space. Let ✔ be a convexity on X. Then the 

triplet (X, τ, ✔) is called a convex topological space (CTS, in short). 

Definition 2.6 [16] Let (X, τ, ✔) be a CTS . Then τ is said to be   compatible with the convex 

structure (X, ✔) if all polytopes of ✔ are closed in τ where a polytope means the convex hull of 

a finite set. The triplet (X, τ, ✔) is called a topological convex structure. 

Note 2.7 [16] Let (X, τ, ✔) be a topological convex structure. Then collection of all closed 

sets in (X, τ ) are subset of C. 

Definition 2.8 [16] A function f : (X1, ✔ 1) → (X2, ✔ 2) between two convex structures is said 

to be a convexity preserving  function (  a CP function)  provided for each convex set Cin X2 

,the set f −1(C) is convex in X1 i.e. inverse image of convex set is convex. 

 
3 Nearly C-compact space 

Definition 3.1 Let (X, τ, ✔) be a CTS. A set P ⊆ X  is said to be C-regular open set if P 

= int(co(P )). 

 
Result 3.2 Let (X, τ, ✔) be a CTS. Then for any A ⊆ X, the set int(co(A)) is a C-regular 

open set. 

Proof:  Let B = int(co(A)). Clearly B is an open set. 

Now B ⊆ co(B) ⇒ int(B) = 

B ⊆ int(co(B)). Again int(co(B)) = int(co(int(co(A)))) ⊆ co(int(co(A))) ⊆ co(co(A)) 

= 

co(A) ⇒ int(int(co(B))) = int(co(B)) ⊆ int(co(A)) = B. Thus we have B = 

int(co(B)). Consequently int(co(A)) = B is a C-regular open set. 
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Note 3.3 It is clear that in a CTS, every C-regular open set is an open set. 

 
Definition 3.4 Let (X, τ, ✔) be a CTS. A set Q ⊆ X is said to be C-regular closed if its 

complement is a C-regular open set. 

 
Note 3.5 Let (X, τ, ✔) be a CTS. Let A be a  C-regular  open  set.  Then  A  = 

int(co(A)). Now X  \ A =  cl[X \ co(A)]. Suppose that B = X  \ A. Then B =  cl[X \ 

co(X \ B)]. Since A is a C-regular open set,  B  is C-regular closed  set. Again for  any 

set B  ⊆  X,  letP =  cl[X \ co(X \ B)]. Then X \ P =  int(co(X \ B)). Since int(co(X \ B)) 

is a C-regular open set, P is C-regular closed set. 

Note 3.6 In a CTS (X, τ, ✔) a set P ⊆ X is C-regular closed if and only if P = cl[X \ 

co(X \ P )]. 

Result 3.7 Let (X, τ, ✔) be a CTS. Then for any Q ⊆ X, cl[X \ co(Q)] is a C-regular 

closed set 

Proof: Let R = cl[X \ co(Q)].  Clearly R is a closed set.  We will show that R = cl[X 

\ 

co(X \ R)]. Now X \ R ⊆ co(X \ R) ⇒ X \ co(X \ R) ⊆ R ⇒ cl[X \ co(X \ R)] ⊆ cl(R) = 

R. Again X \ R  =  X \ cl[X  \ co(Q)]  =  int(co(Q))  ⊆ co(Q)  ⇒ co(X  \ R)  ⊆ co(Q) 

⇒ X \ co(Q) ⊆ X \ co(X \ R) ⇒ cl[X \ co(Q)] ⊆ cl[X \ co(X \ R)] ⇒ R ⊆ cl[X \ co(X \ 

R)]. Hence R = cl[X \ co(X \ R)] and consequently R is a C-regular closed set [by the 

abovenote]. 

Note 3.8  It is clear that in a CTS (X, τ, ✔),  for any set Q  ⊆ X,   cl[X \ co(Q)] is a C- 

regular closed set. In the above proof actually we have used the fact that a set A is C- 

regular closed set if and only if A = cl[X \ co(X \ A)] because we want to define a C-regular 

closed set independently in a CTS. Thus in a (X, τ, ✔), a set A ⊆ X is  said  to  be  C- regular 

closed setif A = cl[X \ co(X \ A)]. 

Theorem  3.9 Let (X, τ, ✔) be a CTS. Then the collection 𝐵  of all C-regular open sets 

forma basis for some topology which is weaker than τ . 

Proof: Let (X, τ, ✔) be a CTS and 𝐵 be the collection of all C-regular open sets. Clearly 

∅, X ∈ 𝐵. Let P, Q ∈ 𝐵. Then P = int(co(P )) and Q = int(co(P )). Now int(co(P∩ Q)) ⊆ 

int(co(P )) ∩int(co(Q)) ⇒ int(co(P ∩ Q)) ⊆ P ∩ Q. Since int(co(P  ∩ Q))  ∈  𝐵,  we 

conclude that 𝐵 forms a base for some topology say τ1. Again since every C-regular open set is 

open,we have τ1 ⊆ τ. 

Definition 3.10   Let (X, τ, ✔) be a CTS. The space (X, τ, ✔) is said to be nearly C- compact 

if for every open cover 𝑡 = {U𝖺 : α ∈ Λ} of X , there exists a finite subfamily {U𝖺 

: α ∈ I} where I is a finite set, of 𝑡 such that ⋃𝖺∈        U𝖺        . 

Note 3.11 Let (X, τ, ✔) be a CTS. If (X, τ ) is compact, then the space (X, τ, ✔) is nearly C- 

compact. Observe that if U is an open set, then U ⊆ int(co(U )). The converse is not truein 

general which follows from the next example. 

Example 3.12 Let X be an infinite set. Also let τ be the discrete topology and ✔ = {∅, X}. 

Then for any nonempty set A ⊆ X, clearly co(A) = X. Thus the CTS (X, τ, ✔) is nearly 

C-compact but (X, τ) is not compact. 
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Note 3.13 Nearly compactness is a topological concept where as nearly C-compactness is 

defined in terms of topology as well as  convexity.  In  a  CTS  ,  a  topology  and  a 

convexity are given on an arbitrary set. So it is natural to ask whether there is a relation 

between nearly compact space and nearly C-compact space. We shall show that these two 

concepts are independent which follows from the next examples. 

 
Example 3.14 Consider the above example 3.12. Here (X, τ, ✔) is nearly C-compact but 

(X, τ) is not nearly compact. 

Example 3.15 Let X be an infinite set. Let p ∈ X and a set U ⊂ X is defined to be open 

iff p ∈ U i.e. the topology τ is given by τ = {U : p ∈ U }. Clearly every open set is dense in 

X. So (X, τ ) is nearly compact. Again let the convexity ✔ on (X, τ ) be P(X).  Then for 

anyA ⊆ X,  co(A) = A.  Let  us  consider  the  open  cover  U  = {{p, x} : x(=/    p) ∈ X}. 

This cover has no finite subfamily, the interior of the convex hull of whose members covers 

the space X. Consequently (X, τ, ✔) is not nearly C-compact space. 

Theorem 3.16 Let (X, τ, ✔) be a CTS. Then the following conditions are equivalent. 

a) (X, τ, ✔) is nearly C-compact. 

b) Every basic open cover of X admits of a finite subfamily, the interior of the convex 

hullof whose members cover the space. 

c) Every cover of X by C-regular open sets has a finite sub cover. 

d) Every family of C-regular closed sets having the finite intersection property has non void 

intersection. 

e) Every family ➚ of closed sets having the property that for any finite subfamily 

{Fi : i = 1, 2, . . . . . . . , n}, of ➚, ⋂𝑛 cl[X \ co(X \ Fi)] G ∅, has nonempty intersection . 

Proof: a) ⇒ b).Obvious. 

b) ⇒ c). Let 𝑡 =  {U𝖺 : α ∈  Λ} be C-regular open cover of X.  Let x  ∈  X.   Then 

x ∈ U𝖺 for some α ∈ Λ. Since U𝖺 is open set and x ∈ U𝖺 there exists a basic open set V𝖺x 

such that x ∈ V𝖺x     
⊆ U𝖺...........(1).  Now the family {V𝖺x    

: x ∈ X} is a basic open cover 

X.   Hence  by  b)  there  exists  a  finite  subfamily  {V𝖺xi       
:  i  =  1, 2, ......, n} such  that 

⋃n [int(co(V 
xi 

))]  =   X ........ (2). 

From(1), int (co(  V𝖺x
)) ⊆ int(co(U𝖺))  =  U𝖺,[since U𝖺 is 

C-regular open set]. So from (2), we have  ⋃n  U 
xi 

=   X. 

𝖺 

𝖺 
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c) ⇒ d). Let ➚ = {F𝖺 : α ∈ Λ} be a family of C-regular closed sets having the finite 

intersection property. If possible let ∩ {F𝖺 : 𝘢 ∈  Λ}  = ∅.  Then {X \ F𝖺 : α ∈ Λ} is 

an C-regular open cover of X. So by c) there exists a finite subfamily {X \F𝖺i   
: i = 1, 2, 

, n} such that ⋃{X \F𝖺i  :  i  =  1, 2, . . . . . . . , n}  =  X.  This implies that ⋂{F𝖺i  :  i  = 

1, 2, , n} = ∅,which is a contradiction. Hence we infer that ∩ {F𝖺 :  𝘢  ∈  Λ} G ∅. 

d) ⇒ e). Let ➚ = {F𝖺 : α ∈ Λ} be a family of closed sets with the stated property. Now 

➚1 = {cl[X \ co(X \ F𝖺)] : 𝘢 ∈ Λ} is a family of C-regular closed sets and it has 

finite intersection property. So by d) ⋂{cl[X \ co(X \ F𝖺)]: 𝘢 ∈ Λ} G ∅ (1). Again 

X \ F𝖺 ⊆ co(X \ F𝖺) ⇒ cl[X \ co(X \ F𝖺)]  ⊆ cl(F𝖺) = F𝖺 [since F𝖺 is closed set]. 

Hence from 1), it follows that ⋂{F𝖺 : 𝘢 ∈ Λ} G ∅. 

e) ⇒ a). Let 𝑡 = {U𝖺 :  𝘢 ∈ Λ} be an open cover of X. If possible suppose that for 

every finite subfamily {U𝖺 :  𝘢  ∈  I}  where I is a finite set, of 𝑡,⋃{int(co(U𝖺)): 𝘢  ∈ 

I} G X. Then this implies that  X \ ⋃{int(co(U𝖺)): 𝘢  ∈  I} G ∅  ⇒ ⋂{X \ 

int(co(U𝖺)): 𝘢  ∈  I} G ∅  ⇒ ⋂{cl[X \ co(U𝖺)]: 𝘢  ∈  I} G  ∅———(1). Let 

V𝖺  =  X \ U𝖺.  Then V𝖺 is a closed set and from (1)  we  have  ⋂{cl[X \ co(X \ V𝖺)]: 𝘢  ∈ 

I} G ∅. Now the family {V𝖺 : 𝘢 ∈ Λ} of closed sets satisfies the condition e). So by e) 

we   get,    ⋂{V𝖺 :  𝘢  ∈ Λ} G ∅.  ⇒ ⋂{X \ U𝖺 :  𝘢  ∈ Λ} G  ∅ ⇒ ⋃{U𝖺 :  𝘢  ∈ Λ} G X, 

which is a contradiction. Hence (X, τ, ✔) is nearly C-compact. 

Definition 3.17 A CTS (X, τ, ✔) is said to be semi C-regular space if every point in X has 

fundamental system of C-regular open neighbourhood. 

Theorem 3.18 Let (X, τ, ✔) be semi C-regular space. Then (X, τ, ✔) is  nearly  C- compactif 

and only if it is compact. 

Proof: We know that compact space is nearly C-compact space. So one part is obvious. On 

the other hand let (X, τ, ✔) be a semi C-regular space which is nearly C-compact. Also let 

𝑡 =  {U𝖺 :  𝘢  ∈  Λ} be an open cover of X. Let x ∈ X. Then    ∈  U𝖺x    
for some 𝘢 ∈ Λ. 

Since X is semi C-regular space, there exists a C-regular open set V𝖺x     
such that x ∈ V𝖺x

 

⊆ U𝖺x 
. 

Now {V𝖺x    
: x ∈ X} is a C-regular open cover of X and therefore it has a finite sub 

cover 

{V𝖺xi     
: i = 1, 2, ......, n}.  Consequently {U𝖺xi   

: i = 1, 2,. , n} is  a  finite  sub cover  of  𝑡.  This 

shows that (X, τ, ✔) is compact. 

Corollary 3.19 Let (X, τ, ✔) be a semi C-regular space. If (X, τ, ✔) is nearly C-compact then 

it is nearly compact. 

Proof: Observe that compactness implies nearly compactness. 
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Note 3.20 We see that in a semi C-regular space, nearly C-compactness implies nearly 

compactness. In the next theorem we shall show that there exists a special type of convex 

topological space in which nearly C-compactness implies nearly compactness also. 

 
Theorem 3.21 Let (X, τ, ✔) be a CTS where τ is compatible with the convex structure 

(X, ✔) i.e. (X, τ, ✔) be a topological convex structure. If (X, τ, ✔) is nearly  C-compact then 

it is nearly compact. 

Proof: Let 𝖲 be the collection of all closed sets in (X, τ, ✔). Since (X, τ, ✔) is a topological 

convex structure, 𝖲 ⊆ ✔. Thus for any set A ⊆ X we have co(A) ⊆ cl(A). Let 𝑡 

= 

{U𝖺 : 𝘢 ∈ Λ} be an open cover of X .Since X is nearly C-compact, 𝑡 has finite 

subfamily 

{U𝖺i
: i  =  1, 2, . . . . , n} such that ⋃{int(co(U𝖺i 

)) :  i  =  1, 2, . . . , n}  =  X  ⇒ 

⋃{int(cl(U𝖺i 
)) :  i  =  1, 2, . . . , n}  =  X. This shows that X is nearly compact. 

 
4 Comparison 

Definition 4.1 Let (X, τ, ✔) be a CTS. The space is said to be almost C-compact if for 

every  open  cover  {U𝖺 :  𝘢  ∈  Λ},  there  exists  a  finite  subfamily  {U𝖺i  :  i  =  1, 2, ...... , n} 

such that ⋃{co(U𝖺i 
) : i  =  1, 2, … , n}  =  X. 

Note 4.2 If a CTS (X, τ, ✔) is nearly C-compact then it is also almost C-compact. 

Definition 4.3 A CTS (X, τ, ✔) is said to be almost C-regular if for each x ∈ X and eachopen 

neighbourhood U of x, there exists an open neighbourhood V of x such that x ∈ V 

⊆ co(V ) ⊆ int(co(U )). 

Note 4.4 Every locally convex space is almost C-regular space. 

If x ∈ X and U is an open neighbourhood of x then ∃ a convex open neighbourhood V of x 

such that x ∈ V ⊆ U . This shows that V = co(V ) = int(V ) ⊆ int(co(U )). 

Theorem 4.5 An almost C-regular space (X, τ, ✔) is almost C-compact if and only if it is 

nearly C- compact. 

Proof: Nearly C-compactness implies almost C-compactness, so one part is obvious. 

To prove the converse, let (X, τ, ✔) be an almost C-regular space which is almost C- 

compact. Let 𝑡 =  {U𝖺 :  𝘢  ∈  Λ} be   any   C-regular   open   cover   of   X.   Let   x ∈ X. 

Then ∈ U𝖺x 
, for some 𝘢 ∈ Λ. Since X is almost C-regular, there exists an open 

neighbourhood V𝖺x  
of  x  such that  x  ∈ V𝖺x  

⊆ co(V𝖺x  
)  ⊆ int(co(U𝖺x  

))  =  U𝖺x  
—-(1)[Note 

that U𝖺x 
is a C-regular open set]. 

Now {V𝖺x 
: x ∈ X} is an open cover of X which is almost C-compact. So it admits a finite 

subfamily {V𝖺xi 
: i = 1, 2, .., n} such that ⋃{co(V𝖺xi 

) : i  =  1, 2, . . . . , n}  =  X.  Hence 

from (1) we have ⋃{U𝖺xi
: i = 1, 2, . . . , n} = X. Consequently (X, τ, ✔) is  nearly  C- 

compact. 

Theorem 4.6 Let (X, τ, ✔) be a nearly C-compact space. Then every open cover of a C- 

regular closed subset of Y of X admits a finite subfamily, the interior of the convex hull of 

whose members cover the set Y . 

Proof: Let Y be a C-regular closed set in (X, τ, ✔). Also let 𝑡 = {U𝖺 : 𝘢 ∈ Λ} be any 
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open cover of Y .  Clearly X \ Y   is C-regular open set and so it is open in X.   Thus 

𝑡1 = 

{U𝖺 : 𝘢 ∈ Λ} 𝖴 {(X \ Y )} is an open cover of X which is nearly C-compact. Thus 𝑡1 has a 

finite subfamily  {V𝖺i    :  i  =  1, 2. . . , n}  such  that  ⋃{int(co(V𝖺i  
)) :  i  =  1, 2, . . . . . , n}  = 

X. Let there is  no i ∈ { 1, 2, . . . . . , n} such that V𝖺i      
= X \ Y  . So we have 

⋃{int(co(V𝖺i 
)) :  i  =  1, 2, , n}  =  Y . 

Again if V𝖺i    
= X \ Y for some i ∈ { 1, 2, . . . . . , n} and since int(co(X \ Y )) = X \ Y we 

infer that 𝑡1 \ {X \ Y } serves the required purpose. 

Definition 4.7 A function f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) is said to be 

1) almost C-continuous if the inverse image of every C-regular open set is open and 

2) almost C-open if image of each C-regular open set is open. 

 
Note 4.8 Since every C-regular open set open, we infer that in a CTS every continuous 

function is almost C-continuous and every open function is almost C-open. 

Theorem 4.9 Let f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) be a CP function from X onto Y and f is 

almost C-continuous and almost C-open. If X is nearly C-compact then Y is also nearly 

C-compact. 

Proof: Let f: (X, τ, ✔ 1) → (Y, σ, ✔ 2) be a CP, almost C-continuous and almost C-open 

mapping from a nearly C-compact space X onto Y. Suppose 𝑡 = {U𝖺: 𝘢 ∈ Λ} be a C- 

regular open cover of Y. Then 𝑡1 = {f−1(U𝖺): 𝘢 ∈ Λ} is an open cover of X. Then 𝑡1 

admits a finite subfamily {f−1(U𝖺 ): i  = 1,2 , … , n} such that ⋃ {int  (co (f−1(U𝖺  ))) : i  = 

1, 2, … , n} = X. Since int (co (f−1(U𝖺 ))) is a regular C-open set in X and f is almost C- 

open map, f(int (co (f−1(U𝖺 )))) is an open set in Y. So f (int (co (f−1(U𝖺 )))) ⊆ 

int (f(co (f−1(U𝖺 )))) ……….(1). Again, since  f is a CP mapping, co (f−1(U𝖺 )) ⊆ 

f−1(co(U𝖺 ))………..(2). Now Y = f(X) = f (⋃ {int  (co (f−1(U𝖺 ))) : i = 1, 2, … , n}) = 

 
⋃ {f (int (co (f−1(U𝖺 )))) : i = 1, 2, … , n} ⊆ ⋃ {int (f (co (f−1(U𝖺 )))) : i = 

 
1, 2, … , n} (from (1)) ⊆ ⋃ {int (f(f−1 (co(U𝖺 )))): i = 1, 2, … , n} (from (2)) = 

⋃ {int (co(U𝖺i
)) : i = 1, 2, … , n} (since f is onto) . Therefore, 

Y ⊆ ⋃{U𝖺i
: i = 1, 2, … n }. This shows that Y is nearly C- compact space. 

 
Note 4.10 Let (X, τ, ✔ 1)be a compact CTS and let f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) be a continuous 

onto map. Then it is clear that Y is nearly C-compact space. We now prove something more in 

the next theorem. 

 
Theorem 4.11 Let f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) be an almost C-continuous mapping from a 

compact space X onto Y . Then Y is nearly C-compact. 
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Proof: Suppose 𝑡 = {U𝖺: 𝘢 ∈ Λ} be a C-regular open cover of Y. Then 𝑡1  =  {f−1(U𝖺): 𝘢  ∈ 

Λ} is an open cover of X, which is compact. Then 𝑡1 admits a finite subfamily 

{f−1(U𝖺 ): i = 1,2 , … , n} such that ⋃{ f−1(U𝖺 ): i = 1, 2, … , n} = X. Now Y = f(X) = 

f(⋃{ f−1(U𝖺 ): i = 1, 2, … , n}) = ⋃{f(f−1(U𝖺 )): i = 1, 2, … , n} = 

⋃{U𝖺i
: i = 1, 2, … , n}(since f is onto) . This shows that Y is nearly C- compact space. 

 
Theorem 4.12 A CTS (X, τ, ✔) is almost C-compact if and only if every C-regular open cover 

has a finite subfamily, the convex hull of whose members cover the space. 

Proof: Since every C-regular open set is open, it is clear that, if X is almost C-compact then it has 

the above property. 

On the other hand, let 𝑡 = {U𝖺: 𝘢 ∈ Λ} be an open cover of X. Since U𝖺 ⊆ int (co(U𝖺)), the 

family 𝑡1 = {int(co(U𝖺)): 𝘢 ∈ Λ} is a C-regular open cover of X. From the given condition, 

𝑡1 has a finite subfamily {int(co(U𝖺i
)): i = 1,2, … , n}  such  that  ⋃{co(int(co(U𝖺i

))): i = 

1,2, … , n} = X……….(1) Now int(co(U𝖺i
)) ⊆ co(U𝖺i

) ⟹ co(int(co(U𝖺i
))) ⊆ co(co(U𝖺i

)) 

= co(U𝖺i
) ⟹ (from (1)), ⋃{co(U𝖺i

): i = 1,2, … , n} = X. Consequently, X is almost C- 

compact space. 

 
Theorem 4.13 Let f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) be a CP and almost C-continuous mapping 

from X onto Y . If X is almost C-compact then so is Y. 

Proof: Suppose 𝑡 = {U𝖺: 𝘢 ∈ Λ} be a C-regular open cover of Y. Then 𝑡1 = {f−1(U𝖺): 𝘢 ∈ Λ} 

is an  open cover  of  X. Since  X is  almost  C-compact,  𝑡1  admits  a finite  subfamily 

{f−1(U𝖺 ): i = 1,2 , … , n}  such  that  ⋃{co( f−1(U𝖺 )): i = 1, 2, … , n} =  X.  Now  Y = f(X) = 

f(⋃{ co( f−1(U𝖺 )): i = 1, 2, … , n}) = ⋃{f(co( f−1(U𝖺 ))): i = 1, 2, … , n} ⊆ 

⋃{f(f−1(co(U𝖺 ))): i = 1, 2, … , n} = ⋃{co(U𝖺 ): i = 1,2, . . . , n}(since f is onto) . This shows 

that Y is nearly C- compact space. 

 

Corollary 4.14 Let f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) be a CP and almost C-continuous mapping 

from X onto Y . If X is compact then Y is almost C-compact. 

 
Corollary 4.15 Let f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) be a CP and almost C-continuous mapping 

from X onto Y . If X is nearly C-compact then Y is almost C-compact. 

 
Definition 4.16 A function f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) is said to be strongly convex if foreach 

A ⊆ X, f(A) = f(co(A)). 

Theorem 4.17 Let f : (X, τ, ✔ 1) → (Y, σ, ✔ 2) be continuous and strongly convex mapping 

from X onto Y . If X is almost C-compact then Y is compact. 

Proof: Let 𝑡 = {U𝖺 : 𝘢 ∈ Λ} be an open cover of Y . Then 𝑡1 = {f−1(U𝖺): 𝘢 ∈ Λ} 

isan open cover of X which is almost C-compact. So 𝑡1 has a finite subfamily 

{f−1(U𝖺i
): i = 1,2, … , n}  such that ⋃ {co (f−1(U𝖺i

)) :   i   =   1, 2, … . . , n} =   X Now 

Y  =  f (X)  = f [⋃ {co (f−1(U𝖺i  
)) : i  =  1, 2, … . . , n}] 
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= ⋃ {f (co (f−1(U𝖺 ))) : i  =  1, 2, &, n} =  ⋃ {f (f−1(U𝖺  )) : i  =  1, 2, &, n} 

= ⋃{U𝖺i :  i  =  1, 2, . . . . . , n}. Hence Y  is compact. 

Corollary 4.18 The image of nearly C-compact space under continuous and strongly con- 

vex mapping is nearly C-compact. 
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Hüllenoperatoren, Bericht über die Mathematiker-Tagung in Berlin, (1953) 21–48. 

[15] M. van de Vel ; A selection theorem for topological convex structures,Trans. Amer. 

Math.Soc., 336 (2) (1993) 463–496. 

[16] M. L. J. Van De Vel ; Theory of convex structures,North Holland, 1993. 


	Gopal Adak
	West Bengal, INDIA e-mail : adakgostpaul@gmail.com
	1 Introduction
	2 Prerequisites
	3 Nearly C-compact space
	4 Comparison
	References


