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Abstract: In this paper we introduced a new hazard estimator when the co-variables are functional in nature. This 

estimator is a mix of both the k Nearest Neighbors shortly (kNN) procedure and spacial functional data. Then the 

convergence rate are introduced when the considered sample is collected in spatial order with mixing structure. 

In theory there is an estimation of the risk point then a discussion of application difficulties, such as data driven 

bandwidth choice. Furthermore, a comparison study based on simulated and real data is also provided to illustrate 

the performances and the usefulness of the kNN approach and to prove the highly sensitive of the kNN approach 

to the presence of even a small proportion of outliers in the data. 
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1. Introduction  

The hazard operator is one of the most used models to explore the relationship between two random 

variables. In this paper, we deal with the problem of the nonparametric estimation of the conditional hazard 

function when the observations are spatial with the kNN approach. 

The estimation of the hazard function plays a very important role in statistics. Indeed, it is used in risk 

analysis or for the study of survival phenomena in many fields such as (medicine, geophysics, reliability, . . .). 

The literature on hazard function estimation is very abundant, when the observations are vectorial. Take, for 

example [65,  [59], [44], and [27], for recent references. In all these works, the authors consider independent 

observations or dependent data from time series. The first results on the nonparametric hazard estimation in 

functional statistics, were obtained by  [31]. They studied the almost complete convergence of a kernel estimator 

for the hazard function of a real random variable conditional on a functional explanatory variable. [54] has 

shown that the kernel estimator presented by   [28] is strongly consistent and asymptotically normally distributed. 

A generalization of these results in the spatial data case was obtained by  [41]. More specifically, they studied the 

almost complete convergence of an adapted version of this estimator. The same authors have treated the   -

convergence rate by giving the exact expression involved in the leading terms of the quadratic error and the 

asymptotic normality of the construct estimator (see [42]), then we cite for the most recent advances and 

references, [4], [39], [61], [62], [16], [33]. 

The importance of this research topic is motivated by the growth in the number of concrete problems for 

which data are collected in a spatial order. Such problems are encountered in many fields such as epidemiology, 

econometrics, environmental and earth sciences, agronomy, imaging, etc. The first results considered for spatial 

dependence have been obtained by  [64]. He obtained the asymptotic normality for the density kernel estimator, 

whereas the nonparametric spatial regression problem has been studied by [50] and [7], who used the Nadaraya-

Watson weights to obtain a kernel estimator, establishing the weak convergence and asymptotic distribution. The 
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nonparametric auto-regression model in a prediction context on random fields has been studied by [12]. We refer 

to [32] for the almost complete uniform convergence on the functional component of this spacial nonparametric 

model . 

Then [48] use the kNN technique to estimate the spatial nonparametric regression. They showed the 

asymptotic normality of the construct estimate. We return to [26], [58] and  [23] for recent advances and 

references in nonparametric spatial data analysis. 

The main purpose of this contribution is to use the kNN procedure. It is an alternative smoothing 

approach allows to estimate the hazard operator with varied bandwidth parameter strongly depends on the data. 

Precisely, the bandwidth parameter is priory defined according to the distance between the functional random 

variable. The kNN algorithm, an interactive method, permits to explore the topological as well as the specter 

component of the data. Pushed by this sophistic procedure on the bandwidth selection, the functional kNN 

smoothing approach has received a lot of attention in the last few years. Gyorfi’s book [36] is a thorough analysis 

of kNN estimators in the finite dimensional context. Work in this area was started by [13], and a large number of 

articles are now available in various estimating contexts, which including regression, discrimination, density and 

mode estimation, and clustering analysis. 

Then the important results in this topic were established by [11]. They gave the convergence rate of the 

almost complete consistency of the constructed estimator. Using the same techniques Attouch and Bouabsa [3] 

have established the almost couplet consistency of the conditional mode estimator. We refer to [4] for the 

conditional hazard function, we make reference to [14], [20], [45], [53], [19], [18], [6],[43], [11], [63], [49], [2], 

[40] and we cite for the most recent advances and references [39], [1], [9]. However, the difficulty in the kNN 

smoothing is the fact that the bandwidth parameter is a random variable, unlike the classical regression in which 

the smoothing parameter is a deterministic scalar. So, the study of the asymptotic properties of our proposed 

estimator is complicated, and it requires some additional tools and techniques. So the purpose of this paper show 

us that can be used to further investigate the estimation of functional nonparametric hazard opera in the case of 

spacial datasets. This is motivated by the fact that the robust hazard estimator has several advantages over the 

classical kernel regression estimator. The main profit in using a robust regression is that it allows reducing the 

effect of outlier data. 

The exploration and analysis of data in presence of outliers is a great challenge in statistics. In 

particular, in spatial statistics several robust models resistant to these anomalies have been studied. Concerning 

the nonparametric modeling case, the first approach is given by [66]. The latter consider a local linear estimate of 

the regression function based on the least absolute deviation. Then[37] establish the consistency and asymptotic 

normality of a spatial version of the local linear estimate of the conditional quantiles. The spatial version of the 

M-estimation of the regression function has introduced by [34]. They obtained the almost complete convergence 

and the asymptotic normality of this estimate. [21] have paid attention to study nonparametric quantile regression 

by the    method. They stated the weak consistency and the asymptotic normality of the constructed estimator. 

In this paper under some general assumptions, we state the almost complete convergence (with rate). 

Noting that, this work is the link between the study of [41] with [39] and [1]. For instance, we remember that the 

complexity of our research comes from the fact that the bandwidth parameter in the kNN method is a random 

variable. Precisely, the bandwidth parameter is priory defined according to the distance between the functional 

random variable. Such consideration allows for exploring the topological as well as the specter component of the 

data. 

In NFDA, kNN hazard with spacial data is new. We present the estimator of our spatial model with 

kNN method in Section 2. In Section 3 we give the assumptions, then we study the almost complete convergence 

of this estimator. In Section 4 we give all the results and their proofs. As an application we treat, in Subsection 

5.1, the estimation of maximum risk conditional on a functional explanatory variable. In Subsection 5.2 we 

emphasize the UIB results’ direct practical influence on data-driven bandwidth choice. Finally, a simulation 

study is given in Subsection 5.4 proove the good performances of our estimator then Subsection 5.5 is devoted to 

a real data application to evaluate the performance of this estimate. We conclude the paper by a conclusion 

Section 6. 
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2. The model and its estimator with the kNN method 

 
Let   be a natural number in   . We consider the random field    (     )      with values in 

   , where (   ) is a semi-metric space of possibly infinite dimension. In this context, (  )     can be a 

functional random variable. It should be noted that, for a good ten years, the statistical community has been 

preoccupied with the development of models and methods adapted to this context of functional data. While the 

first studies in this direction mainly focused on linear models (see  [8],  [56]), recent developments (see [28]) 

report non-parametric models suitable for this type of data. 

Next, a point   in   (respectively, a compact    ), we assume that the spatial observations 

(     )     have the same distribution as   (   ) and that the regular version of the conditional probability 

of   knowing     exists and admits a bounded density with respect to the Lesbegue measure on  , denoted 

  
 . With kNN method the functional parameter studied in this article, denoted   

 , is defined, for all     such 

that   ( )   , by  

  
 ( )  

  
 ( )

    
 ( )

  

where,   
  is the conditional distribution function of   knowing    , with 

  
 ( )   (       )  

Furthermore, it was assumed that the functional random field is observed on the set    {  (       )  
                  },   (       )     and  estimated with the kNN method the cdf by 

 ̂ 
 ( )  

∑       (  
   (    ))  (  

  (    ))

∑       (  
   (    ))

           

where   is a kernel and   is a conditional distribution function (cdf), defined by   

 ( )  
∫  
 
 ( )  

∫  ( )  
   

 

  

and         (resp.         ) is a sequence of positive real numbers which belong to ar interval 

(     ) (resp. (     )), with                     . 

Although, recently, this kind of kernel estimation is widely studied in the literature, these studies 

exclusively concern fixed bandwidths. In our paper we derive UIB consistency with the corresponding rates and 

emphasise applications for the construction of automatic data-driven smoothing parameters in Section. 

From  ̂ 
 , we deduce an estimator of the conditional density, denoted  ̂ 

 , where 

  
 ( )  (  

 ) ( )  

So  

 ̂ 
 ( )  

     
  ∑       (  

   (    ))   (  
  (    ))

∑       (  
   (    ))

           

  

where    is the derivative of  . The kNN estimator of the conditional hazard function is noted by 

 ̂ 
 ( )  

    ̂ 
 ( )

   ̂ 
 ( )

           

The aim of this work is to study the almost complete convergence of the estimator  ̂ 
  to   

 , when the 

functional random field (  )     satisfies the following mixing condition.  
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                        ( )                       

                                 

 ( ( )  (  ))     
   ( )

   
    (  )

  (   )   ( ) ( ) 

  (    ( )     (  )) (    (    )) 

 

where,  ( ) (resp.  (  ) ) the Borelian tribe generated by (      ) (resp. (  ,     ) ),     ( ) (resp. 

Card (  ) ) is the cardinal of   (resp.    ),     (    ) designates the Euclidean distance between   and    and   

a symmetric function:      , decreasing with respect to the two variables separately and satisfying one of the 

following conditions  

 (   )      (   )                                                         (1)                              

 or  

 (   )   (     ) ̃                                                       (2) (2) 

 for some  ̃    and    , note that these conditions were used by [59] and they are verified by many 

spatial models (see [34]). 

Recall that when equation (1) holds with     or    , the random field    (     ) is said to as 

highly mixing . 

In addition, we suppose that the process   meets the following mixing condition:  

 ∑   
      ( )                                                           (3)            (3) 

 We note that the conditions (2) and (3) are identical to mixing conditions utilized by [10] and [63]. 

3. Asymptotic properties 

 
In the following, the author denotes by   and/or    any strictly positive constants. Recall that in this 

spatial context,     means that    {  }    and that for each         we have     |
  

  
|. Let us 

introduce the following hypotheses   

    • (K1)   

        - (K1-i)  (   (   ))    ( )    where  (   ) is the closed ball, centered at   and of radius 

 .  

        - (K1-ii)   for all    (   )       
  (  )

  ( )
   ( )   .  

    • (K2) The function   checks ∑    ( )     
       .  

  • (K3)  

         [(     )   (    )   (    )]   (  (  ))
(   )   , with           

    • (K4) Recall that   is a fixed functional element and    is a fixed neighbourhood of  . The 

nonparametric model for the conditional distribution and the conditional density is constructed by assuming that 

    such that for all (     )      and all (     )       , one obtains 

        - (K4-i)  

  

|  
  (  )    

  (  )|   ( (     )
          

  )  

           

- (K4-ii)  

  

|  
  (  )    

  (  )|   ( (     )
          

  )  
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    • (K5)  kernel   has a continuous first derivative on (     ) and is supported inside (     ). 

Furthermore, there are some constants         , such as 

    
(
   

 
)
( )   ( )     

(
   

 
)
, 

       

  (   )  ∫   ( )  ( )  
   

 

    

 

    • (K6)   is a function of class    and a support compact.  

    • (K7) There exist     (    )    and     , such as  

    
   

 ̂                  ̂
(    )   

 
        (  )  

 where   ̂       .  

    • (K8)   

    - (K8-i)  

          {  
 

∫  
 
  ( )  

∫  
(   (   ))

 
 ( )           }, 

                                    

        - (K8-ii) 

                   
 

      ∫ √      ( ‖  ‖         )     
 

 

       

 where    is the envelope function of the set   . 

        • (K9)   

            - (K9-i)  

    

    (     (  ))
    

            - (K9-ii)  

    

      (     (  ))
    

 

 Remarks on the hypotheses 

Our research is the link between the work of [38], and [40], so several assumptions are the same 

considered in all this researches. 

 

4. Result and proof 

Theorem 4.1  Under the conditions (1) and (2) and hypotheses (K1)-(K7), and (K9), we have that  

   
   

   
        

   
        

| ̂ 
 ( )    

 ( )|   (  
  )   (  

  )        (√
    

     (  )
)  
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 Proof  

The proof of this theorem is based on the fact that  

| ̂ 
 ( )    

 ( )|  
 

|   ̂ 
 ( )|

[| ̂ 
 ( )    ( )|

   
 ( ) 

     
 ( ) 

| ̂ 
 ( )    

 ( )|]  

Theorem 4.1 is obtained from Theorems 4.2 and Theorem 4.3 and from Corollary 4.1 below. 

Corollary 4.1  Under the conditions of Theorem 4.1, there exists a     such that  

∑  

     

 {    
        

   
        

|   ̂ 
 ( )|   }     

Proof 
Remember that any    (     ) and    (     ), we have 

|   ̂ 
 ( )|  

(    
 ( ))

 
           | ̂ 

 ( )    
 ( )|  

(    
 ( ))

 
. 

Therefore, we have that  

 

∑       (    
   (     )    (     )

|   ̂ 
 ( )|  

    
 ( )

 
)

 ∑       (    
   (     )    (     )

| ̂ 
 ( )    

 ( )|  
    

 ( )

 
)    

 

Applying Theorem 4.2 now gives the desired result.  

Theorem 4.2  Under hypotheses (K1), and (K7), (K8-ii) and (K9-i) we have that  

   
   

    
        

   
         

    
 

 | 
 

 
 ( )    

 ( )|   (  
  )   (  

  )        (√
     

   (  )
)  

Proof 
The demonstrations are based respectively on the following decompositions 

 
 

 
 ( )    

 ( )  
 

 
 

 
 

{( 
 

 
 ( )    

 

 
 ( ))  (  

 ( )    
 

 
 ( ))}  

                           
  

 ( )

 
 

 
 

(  
 

 
   

 

 
 )                                                                    ( )

 

Define 

 
 

 
  

 

 
 
 [ (  

   (    ))]
∑  

    

 (  
   (    )) 

 
 

 
 ( )  

 

 
 
 [ (  

   (    ))]
∑  

    

 (  
   (    )) (  

  (    ))  

 

 

where   is the spatial index of the fixed components 1. 

The proof follows from the Lemmas bellows. 

Lemma 4.1. Under hypotheses (1) and (2) and hypotheses (K1), (K3), (K5) and (K7)-(K9-i) we have 

that  

    
   

     
        

 | 
 

 
    

 

 
 |   ((

     
 

 
 
 (  )

)

 
 

)           
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Proof 
In the following  note for all      

              ( )   (  
   (    ))          ( )   (  

  (    )). 

One has to show that there exists      such that  

∑ 

 

 {    
        

 √
   (  )

     
| 
 

 
   [ 

 

 
 ]|    }                    

Following  Bernstein’s inequality in ([24], p. 321 )  the proof is based on Bernstein’s inequality for empirical 

processes, by defining  

               ( )     {          }  

hence 

   
        

    √
   (  )

     
| 
 

 
   [ 

 

 
 ]|     

     ( )
            

              

     √
   (  )

     
| 
 

 
   [ 

 

 
 ]|  

To write the difference, the demonstration is based on the concepts similar to those used by [12], Thus 

 ̂ 

 
( )   [ ̂ 

 
( ))]  

 

 ̂ [  ( )]
∑  

    

  ( )  

where   ( )  (  √ )∑ (    [  ])
 
    corresponds to the empirical process based on variables 

          . Then, consider the following class of functions  

 

     {   (    (   ))                      }  

Therefore, 

 ∑     

 ( )

   

 

{
 
 

 
 

 

√   (
    

 
)     

‖√   ( )‖       

}
 
 

 
 

 

  ( )    
       ( )

 {    
     

‖√   ( )‖    
   √   (

    

 
)      }     ( )      

 

We consider the spatial decomposition of [60] on on    ( ) variables, defined, for the fixed integer   , 

as follows  

 (       )  ∑  

        

      
       
     

  ( ) 

 (       )  ∑  

        

          
       

∑  

 (        

  
 

  ( ) 

 

 (       )  ∑  

        

                           
         

∑  

 (     

 
  

∑  

        

 

  ( )  
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 (       )  ∑  

 (      )  

          
         

∑  

 (    )       

          

∑  

      

          ( )  

and so on. The last two terms are as follows  

 (          )  ∑  

 (    )  

             
         

∑  

          

          

  ( )  

 (        )  ∑  

 (    )  

    (    )  
       

  ( )  

For           
           and   {        }    {        }, we pose  

                             (     )  ∑      (       ). 

Without loss of generality, one can write  

| ̂ 
 
( )   [ ̂ 

 
( )]|  

 

 ̂ [  ( )]
∑ (     )

  

   

                                   ( ) 

Even if    is not exactly equal to      , one can group the remaining variables in a block  (       
 ) (this will not change the proof see [7]).). 

Now, under the last equation (6), for all    , one obtains 

  (| ̂ 
 
 ( )   [ ̂ 

 
( )]|   )       

     
 ( (     )    ̂ [  ( )])  

Hence, it suffices to calculate  

  ( (     )    ̂ [  ( )])                           

This only deals with the case    . For this, we number the variables ( (       )    ) and apply 

(Lemma     of [10]) on the re-numbered variables. with the new numbering are noted        ,    

where 

   ∏   
 
       ̂  

    ̂  
  . Note that for all    there is a certain   in   such as  

   ∑  

   (       )

  ( )  

where   (       )  {                             }. The distance between these sets is 

greater than    
  and each set contains    

  elements. 

The definition (Lemma     of [10]) allows to approximate        ,    by independent random 

variables   
      

   of the same law as          and such that  

∑ 

 

   

 |     
 |     (  

  (   )  
    

 ) (  )  

Then, by the Bernstein and Markov inequalities 

  ( (     )    ̂ [  ( )])         
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where 

    (|∑   
     

 |  
   

 
 [  ( )]

  
)

      ( 
(  

 
 [  ( )])

 

     [  
 ]    

   
 
 [  ( )]

)  

    (∑   
   |     

 |  
  
 
 [  ( )]

 
)  

 

⟨ 
 
 [  ( )]

∑   
    |     

 |

     
 (  

 
 [  ( )])

  

 ((   )  
    

 ) (  ) 

 

     
 
      

      ((   )  
    

 )    
             √

     
 

 
 
  (      )

    
 
  
 (     

 
)    ( 

 
  (  ))

    

 (  ) 

 

Take      (
 
 
  (      )

     
 )

    

        

   (     
 
)   

 
 (  )                                                                         (7) 

according to  hypotheses (K7), to show that ∑       
 
 (  )   . 

Now one can deal with   . For this, it suffices to evaluate    [  
 ]. In effect  

    [  
 ]     [∑     (       )   ( )]  ∑       (       ) |   (  ( )   ( ))|  

Let us pose    ∑     (       )    [  ( )] and    ∑       (       ) |   (  ( )   ( ))|. By virtue of 

(K1), one has       [  ( )]   (  (      )  (  (      ))
 

), so     (  
   (      )). As it concerns   , 

the techniques of  [52]  are used considering the following sets 

   {     (       )           }

   {     (       )         } 
 

where     is a real sequence tending to   . Thereby,  

    ∑  (   )   
|   (  ( )   ( ))|  ∑  (   )   

|   (  ( )   ( ))|    
    

   

On the one hand, we have  

  
  ∑  

(   )   

| [  ( )  ( )]   [  ( )] [  ( )]|

    
   

   (  ) ((  (  ))
 
    (  ))     

   
   (  )

(   )   

 

While on the other 

  
  ∑  (   )   

|   (  ( )   ( ))|.  

Since kernel   is bounded, from ([60], Lemma 2.1(ii)), one obtains 

 |   (  ( )   ( ))|    (     )  

Thus  

     
   ∑  (   )   

 (     )     
 ∑          

 (   ) 

    
   

   ∑          
      (   ). 
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Take      (  (  ))
 

 

  ,  

so   

  
     

   
   ∑  

        

      (   ) 

    
   (  ) ∑  

        

      (   )  

From (K2) one can write   
     

   (  ). Moreover, with this choice of   , one obtains 

   
     

   (      )  

where 

    [  
 ]   (  

   (      ))  

Using this last result, with the definitions of      and  , it is shown that 

       (        ̂)  

(K9-i) and moreover, since  ( )       ,  from equation (5 ) 

  ( )    
       ( )

 {    
     

‖√   ( )‖    
   √   (

    

 
)      } 

  (    )      
 
  

Now, by choosing    such that     
   , one obtains:  

   
        

| ̂ 
 
  [ ̂ 

 
]|        (√

    

  (  )
)  

 

Lemma 4.2. Under hypotheses (K1), (K4-i), (K5) and (K7)  

    
   

    
        

     
        

 |  
 ( )    

 

 
 ( )|   (  

  )   (  
  ). 

Proof. 
Given the fact that all random variables are distributed in the same way,  

        
        

   
              

|  
 ( )    

 

 
 ( )|   [  ( )  (    )

( )[ [  ( )  ]    ( )]]  

Integrating by parties, one can see that  

 (  ( )  )  ∫  
 

 (  
  (   ))  

 ( )     
  ∫  

 
  (  

  (   ))  
 ( )  . 

Taking into account the change in a common variable   
   

  
, one obtains  

 (  ( )  )  ∫  
 

  ( )  
 (     )    

thus 

   (  ( )  )    
 ( )  ∫  

 
  ( )|  

 (     )    
 ( )|    

Under (K4) 

   
   

        
        

        
        

 ( ) | (
  ( )

 
)    

 ( )| 
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 ∫  
 

  ( )(  
          

  )  . 

Knowing that    is a probability density, hypothesis (K6) thus completes the demonstration of Lemma 4.2, 

leading finally to  

   
   

    
        

     
        

 |  
 ( )    

 

 
 ( )|  C(  

     
  ). 

 

 

Lemma 4.3. Under the same conditions of Theorem 4.2 

   
   

        
        

        
        

 | 
 

 
 ( )    

 

 
 ( )|   ((

     
 

 
 
  (  )

)

 
 

)        

Proof 
By the compactness of  , 

   
   

  

 (           )  

with                     (      ). Then the monotony of  [ 
 

 
 ( )] and  

 

 
 ( ) gives, for     

  , that 

 [ 
 

 
 (     )]   [ 

 

 
 (     )]

 
 

 
 (     )   

 

 
 (     ) 

 

Now, from condition (K4-i), one obtains, for any        , that  

| [ 
 

 
 (  )]   [ 

 

 
 (  )]|   ( (     )

          
  )  

It follows that  

   
   

| 
 

 
 ( )   [ 

 

 
 ( )]|

    
            {           }

| 
 

 
 ( )   [ 

 

 
 ( )]|    

  

  

 
 

 
  

 

Then,  

    (√
    

     (  )
)  

Thus, all it remains to prove is that  

 

 (    
        

   
        

   
              {           }

| 
 

 
 ( )   [ 

 

 
 ( )]|   √

    

     (  )
)  

       
        {           }

   
        

   
        

| 
 

 
 ( )   [ 

 

 
 ( )]|   √

    

     (  )
)  

 

Now, look at the quantity  

  (    
        

   
        

| 
 

 
 ( )   [ 

 

 
 ( )]|   √

    

     (  )
)  
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for all               . The proof of the above inequality is based on Bernstein’s inequality for 

empirical processes, i.e. 

   ( )  
 

√ 
∑   

   (      [  ( )  ( )]). 

Then, one obtains for all               , that  

 {    
        

   
        

| 
 

 
 ( )   [ 

 

 
 ( )]|     }    (     )  

The definition of   , equation( 7) and hypotheses (K7) allow to write  

∑  

    

 ̂  
 
         

A suitable choice of    gives 

∑  

    

          ̂  
 
         

With the same technic of demonstration like Lemma 4.1, the only difference is that    
( ) is used instead of 

  ( )  Hence this leads finally to  

   
   

    
        

     
        

   
 ( )     

 

 
 ( )        (√

    

   (  )
)  

Corollary 4.1. Under the hypotheses of Lemma 4.1 

∑  

    

 (    
        

  
 

 
   )     

Proof 
By simple analytical arguments, one obtains from equations (K1) and  

(K5)-(K6)  [
 

   (  )
∑   

    (  
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As a result of selecting       , one obtains 
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and Lemma 4.1 leads to the desired result. 

Theorem 4.3  Under the hypotheses (K1),(K7) and,(K8-ii), (K9-ii) we have that  
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 Proof  

The demonstrations are based, respectively, on the following decompositions 
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So, the following two Lemmas are required to prove Theorem 4.3. 

Lemma 4.4  Under the hypotheses (K1),(K4-ii), (K5)-(K7) and (K9-ii) we have  
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Proof 
Using the stationarity of data, the conditional on the explicative variable, and the change in the usual 

variable   
   

  
, we obtain  
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and we deduce that  
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Under the condition (K4-ii)  
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Knowing that    is a probability density, the hypothesis (K6) thus completes the demonstration of Lemma 4.4, 

so this leading finally to  
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Lemma 4.5  Under the same conditions of Theorem 4.3 , we have  
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Proof 
The demonstration is very similar to that of  Lemma 4.3. Indeed, we consider the covering 
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Therefore, all it remains to prove is that  
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Now, we look at the quantity  
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for all               . The proof of the above inequality is based on the Bernstein’s inequality for 

empirical processes,  
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, the definition of    under hypothesis (K7), a good choice of    allow us to 

write  
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We use the same technic of demonstration like Lemma 4.1, the only difference is that we utilise    ( ) 

instead of   ( ) So this leading finally to  
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5  Application 

  

5.1  Estimation of the risk point 
In this part, we suggest estimating the high-risk point in  , noted  ( ), defined as  

   
 ( ( ))     

        

   
        

   
   

  
 ( )                              ( ) (9) 

 This model has a strong background in statistics, particularly in risk analysis (see [54]). In our functional 

setting, we assume that there is a single point  ( ) in   with       (     ),       (     ) and verified (9). The 

natural estimator of  ( ), denoted by  ̂( ), is as follows  

   
 ( ( ))     

        

   
        

   
   

  
 ( )                                    (  ) (10) 

 In general, this estimate is not unique. As a result, throughout the rest of this article,  ̂( ) will be used to 

denote any random variable verified (10). 

To analyze the almost complete convergence rate of the estimator  ̂( ), we keep the same hypotheses 

from the previous section and assume that the function   
  is of class    in respect to  , as shown below. 
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Finally, Theorem 4.1 allows us to deduce the following corollary  

Corollary 5.1  Under the conditions (1), (2), (K1)-(K7), and (K9), and (11) we have 
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 Proof  

Under the hypothesis (K5), Taylor’s development of the function   
  in the neighborhood of  ( ), 

particularly for the point  ̂( ), is 
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Using the result of  Theorem 4.1, we show that  
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5.2  Implementation of uniforme in bandwidth for the choice of bandwidth results 
 When applying a nonparametric estimator in practice, one is challenged with the bandwidth choice 

difficulty. Such a decision should be based on data, which means that the bandwidths that will be utilized in 

practice are random variables that will vary depending on the entire statistical sample. In statistical models, the 

asymptotic theory for data-driven bandwidth has always been connected to some kind of uniform in bandwidth 

studies shortly (UIB). (notice, for example ([38], "Lemma 1, p. 1473"), even if the word UIB did not arise in the 

literature until much later. 

Throughout this section, we’ll look at how the general UIB results reported earlier in this work can be 

applied to a wide range of data-driven bandwidth applications in of functional spatial with mixing structure data. 

This will be described in Section 5.3 the estimation problem (cdf, density and hazard functions). 

5.3  Selecting a Bandwidth in hazard Distribution Function 
 The same kind of ideas can be developed for dealing with random bandwidths in other setting than 

regression. To avoid tedious repetitions, the situations investigated in Section 2 will be presented all together. Let 

 ̃  and  ̃  be random variables taking values respectively in the intervals (     ) and (     ). Denote by  ̃   ̃  

and  ̃  the estimators obtained by plugging in the random bandwidths  ̃  and  ̃  into  ̂   ̂  and  ̂ . Then, as 

direct applications of Theorems 4.2, 4.3 and Theorem 4.1, one gets the following results 
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and 
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)                (14)        

As shown in the examples below, these generic solutions for random bandwidths have obvious 

applicability in data-driven bandwidth selection problems. 

 Example1-Conditional distribution function 
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When focusing on c.d.f. estimation, a statistical prediction can be performed by means of the 

conditional median, where  ̂ 
( )

 is the leave-one-out prediction of    is defined to be the solution of the following 

equation:  

 ̂ 
     

( )  
 

 
  

where, 

 ̂ 
     

∑      
∑      (  

   (    ))  (  
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∑      
∑   

    (  
   (    ))

  

In practice, based on the statistical sample, one utilizes a data-driven bandwidth, defined as 

 ̃   ̃ (             )  

As a result of this, consistency results can be achieved for any type of automatic data-driven bandwidth 

selection as a consequence of (12). 

One of the most ahead of the scheduled is cross-validation, which involves minimizing the following 

least square prediction criterion 
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 Example2-Density function 

The conditional mode can be used to make predictions from the conditional density estimator.    could 

well be predicted precisely as the answer to the following maximisation problem 
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Then, there are some more obvious choices for data-driven bandwidths.  
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The following results is direct consequences of Theorems 4.2, 4.3 and Theorem 4.1. 

Let     or    , and denote by  ̂ 
( )  

  ̂ 
( )  

 and  ̂ 
( )  

, respectively, the estimators  ̂   ̂  and  ̂ 

constructed with the cross-validated bandwidths  ̃    
( )

 and  ̃    
( )

. Then, the following three results hold: 

- Under the conditions of Theorem 4.2, we have that:  
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- Under the hypotheses of Theorem 4.3, we obtain that  
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- Under the conditions of Theorem 4.1, we have that  
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These are of particular interest in practice since they fully automate the practical concerns that arise when 

employing the estimators  ̂   ̂  and  ̂ , our paper appears to be the first in this area for hazard, conditional 

distribution, conditional density settings.  

5.4  Simulated data application 
 In this section we compare the finite-sample performance of kNN hazard function in the context of 

functional prediction via classical hazard function via a short Monte Carlo study. More precisely, we compare 

the finite-sample efficiency of both regression functions as spatial prediction tools. In order to highlight the main 

feature of our procedure, we compare their sensitivity to the presence of outliers. For this purpose, we consider 

the following model  

       ((    )
   )       (     )  

where  (     ) follows a normal distribution with mean 0 and variance     . For the sake of simplicity, we 

consider the same univariate spatial process    used by [15] defined by  

   (√(   ))∑   
   (   (                )), 

where                         are independently, identically distributed with the standard normal 

distribution and are independent of             which are independently and identically distributed with 

the uniform distribution on [    ]. Recall that as        is a Gaussian spatial ergodic process (see, [15]) 

which is an example of  -mixing spatial process. We generate the the random field (     ) at  ̂        

sites. 

The spatial correlation is controlled in our theoretical analysis by the strong mixing condition, which is 

defined as (1)- (3). Therefore, in practise, the functional spatial correlation is incorporated into the estimator’s 

computation by introducing a neighborhood set given by the following equations for each site  : 

   {           (     )         }  

Since we have limited ourselves to the isotropic case in which the spatial dependency is just a function of the 

distance between locations, we can proceed with the vicinity set defined by:  

   {          }, 

where    is an appropriate sequence of positive real numbers. The quantity    is optimally selected over the 

nearest neighbors locations with respect to the Euclidean norm on the coordinates. For more details on the choice 

of   , see [22]. We estimate, for each fixed site  , the kNN conditional hazard function by:      
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  (15) 

 where,    
 is the indicator function of the set   . 

Second, we need to select a suitable semi-metric  (   ), kernel  ( ).  Then, we choose the asymmetrical 

quadratic kernel defined as  ( )  
 

 
(    ) [   ]( ). Meanwhile, because of the smoothness of curves   ( ), 

we consider the following semimetric based on the first derivative:  

      (     )  √∫  
   

 

(  
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Recall that, the classical estimator of the conditional hazard is defined as follows:      
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The efficiency of the predictors is evaluated by the empirical Mean Squared Error(MSE)  
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Figure  1: The AE-errors of both models 

We use the cross-validation procedure proposed by [66] for which the bandwidth    is chosen via the 

following rule  

           
  

   (  )        
  

∑ 

    

     ̂(  )(  )   

where  ̂(  ) is the leave-one-out-curve estimator of ( ̂ 
  ). Concretely, for the robust kNN we select      

          ( )  

where    ( )         ∑           ̂(  )(  ) , 

with  ̂(  ) is the leave-one-out-curve estimator of ( ̂ 
  ). 

The box-plot of the MSE of both models is given in Figure 1. We observe that there is no meaningful 

difference between this spatial predictors. The two predictors are basically equivalent and both show the good 

behavior. Now, in order to investigate the features of our approach, we introduced some artificial outliers by 

multiplying     values of   by 10 . We box-plot AE-errors of both models. 

Further we see from Figure 2 that the kNN hazard function error is much more better than the classical 

one in this case. Moreover, looking at both figures, it appears clearly the MSE of the kernel hazard function 

model has dramatically changed compared to the kNN hazard  case. This statement confirms that the kNN hazard 

function is more robust than the classical regression. 

 

Figure  2: The MSE in presence of outliers 

 

5.5  Real data application 
This section’s major goal is to apply the theoretical results from the previous section to real data. In 

particular, we analyze the effectiveness of hazard function in the context of kNN spatial functional prediction via 

classical hazard function. 



Turkish Journal of Computer and Mathematics Education   Vol.14 No.02 (2023),180-202 

 

198 
 

 

 

Research Article  

In this real data example, we’re looking for a way to estimate the logarithm of total precipitation based 

on the monthly maximum temperature curve. The functional predictor    is the curve of the monthly maximum 

temperatures in the ith climatic station (specified by its geographic coordinates) in a period  , and    is the 

logarithm of the total precipitations in the same station and period, according to the notations in the previous 

section. 

For this application, we used monthly temperature and precipitation data from 125 stations collected 

during 2000 and 2010. These observations can be found at the following url: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly. In Figure 3 The functional covariates are given. 

 

Figure  3: Highest monthly temperatures in 125 weather sites in the United States 

In order to evaluate the presented estimator’s efficiency, represented by  ̂ 
  ( ) in Equation (15) and to 

compared it with the one that does not directly consider distance between positions and is represented by  ̂ 
  ( ) 

in Equation (16), we randomly devide our data (     )  into two different subsets:   

    • learning sample (     )    (114 stations),  

    • test sample (     )     (11 stations).  

To calculate the estimator for both methods, we take the same quadratic kernel function and the semi-

metric       (   ) in the simulation study, Similar to the CV-procedures in the previous section of simulation 

study we select the parameters      (for the     ) and      (for the kernel). 

As an accuracy measure, we employ the Mean Square Error (MSE) procedure, which is described as 

follows:  

    ( ̂ 
  ( ))  

 

  
∑      (  

  (  )   ̂ 
  (  ))

 

 

and  

    ( ̂ 
  ( ))  

 

  
∑      (  

  (  )   ̂ 
  (  ))

 

  

The results of both methods are plotted against the true values in Figure 4, where the predicted values are 

plotted against the true values. 
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Figure  4: Comparison of the prediction results between the two methods. 

The left part of Figure 4 illustrates the case in which the kNN spatial correlation is used, whereas the 

right half depicts the case in which the classical spatial correlation is used. 

The continuous line controls the prediction’s effectiveness, in the sense that the efficiency of the 

prediction method is measured by how close the plotted points are to the continuous line. It is apparent that 

estimate using kNN spatial correlation is substantially better and more efficient than traditional estimation. The 

mean squared error obtained in the two situations, respectively, proves this,    ( ̂ 
  ( ))       whereas, 

   ( ̂ 
  ( ))      . 

6  Conclusion 

This work provides a extension of the study of study of [41] by the kNN method. They are compared to 

the standard kernel estimator. We showed that the proposed estimator can give better results compared to the 

kernel estimator in terms of estimation error.  

However, the main advantage of this study is that it is considerably faster than the classical one when 

the outlier data are present.  

In conclusion, the proposed estimators allowed us to obtain good results. This is confirmed by the MSE 

result. 
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