On nearly C-compact space

Gopal Adak Department of Mathematics, St. Paul's Cathedral Mission College 33/1 Raja Rammohan Roy Sarani, Kolkata- 700009 West Bengal, INDIA e-mail : adakgostpaul@gmail.com

Date of submission: 6th June, 2019	Date of Revised: 13th September, 2019
Date of Acceptance: 14th November, 2019	Date of publication: December, 2019

Abstract : In this paper we have introduced a new type of convex topological space [5] called nearly C-compact space where a convex topological space is a topological space with a convexity [16]. Some fundamental characterizations and various basic properties have been obtained. Its relationship with other types of compact spaces is also investigated.

AMS Subject Classification : 52A01, 54C10, 54E99.

Keywords: Convex topological space, C-regular open set, nearly C-compact space, almost C-compact space.

1 Introduction

The development of 'abstract convexity' has emanated from different sources in differentways; the first type of development basically banked on generalization of particular problems such as separation of convex sets [3], extremality [4]; [2], or continuous selection [10]. The second type of development lay before the reader such axiomatizations, which, in every case of design, express a particular point of view of convexity. With the view point of generalized topology which enters into convexity via the closure or hull operator, Schmidt[1953] and Hammer[1955], [1963], [1963b] introduced some axioms to explain abstract convexity. The arising of convexity from algebraic operations and the related property of domain finiteness received attentions in Birkhoff and Frink[1948] Schmidt[1953] and Hammer[1963].

Throughout this paper the axiomatizations as proposed by M. L. J. Van De Vel in his papers in the seventies and finally incorporated in Theory of Convex Structure [15] will be followed.

In [16] the author has discussed 'Topology and Convexity on the same set' and introduced the compatibility of the topology with a convexity on the same underlying set. At the very early stage of this paper we have set aside the concept of compatibility and started just witha triplet (X, τ , C) and called it convex topological space only to bring back 'compatibility' in another way subsequently. With his compatibility, however, Van De Vel has called the triplet (X, τ , C) a topological convex structure.

In this paper, section 2 deals with some early definitions and in section 3, we have discussed about C-regular open sets and mainly nearly C-compact spaces. The last section deals with relationship between nearly C-compact space and almost C-compact space ; different types of functions are also introduced here.

2 **Prerequisites**

Definition 2.1 [16] Let X be a nonempty set. A family \checkmark of subsets of the set X iscalled a convexity on X if

1. $\emptyset, X \in \checkmark$

2. \checkmark is stable for intersection, i. e. if $D \subseteq \checkmark$ is nonempty then $\cap D \in \checkmark$.

3. \checkmark is stable for nested unions, i. e. if $D \subseteq \checkmark$ is nonempty and totally ordered by set inclusion then $UD \in \checkmark$.

The pair (X, \checkmark) is called a convex structure. The members of \checkmark are called convex sets and their complements are called concave sets.

Definition 2.2 [16] Let \checkmark be a convexity on a set X. Let $A \subseteq X$. The convex hull of A is denoted by co(A) and defined by

 $\operatorname{co}(A) = \bigcap \{ C : A \subseteq C \in \checkmark \}.$

Note 2.3 [16] Let (X, \checkmark) be a convex structure and let Y be a subset of X. The family of sets $\checkmark_Y = \{C \cap Y : C \in \checkmark\}$ is a convexity on Y; it is called the relative convexity of Y

Note 2.4 [16] The hull operator co_Y of a subspace (Y, \checkmark_Y) satisfies the following : $\forall A \subseteq Y : co_Y(A) = co(A) \cap Y$.

Definition 2.5 [5] Let (X, τ) be a topological space. Let \checkmark be a convexity on X. Then the triplet (X, τ, \checkmark) is called a convex topological space (CTS, in short).

Definition 2.6 [16] Let (X, τ, \checkmark) be a CTS. Then τ is said to be compatible with the convex structure (X, \checkmark) if all polytopes of \checkmark are closed in τ where a polytope means the convex hull of a finite set. The triplet (X, τ, \checkmark) is called a topological convex structure.

Note 2.7 [16] Let (X, τ, \checkmark) be a topological convex structure. Then collection of all closed sets in (X, τ) are subset of C.

Definition 2.8 [16] A function $f: (X_1, \checkmark_1) \rightarrow (X_2, \checkmark_2)$ between two convex structures issaid to be a convexity preserving function (a CP function) provided for each convex set Cin X_2 , the set $f^{-1}(C)$ is convex in X_1 i.e. inverse image of convex set is convex.

3 Nearly C-compact space

Definition 3.1 Let (X, τ, \checkmark) be a CTS. A set $P \subseteq X$ is said to be C-regular open set if P = int(co(P)).

Result 3.2 Let (X, τ, \checkmark) be a CTS. Then for any $A \subseteq X$, the set int(co(A)) is a C-regular open set. Proof: Let B = int(co(A)). Clearly B is an open set.

Now $B \subseteq co(B) \Rightarrow int(B) =$ $B \subseteq int(co(B))$. Again $int(co(B)) = int(co(int(co(A)))) \subseteq co(int(co(A))) \subseteq co(co(A))$ = $co(A) \Rightarrow int(int(co(B))) = int(co(B)) \subseteq int(co(A)) = B$. Thus we have B =

int(co(B)). Consequently int(co(A)) = B is a C-regular open set.

Note 3.3 It is clear that in a CTS, every C-regular open set is an open set.

Definition 3.4 Let (X, τ, \checkmark) be a CTS. A set $Q \subseteq X$ is said to be C-regular closed if its complement is a C-regular open set.

Note 3.5 Let (X, τ, \checkmark) be a CTS. Let A be a C-regular open set. Then A = int(co(A)). Now $X \setminus A = cl[X \setminus co(A)]$. Suppose that $B = X \setminus A$. Then $B = cl[X \setminus co(X \setminus B)]$. Since A is a C-regular open set, B is C-regular closed set. Again for any set $B \subseteq X$, let $P = cl[X \setminus co(X \setminus B)]$. Then $X \setminus P = int(co(X \setminus B))$. Since $int(co(X \setminus B))$ is a C-regular open set, P is C-regular closed set.

Note 3.6 In a CTS (X, τ, \checkmark) a set $P \subseteq X$ is C-regular closed if and only if $P = cl[X \setminus co(X \setminus P)]$.

Result 3.7 Let (X, τ, \checkmark) be a CTS. Then for any $Q \subseteq X$, $cl[X \setminus co(Q)]$ is a C-regular closed set

Proof: Let $R = cl[X \setminus co(Q)]$. Clearly R is a closed set. We will show that $R = cl[X \setminus Q]$

 $co(X \setminus R)$]. Now $X \setminus R \subseteq co(X \setminus R) \Rightarrow X \setminus co(X \setminus R) \subseteq R \Rightarrow cl[X \setminus co(X \setminus R)] \subseteq cl(R) =$ R. Again $X \setminus R = X \setminus cl[X \setminus co(Q)] = int(co(Q)) \subseteq co(Q) \Rightarrow co(X \setminus R) \subseteq co(Q)$ $\Rightarrow X \setminus co(Q) \subseteq X \setminus co(X \setminus R) \Rightarrow cl[X \setminus co(Q)] \subseteq cl[X \setminus co(X \setminus R)] \Rightarrow R \subseteq cl[X \setminus co(X \setminus R)]$. Hence $R = cl[X \setminus co(X \setminus R)]$ and consequently R is a C-regular closed set [by the abovenote].

Note 3.8 It is clear that in a CTS (X, τ, \checkmark) , for any set $Q \subseteq X$, $cl[X \setminus co(Q)]$ is a C-regular closed set. In the above proof actually we have used the fact that a set A is C-regular closed set if and only if $A = cl[X \setminus co(X \setminus A)]$ because we want to define a C-regular closed set independently in a CTS. Thus in a (X, τ, \checkmark) , a set $A \subseteq X$ is said to be C-regular closed setif $A = cl[X \setminus co(X \setminus A)]$.

Theorem 3.9 Let (X, τ, \checkmark) be a CTS. Then the collection *B* of all C-regular open sets forma basis for some topology which is weaker than τ .

Proof: Let (X, τ, \checkmark) be a CTS and *B* be the collection of all C-regular open sets. Clearly \emptyset , $X \in B$. Let P, $Q \in B$. Then P = int(co(P)) and Q = int(co(P)). Now int(co(P \cap Q)) \subseteq int(co(P)) \cap int(co(Q)) \Rightarrow int(co(P \cap Q)) \subseteq P \cap Q. Since $int(co(P \cap Q)) \in B$, we conclude that *B* forms a base for some topology say τ_1 . Again since every C-regular open set is open, we have $\tau_1 \subseteq \tau$.

Definition 3.10 Let (X, τ, \checkmark) be a CTS. The space (X, τ, \checkmark) is said to be nearly C- compact if for every open cover $\boldsymbol{t} = \{U_a : \alpha \in \Lambda\}$ of X, there exists a finite subfamily $\{U_a : \alpha \in \Lambda\}$

 $: \alpha \in I$ where I is a finite set, of t such that $\bigcup_{a \in I} U_a$

Note 3.11 Let (X, τ, \checkmark) be a CTS. If (X, τ) is compact, then the space (X, τ, \checkmark) is nearly C-compact. Observe that if U is an open set, then $U \subseteq int(co(U))$. The converse is not true in general which follows from the next example.

Example 3.12 Let X be an infinite set. Also let τ be the discrete topology and $\checkmark = \{\emptyset, X\}$. Then for any nonempty set $A \subseteq X$, clearly co(A) = X. Thus the CTS (X, τ, \checkmark) is nearly C-compact but (X, τ) is not compact.

Note 3.13 Nearly compactness is a topological concept where as nearly C-compactness is defined in terms of topology as well as convexity. In a CTS , a topology and a convexity are given on an arbitrary set. So it is natural to ask whether there is a relation between nearly compact space and nearly C-compact space. We shall show that these two concepts are independent which follows from the next examples.

Example 3.14 Consider the above example 3.12. Here (X, τ, \checkmark) is nearly C-compact but (X, τ) is not nearly compact.

Example 3.15 Let X be an infinite set. Let $p \in X$ and a set $U \subset X$ is defined to be open iff $p \in U$ i.e. the topology τ is given by $\tau = \{U : p \in U\}$. Clearly every open set is dense in X. So (X, τ) is nearly compact. Again let the convexity \checkmark on (X, τ) be P(X). Then for any $A \subseteq X$, co(A) = A. Let us consider the open cover $U = \{\{p, x\} : x(\neq p) \in X\}$. This cover has no finite subfamily, the interior of the convex hull of whose members covers the space X. Consequently (X, τ, \checkmark) is not nearly C-compact space.

Theorem 3.16 Let (X, τ, \checkmark) be a CTS. Then the following conditions are equivalent. a) (X, τ, \checkmark) is nearly C-compact.

b) Every basic open cover of X admits of a finite subfamily, the interior of the convex hullof whose members cover the space.

c) Every cover of X by C-regular open sets has a finite sub cover.

d) Every family of C-regular closed sets having the finite intersection property has non void intersection.

e) Every family \checkmark of closed sets having the property that for any finite subfamily $\{F_i : i = 1, 2, ..., n\}$, of \checkmark , $\bigcap_{i=1}^n cl[X \setminus co(X \setminus F_i)] \in \emptyset$, has nonempty intersection. Proof: a) \Rightarrow b).Obvious.

b) \Rightarrow c). Let $t = \{U_a : a \in \Lambda\}$ be C-regular open cover of X. Let $x \in X$. Then $x \in U_a$ for some $a \in \Lambda$. Since U_a is open set and $x \in U_a$ there exists a basic open set V_{a_x} such that $x \in V_{a_x} \subseteq U_a$(1). Now the family $\{V_{a_x} : x \in X\}$ is a basic open cover X. Hence by b) there exists a finite subfamily $\{V_{a_{x_i}} : i = 1, 2, ..., n\}$ such that $\bigcup_{i=1}^n [int(co(V_{a_{x_i}}))] = X$(2).

From(1), $int(co(V_{a_x})) \subseteq int(co(U_a)) = U_a$,[since U_a is C-regular open set]. So from (2), we have $\bigcup_{i=1}^{n} \bigcup_{a_{x_i}} = X$.

c) \Rightarrow d). Let $\checkmark = \{F_a : a \in \Lambda\}$ be a family of C-regular closed sets having the finite intersection property. If possible let $\cap \{F_a : a \in \Lambda\} = \emptyset$. Then $\{X \setminus F_a : a \in \Lambda\}$ is an C-regular open cover of X. So by c) there exists a finite subfamily $\{X \setminus F_{a_i} : i = 1, 2, ..., n\}$ such that $\bigcup \{X \setminus F_{a_i} : i = 1, 2, ..., n\} = X$. This implies that $\bigcap \{F_{a_i} : i = 1, 2, ..., n\} = \emptyset$, which is a contradiction. Hence we infer that $\cap \{F_a : a \in \Lambda\} \in \emptyset$. d) \Rightarrow e). Let $\checkmark = \{F_a : a \in \Lambda\}$ be a family of closed sets with the stated property. Now $\checkmark_1 = \{cl[X \setminus co(X \setminus F_a)] : a \in \Lambda\}$ is a family of C-regular closed sets and it has finite intersection property. So by d) $\bigcap \{cl[X \setminus co(X \setminus F_a)] : a \in \Lambda\} \in \emptyset$ (1). Again $X \setminus F_a \subseteq co(X \setminus F_a) \Rightarrow cl[X \setminus co(X \setminus F_a)] \subseteq cl(F_a) = F_a$ [since F_a is closed set]. Hence from 1), it follows that $\bigcap \{F_a : a \in \Lambda\} \in \emptyset$.

e) \Rightarrow a). Let $t = \{U_a : a \in \Lambda\}$ be an open cover of X. If possible suppose that for every finite subfamily $\{U_a : a \in I\}$ where I is a finite set, of $t, \bigcup\{int(co(U_a)): a \in I\}$ If G X. Then this implies that X \ $\bigcup\{int(co(U_a)): a \in I\}$ G $\emptyset \Rightarrow \bigcap\{X \setminus int(co(U_a)): a \in I\}$ G $\emptyset \Rightarrow \bigcap\{cl[X \setminus co(U_a)]: a \in I\}$ G $\emptyset \longrightarrow \bigcap\{cl[X \setminus co(U_a)]: a \in I\}$ G $\emptyset \longrightarrow \bigcap\{cl[X \setminus co(X \setminus V_a)]: a \in I\}$ $V_a = X \setminus U_a$. Then V_a is a closed set and from (1) we have $\bigcap\{cl[X \setminus co(X \setminus V_a)]: a \in I\}$ G \emptyset . Now the family $\{V_a : a \in \Lambda\}$ of closed sets satisfies the condition e). So by e) we get, $\bigcap\{V_a : a \in \Lambda\}$ G \emptyset . $\Rightarrow \bigcap\{X \setminus U_a : a \in \Lambda\}$ G $\emptyset \Rightarrow \bigcup\{U_a : a \in \Lambda\}$ G X, which is a contradiction. Hence (X, τ, \checkmark) is nearly C-compact.

Definition 3.17 A CTS (X, τ , \checkmark) is said to be semi C-regular space if every point in X has fundamental system of C-regular open neighbourhood.

Theorem 3.18 Let (X, τ, \checkmark) be semi C-regular space. Then (X, τ, \checkmark) is nearly C- compactif and only if it is compact.

Proof: We know that compact space is nearly C-compact space. So one part is obvious. On the other hand let (X, τ, \checkmark) be a semi C-regular space which is nearly C-compact. Also let $t = \{U_a : a \in \Lambda\}$ be an open cover of X. Let $x \in X$. Then $\in U_{a_x}$ for some $a \in \Lambda$. Since X is semi C-regular space, there exists a C-regular open set V_{a_x} such that $x \in V_{a_x} \subseteq U_{a_x}$.

Now $\{V_{a_x}: x \in X\}$ is a C-regular open cover of X and therefore it has a finite sub cover

 $\{V_{a_{x_i}}: i = 1, 2, ..., n\}$. Consequently $\{U_{a_{x_i}}: i = 1, 2, .., n\}$ is a finite subcover of t. This shows that (X, τ, \checkmark) is compact.

Corollary 3.19 Let (X, τ, \checkmark) be a semi C-regular space. If (X, τ, \checkmark) is nearly C-compact then it is nearly compact.

Proof: Observe that compactness implies nearly compactness.

Note 3.20 We see that in a semi C-regular space, nearly C-compactness implies nearly compactness. In the next theorem we shall show that there exists a special type of convex topological space in which nearly C-compactness implies nearly compactness also.

Theorem 3.21 Let (X, τ, \checkmark) be a CTS where τ is compatible with the convex structure (X, \checkmark) i.e. (X, τ, \checkmark) be a topological convex structure. If (X, τ, \checkmark) is nearly C-compact then it is nearly compact.

Proof: Let S be the collection of all closed sets in (X, τ, \checkmark) . Since (X, τ, \checkmark) is a topological convex structure, $S \subseteq \checkmark$. Thus for any set $A \subseteq X$ we have $co(A) \subseteq cl(A)$. Let t =

 $\{U_a : a \in \Lambda\}$ be an open cover of X. Since X is nearly C-compact, t has finite subfamily

 $\{U_{a_i}: i = 1, 2, \dots, n\}$ such that $\bigcup\{int(co(U_{a_i})): i = 1, 2, \dots, n\} = X \Rightarrow \bigcup\{int(cl(U_{a_i})): i = 1, 2, \dots, n\} = X$. This shows that X is nearly compact.

4 Comparison

Definition 4.1 Let (X, τ, \checkmark) be a CTS. The space is said to be almost C-compact if for every open cover $\{U_a : a \in \Lambda\}$, there exists a finite subfamily $\{U_{a_i} : i = 1, 2, ..., n\}$ such that $\bigcup \{co(U_{a_i}) : i = 1, 2, ..., n\} = X$.

Note 4.2 If a CTS (X, τ, \checkmark) is nearly C-compact then it is also almost C-compact.

Definition 4.3 A CTS (X, τ , \checkmark) is said to be almost C-regular if for each $x \in X$ and each open neighbourhood U of x, there exists an open neighbourhood V of x such that $x \in V \subseteq co(V) \subseteq int(co(U))$.

Note 4.4 Every locally convex space is almost C-regular space.

If $x \in X$ and U is an open neighbourhood of x then \exists a convex open neighbourhood V of x such that $x \in V \subseteq U$. This shows that $V = co(V) = int(V) \subseteq int(co(U))$.

Theorem 4.5 An almost C-regular space (X, τ, \checkmark) is almost C-compact if and only if it is nearly C- compact.

Proof: Nearly C-compactness implies almost C-compactness, so one part is obvious.

To prove the converse, let (X, τ, \checkmark) be an almost C-regular space which is almost C-compact. Let $t = \{U_a : a \in \Lambda\}$ be any C-regular open cover of X. Let $x \in X$. Then $\in U_{a_x}$, for some $a \in \Lambda$. Since X is almost C-regular, there exists an open neighbourhood V_{a_x} of x such that $x \in V_{a_x} \subseteq co(V_{a_x}) \subseteq int(co(U_{a_x})) = U_{a_x}$ —-(1)[Note that U_{a_x} is a C-regular open set].

Now $\{V_{a_x} : x \in X\}$ is an open cover of X which is almost C-compact. So it admits a finite subfamily $\{V_{a_{x_i}} : i = 1, 2, ..., n\}$ such that $\bigcup \{co(V_{a_{x_i}}) : i = 1, 2, ..., n\} = X$. Hence from (1) we have $\bigcup \{U_{a_{x_i}} : i = 1, 2, ..., n\} = X$. Consequently (X, τ, \checkmark) is nearly C-compact.

Theorem 4.6 Let (X, τ, \checkmark) be a nearly C-compact space. Then every open cover of a C-regular closed subset of Y of X admits a finite subfamily, the interior of the convex hull of whose members cover the set Y.

Proof: Let Y be a C-regular closed set in (X, τ, \checkmark) . Also let $t = \{U_a : a \in \Lambda\}$ be any

open cover of Y. Clearly $X \setminus Y$ is C-regular open set and so it is open in X. Thus $t_1 =$

 $\{U_a : a \in \Lambda\} \cup \{(X \setminus Y)\}$ is an open cover of X which is nearly C-compact. Thus t_1 has a finite subfamily $\{V_{a_i} : i = 1, 2, ..., n\}$ such that $\bigcup \{int(co(V_{a_i})) : i = 1, 2, ..., n\} = X$. Let there is no $i \in \{1, 2, ..., n\}$ such that $V_{a_i} = X \setminus Y$. So we have $\bigcup \{int(co(V_{a_i})) : i = 1, 2, ..., n\} = Y$.

Again if $V_{a_i} = X \setminus Y$ for some $i \in \{1, 2, ..., n\}$ and since $int(co(X \setminus Y)) = X \setminus Y$ we infer that $t_1 \setminus \{X \setminus Y\}$ serves the required purpose.

Definition 4.7 A function $f: (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ is said to be

1) almost C-continuous if the inverse image of every C-regular open set is open and

2) almost C-open if image of each C-regular open set is open.

Note 4.8 Since every C-regular open set open, we infer that in a CTS every continuous function is almost C-continuous and every open function is almost C-open.

Theorem 4.9 Let $f : (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ be a CP function from X onto Y and f is almost C-continuous and almost C-open. If X is nearly C-compact then Y is also nearly C-compact.

Proof: Let f: $(X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ be a CP, almost C-continuous and almost C-open mapping from a nearly C-compact space X onto Y. Suppose $t = \{U_a: a \in \Lambda\}$ be a Cregular open cover of Y. Then $t_1 = \{f^{-1}(U_a): a \in \Lambda\}$ is an open cover of X. Then t_1

admits a finite subfamily $\{f^{-1}(U_a): i = 1, 2, ..., n\}$ such that $\bigcup \{int (co(f^{-1}(U_a))): i = 1, 2, ..., n\}$

1, 2, ..., n} = X. Since int (co ($f^{-1}(U_a)$)) is a regular C-open set in X and f is almost C-

open map, f(int $(co(f^{-1}(U_{a_i}))))$ is an open set in Y. So f(int $(co(f^{-1}(U_{a_i})))) \subseteq$

int $(f(co(f^{-1}(U_a))))$ (1). Again, since f is a CP mapping, $co(f^{-1}(U_a)) \subseteq$

 $f^{-1}(co(U_a))....(2)$. Now $Y = f(X) = f(U \{int (co(f^{-1}(U_a))): i = 1, 2, ..., n\}) = 1$

 $\bigcup \{f (int (co(f^{-1}(U_{a_{i}})))) : i = 1, 2, ..., n\} \subseteq \bigcup \{int (f (co(f^{-1}(U_{a_{i}})))) : i = 1, 2, ..., n\} \subseteq \bigcup \{int (f (co(f^{-1}(U_{a_{i}})))) : i = 1, 2, ..., n\} \subseteq \bigcup \{int (f (co(f^{-1}(U_{a_{i}})))) : i = 1, 2, ..., n\} \subseteq \bigcup \{int (f (co(f^{-1}(U_{a_{i}})))) : i = 1, 2, ..., n\} \subseteq \bigcup \{int (f (co(f^{-1}(U_{a_{i}})))) : i = 1, 2, ..., n\} \subseteq \bigcup \{int (f (co(f^{-1}(U_{a_{i}})))) : i = 1, 2, ..., n\}$

 $1, 2, ..., n\} (from (1)) \subseteq \bigcup \{ int (f(f^{-1} (co(U_a)))): i = 1, 2, ..., n\} (from (2)) =$

 $\bigcup \{ \text{int } (\text{co}(U_{a_i})) : i = 1, 2, ..., n \} \text{ (since f is onto)}. Therefore,$ $Y \subseteq \bigcup \{ U_{a_i} : i = 1, 2, ..., n \}. This shows that Y is nearly C- compact space.$

Note 4.10 Let (X, τ, \checkmark_1) be a compact CTS and let $f : (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ be a continuous onto map. Then it is clear that Y is nearly C-compact space. We now prove something more in the next theorem.

Theorem 4.11 Let $f: (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ be an almost C-continuous mapping from a compact space X onto Y. Then Y is nearly C-compact.

Proof: Suppose $t = \{U_a: a \in \Lambda\}$ be a C-regular open cover of Y. Then $t_1 = \{f^{-1}(U_a): a \in \Lambda\}$ is an open cover of X, which is compact. Then t_1 admits a finite subfamily $\{f^{-1}(U_a): i = 1, 2, ..., n\}$ such that $\bigcup\{f^{-1}(U_a): i = 1, 2, ..., n\} = X$. Now $Y = f(X) = f(\bigcup\{f^{-1}(U_a): i = 1, 2, ..., n\}) = \bigcup\{f(f^{-1}(U_a): i = 1, 2, ..., n\} = \bigcup\{f(f^{-1}(U_a): i = 1, 2, ..., n\} = \bigcup\{f(f^{-1}(U_a): i = 1, 2, ..., n\}$ such that $\bigcup\{f^{-1}(U_a): i = 1, 2, ..., n\} = \bigcup\{f(f^{-1}(U_a): i$

Theorem 4.12 A CTS (X, τ, \checkmark) is almost C-compact if and only if every C-regular open cover has a finite subfamily, the convex hull of whose members cover the space.

Proof: Since every C-regular open set is open, it is clear that, if X is almost C-compact then it has the above property.

On the other hand, let $t = \{U_a: a \in \Lambda\}$ be an open cover of X. Since $U_a \subseteq int(co(U_a))$, the family $t_1 = \{int(co(U_a)): a \in \Lambda\}$ is a C-regular open cover of X. From the given condition, t_1 has a finite subfamily $\{int(co(U_{a_i})): i = 1, 2, ..., n\}$ such that $\bigcup\{co(int(co(U_{a_i}))): i = 1, 2, ..., n\} = X$(1) Now $int(co(U_{a_i})) \subseteq co(U_{a_i}) \Rightarrow co(int(co(U_{a_i}))) \subseteq co(co(U_{a_i})) = co(U_{a_i}) \Rightarrow (from (1)), \bigcup\{co(U_{a_i}): i = 1, 2, ..., n\} = X$. Consequently, X is almost C-compact space.

Theorem 4.13 Let $f: (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ be a CP and almost C-continuous mapping from X onto Y. If X is almost C-compact then so is Y.

Proof: Suppose $t = \{U_a: a \in \Lambda\}$ be a C-regular open cover of Y. Then $t_1 = \{f^{-1}(U_a): a \in \Lambda\}$ is an open cover of X. Since X is almost C-compact, t_1 admits a finite subfamily $\{f^{-1}(U_a): i = 1, 2, ..., n\}$ such that $\bigcup \{co(f^{-1}(U_a)): i = 1, 2, ..., n\} = X$. Now $Y = f(X) = f(\bigcup \{co(f^{-1}(U_a)): i = 1, 2, ..., n\}) = \bigcup \{f(co(f^{-1}(U_a))): i = 1, 2, ..., n\} \subseteq \bigcup \{f(f^{-1}(co(U_a))): i = 1, 2, ..., n\} = \bigcup \{co(U_a): i = 1, 2, ..., n\}$ (since f is onto). This shows that Y is nearly C- compact space.

Corollary 4.14 Let $f: (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ be a CP and almost C-continuous mapping from X onto Y. If X is compact then Y is almost C-compact.

Corollary 4.15 Let $f: (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ be a CP and almost C-continuous mapping from X onto Y. If X is nearly C-compact then Y is almost C-compact.

Definition 4.16 A function $f : (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ is said to be strongly convex ifforeach $A \subseteq X$, f(A) = f(co(A)).

Theorem 4.17 Let $f: (X, \tau, \checkmark_1) \rightarrow (Y, \sigma, \checkmark_2)$ be continuous and strongly convex mapping from X onto Y. If X is almost C-compact then Y is compact.

Proof: Let $t = \{U_a : a \in \Lambda\}$ be an open cover of Y. Then $t_1 = \{f^{-1}(U_a) : a \in \Lambda\}$ is an open cover of X which is almost C-compact. So t_1 has a finite subfamily

{ $f^{-1}(U_{a_i}): i = 1, 2, ..., n$ } such that $\bigcup \{ co(f^{-1}(U_{a_i})): i = 1, 2, ..., n \} = X$ Now Y = f(X) = f[$\bigcup \{ co(f^{-1}(U_{a_i})): i = 1, 2, ..., n \}]$ $= \bigcup \{f (co(f^{-1}(U_a))): i = 1, 2, \&, n\} = \bigcup \{f (f^{-1}(U_a)): i = 1, 2, \&, n\}$

 $= \bigcup \{ U_{a_i} : i = 1, 2, \dots, n \}$. Hence Y is compact.

Corollary 4.18 The image of nearly C-compact space under continuous and strongly convex mapping is nearly C-compact.

References

- G. Birkhoff and O. Frink ; Representations of lattices by sets, Trans. Amer. Math. Soc.,64 (1948), 229–315.
- [2] E. B. Davies ; A generalized theory of convexity, Proc. London Math. Soc., 17 (1967),644–652.
- [3] J. W. Ellis; A general set separation theorem, Duke Math. J., 19 (1952), 417–421.
- [4] K. Fan ; On the Krein-Milman Theorem, Proc. Symp. Pure Math., 7 (convexity) (1963), 211–221.
- [5] S.Ganguly and B.Samanta ;Some functions related to convex topological spaces, Rev.Acad.Canar.Cienc.,18 (2006) 9-21.
- [6] S.Ganguly and B.Samanta ; θ C somewhat continuous function , Rev.Acad.Canar.Cienc.,20 (2008) 63-73.
- [7] P. C. Hammer ; General topology, symmetry, and convexity, Trans. Wisc. Acad. Sci.Arts Lett., 44 (1955) 221–255.
- [8] P. C. Hammer ; Extended topology : domain finiteness, Indag. Math., 25 (1963) 200-212.
- [9] P. C. Hammer ; Semi spaces and the topology ofm convexity, Proc. Symp. Pure Math.,7 (convexity) (1963) 305–316.
- [10] E. Michael ; Convex structure and continuous selection, Canadian J. Math., 11 (1959)556–575.
- [11] B.Samanta ; Some open sets in Convex topological Space , International Journal of Research and Analytical Reviews. , 5 (3) , (2018) , 493z-495z.
- [12] B.Samanta ; A continuous function on Convex topological Space , International Journalof Research and Analytical Reviews. , 5 (3) , (2018) , 44a-47a.
- [13] B.Samanta ; Convex topological Space and some continuous functions , International Journal of Research and Analytical Reviews. , 5 (4) , (2018) , 76-79.
- [14] J. Schmidt ; Einige grundlegende Begriffe und Sätze aus der Theorie der Hüllenoperatoren, Bericht über die Mathematiker-Tagung in Berlin, (1953) 21–48.
- [15] M. van de Vel; A selection theorem for topological convex structures, Trans. Amer. Math.Soc., 336 (2) (1993) 463–496.
- [16] M. L. J. Van De Vel ; Theory of convex structures, North Holland, 1993.