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Abstract: We discuss in this paper the robust equivariant nonparametric regression estimators for strong mixing data with 

the k Nearest Neighbour (kNN) method. We consider a new robust regression estimator when the scale parameter is 

unknown. The principal aim is to prove the almost complete convergence (with rate) for the proposed estimator. Furthermore, 

a comparison study based on simulated data is also provided to illustrate the finite sample performances and the usefulness of 

the kNN approach. 
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1. Introduction  

It is very well recognized that robust regression in statistics is an attractive research method. It is used to 

overcome some of the weaknesses of classical regression, namely when outliers contain heteroscedastic data. 

The study of the connection between a random variable W and a set of covariates Z is a common problem in 

statistics. In the literature, these variables are generally known as functional variables. Remember that the robust 

method is an old statistical issue, this latter was investigated first by [40] who studied an estimation of allocation 

parameter (see also [23, 45]), for some results containing the multivariate time series case under a mixing or an 

ergodic condition). 

The robust model is an essential alternative regression model that allows overcoming many drawbacks of the 

classical regression, such as the sensitivity to the outliers or the heteroscedasticity phenomena. Indeed, it was 

initially proposed by [9] who demonstrated the model’s almost-complete convergence in the independent and 

identically distributed (i.i.d.) case. Several results on nonparametric robust functional regression have been 

obtained since this study (for example, [25, 19, 4, 5, 6, 38, 15] and references therein). 

Furthermore, it is well known that the kNN method is better than the classical kernel method. Pushed by its 

attractive features, the functional kNN smoothing approach has received a growing consideration in the last 

years. The study of [39] is a thorough analysis of kNN estimators in the finite dimensional context. Work in this 

area was started by [24], and a large number of articles are now available in various estimating contexts, which 

including regression, discrimination, density and mode estimation, and clustering analysis, we make reference to 

[22], [28], [47], [52], [27], [29], [10], [44], [18], [59], [48], [7], [8], [43] and [41], [2], [17] for the most recent 

advances and references. Note that, such a study has a great impact on practice. However, the difficulty in the 

kNN smoothing is the fact that the bandwidth parameter is a random variable, unlike the classical regression in 

which the smoothing parameter is a deterministic scalar. So, the study of the asymptotic properties of our 

proposed estimator is complicated, and it requires some additional tools and techniques. 

All the results involved in the functional kNN estimation above were obtained under i.i.d. case. While in 

many practical applications, some problems require taking into account the dependence structure that may exist 

within the dataset. The strong mixing dependence or  -mixing is one of the most general weak dependence 

modelization in the literature. The research of Nadaraya Watson (NW) kernel method for this dependent 

functional data analysis has been widely carried out, see for instance, [16, 32] and the bibliographical surveys by 
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[37] and [49]. However, for the kNN approach, the only paper is, as far as we know, by [53] which studies the 

kNN estimator under  -mixing sample and states its pointwise almost complete convergence (with rates). 

The strong mixing dependence or  -mixing is one of the most general weak dependence modelization in the 

literature. The research of NW kernel method for this dependent functional data analysis has been widely carried 

out, see for instance, [16], [32] and the bibliographical surveys by [37] and [49]. However, for the kNN 

approach, as far as we know, by [53] and [43] which studies the kNN estimator under  -mixing sample and 

states its pointwise almost complete convergence (with rates). Inspired by all the results above, the purpose of 

this paper show us that functional kNN approach can be used to further investigate the estimation of functional 

nonparametric regression opera in the case of strong mixing datasets with unknown scale parameter. This is 

motivated by the fact that the robust regression estimator has several advantages over the classical kernel 

regression estimator. The main profit in using a robust regression is that it allows reducing the effect of outlier 

data. 

In functional data analysis (FDA), kNN nonparametric robust equivariant regression estimators for strong 

mixing data is new. This researches’s primary goal is to provide generalizations, to the kNN case, the results 

obtained by [43] in alpha mixing dependency case with the research of [50] and [2]. More precisely, we establish 

the almost complete convergence with rates of an estimator constructed by combining the ideas of robustness 

with those of smoothed regression. We point out that the main feature of our approach is to develop an 

alternative prediction model to the classical regression that is not sensitive to outliers or heteroscedastic data, 

taking into account the local data structure. The work has not yet been addressed in the literature. We wish that 

this will be useful to readers who are interested in learning about and comprehending the core idea of functional 

kNN methods with strong mixing dependence sample and with unknown scale parameter. 

This paper’s structure is as follows. In Section 2, we find some fundamental concepts and various 

assumptions. Then in Section 3 we give some technical tools as well as their proofs. The main result is given in 

Section 4, then we provides all the proofs of the main result in Section . Finally, simulation study is given in 

Section 6. 

2. Principal hypotheses and basic definitions 

2.1  Kolmogorov’s entropy 

 The aim of this subsection is to emphasize the topological aspects of our study. Indeed, all asymptotic 

conclusions in nonparametric statistics for functional variables are intimately connected to the concentration 

properties of the probability measure of the functional variable  , as [32] indicated. We must also consider the 

element of uniformity in this situation.  Let     be given, and let   be a subset of a semi-metric space  , a 

limited set of points              in   is known as an  -net for   if   ⋃   
          . Kolmogorov’s  -entropy 

of the set   is defined as                   , where        is the minimal number of open balls in   with 

radius   required to cover   .  This concept was introduced by [42] and it represents a measure of the complexity 

of a set, in sense that, high entropy means that much information is needed to describe an element with an 

accuracy  . Therefore, the choice of the topological structure (with other words, the choice of the semi-metric) 

will play a crucial role when one is looking at uniform (over  ) asymptotic results. More precisely, a good semi-

metric can increase the concentration of the probability measure of the functional variable   as well as minimize 

the  -entropy of the subset   .  

To formulate our main result, some additional notations are necessary. Let                be an  -net of    

and for all     ,              {              }       ,   
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Indicate  

  
     {    

      
      

      
 }                                                                                   (1) 

2.2  kNN Regression function model 

Let                     a strong mixing sample drawn from the pair       and is defined in    . We do 

not assume the existence of a density for the functional random variable   since       is a semi-metric space,   

is not necessarily of finite dimension. The functional nonparametric regression is defined as  

         with           

 The kNN kernel estimator can be written as for a fixed     

  ̂       
∑   

                        

∑   
                      

                                                                             (2) 

where L is an asymmetrical kernel and         is defined as follows  

           {      ∑  
 

   
              }  

 The functional version of the NW kernel type estimator of the nonparametric functional regression is as 

follows  

 ̂    
∑   

         
          

∑   
       

          
                                                                                            (3) 

 where     is fixed, and    denotes a non-random bandwidth. 

2.3  kNN Conditional cumulative distribution function 

 The conditional cumulative distribution function of   given    , for each     and for any     can be 

written as  

            
                                     

We call the following function the estimator of          

  ̂        ∑   
                      ∑   

                      
                        (4) 

 Several authors have studied the estimation of the conditional cumulative distribution function in the real 

case (see for example [57] and [58]). Then, In the functional case [32] proved the almost complete convergence 

of a double kernel estimator of the conditional cumulative distribution function. 

2.4  The kNN robust equivariant estimators and their functional relatives function 

 In this section we define the function of our main problem, we consider estimating a generalized regression 

function defined as follows  

                  
    

    
                                                                                      (5) 

 where    is a real-valued function, we denoted by      the unique solution of 

      , where      is a robust measure of the conditional scale. The unique solution of  (5) is the so-called 

robust conditional location functional where    is a strictly increasing function (see [12]). The conditional scale 

measure is defined as the conditional median of the absolute deviation from the conditional median, that is,  

                               
                                                                         (6) 

 with                 is the median of the conditional distribution. 

On the other hand, we note that      which is a robust measure of the conditional scale, always equals     . 

We insert an estimator of   
     into  (4) to get      estimators, wich will betaken as 
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 ̂       . A robust estimator of the conditional scale is denoted by  ̂   , for example,  ̂    

      ̂         the scale measure given in  (6) measured in  ̂       . The solution  ̂    of  ̂      

gives the robust nonparametric estimator of      in this notation, where  

  ̂    
∑   

                   
    

 ̂   
 

∑   
                

                                                                                     (7) 

 Hence the kNN estimator of      is written as  

  ̂       
∑   

                        
    

 ̂   
 

∑   
                     

                                                                       (8) 

2.5  Hypotheses 

 In this part, we propose the following hypotheses to establish the uniform almost complete convergence of  ̂ 

on some subset    of  . To do that we denote by   and    some real generic constants supposed strictly positive 

and we suppose that: 

-(A1)  The processes         satisfies  

     ,                              where       is continuous in the neighborhood of 0 and 

       . 

-(A2)   function       , a bounded function       ,     and     such that 

        and               
         -                       with    ,  

         -                                 as      

-(A3)  The kernel      is defined by 

 (A3a)  is a nonnegative function with support       such that  

                                   

 (A3b)   - its derivative       exists on the same support and                  
-(A4)                                                         

                                             . 

-(A5)    For each fixed                         

    
  

    

    
                  with      continuous on     

-(A6)     The functions    and     are such that  

                          and if        we can seen that  

                    ∫  
 

 
                

if in addition       as    ,            
                and 

                for n large enough. 

-(A7)     Kolmogorov’s  -entropy of the set    satisfies, for some     

∑  

 

   

   {                  }     

-(A8)      Consider that    is a compact set of   such that 

 (A8a) The function          is uniformly continuous of   in a neighborhood of    for each   

fixed.  

 (A8b) The equicontinuity condition that follows hold  

                      
    

                       

-(A9)            and     such that for some   large enough   
               

       . 
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 Comments on the hypotheses 

Our hypotheses are quite light in the context of nonparametric statistics in functional time series. 

The latter is used an accordance with assumption (A1) which is less strict than the conditions imposed by [46] 

because the concentration function              and the conditional concentration function      
             do not need to be written as products of two independent nonnegative functions of the center and 

radius. Assumption(A3) contains two types of kernels which have been utilized in practice box and continuous 

kernels. Assumptions (A2), (A4) and (A5) are the usual conditions in the nonparametric setting. 

About assumption (A6) we can say because the derivative of   is limited around zero, it can be considered a 

Lipschitzian function. Assumption (A7) acts on Kolmogorov’s  -entropy of   . Assumption (A8) means that 

there        such that for every     ,               and             which will be used to 

prove that             
      is bounded away from 0 for all     . Assumption(A9) demonstrates the 

dependent sample’s covariance structure, for more details see [34] and [32] respectively. 

3. Technical tools and their proofs 

 The first difficulty comes because         is random. To resolve this problem, the idea is to frame sensibly 

        by two non-random windows. More generally, these technical tools could be useful as long as one has to 

deal with random bandwidths. So we propose in this part some preliminary Lemmas and their proofs that are 

necessary to prove our main result. Following the notations in [18] or [43]. 

Let              be n random pairs valued in             , where       is a general measurable 

space. Let    be a fixed subset of  , we observe that               a function such that,      ,  

           measurable function such that        ,  

                         for        . Let           be a non random function such that 

       
        . Moreover, for all      and     , with 

        
∑   

     (
    

 ̂   
)           

∑   
              

  

 Lemma 3.1. Let {     }     be a sequence of r.r.v. and let         be a decreasing positive sequence with 

           . If for all increasing sequence          with 

          , there exist two sequences of real random variable (r.r.v.)    
             and 

   
             such that:   

                      
          

       ,  

          {  
                

             }     a.co. as      

                
 
∑   

       
               

∑   
       

               
                 

                         
                          

                           
                          

 Then  

   
    

|    (     )      |             

Proof. The result for any real valued (r.v.) can be deduced by taking      
    

  where 

  
            and   

            ; 

For i=1,...,n, we consider the quantities   
       (

    

 ̂   
)  

 Under the definition of the r.v     , we put  
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It’s clear that 
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In the other hand, we can express the r.r.v:     
      and     

     , in the following way 
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    (  
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    (  

              )

∑   
    (  

              )
  

So under      and (   , we have  

     
     

     
→                 

     
     
→                                                                                     (10) 

For all sequence          with                      and      give  

    
    

     
               

    

     
                                                                     (11) 

 and  

    
    

     
                                                                                                                           (12) 

 

 For     we note  

       {   
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and for all sequence          with             
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        {   
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It is evident that, for all          with           , 

        
          

                                                                                                 (13) 

Let        {  
                

             }, then      implies that 
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              and from (13), we obtain 

               
         

                

and consequently  

  (   
    

|    (     )      |     )   (   
    

|    
            |     )   

     
    

     
                      {  

                
             }      

Then, for some      

 ∑   
        

    

                                                                                                     (14) 

Lemma 3.2. Let           be a sequence of conditional distribution functions verifying  

    
    

   
   

                                                                                                              (15) 

 Then, if   verifies assumption (A8), there exist positive constants     such that    

                      verifies           for all      compact and     .  

Proof. This proof is very close to that of Lemma      in Boente et al. [15]. 

According to (A1) and (A3a), we have that         , 

                                                                            (16) 

 In the case when       , combining (A1) and (A6) gives the same result. 

4  Main result 

 We start by reminding the uniform asymptotic properties of  ̂    defined in (7). The following Theorem  

was proved by [3] in the special case when          for all     , but their proof can be followed line by line 

under (18)). This general condition (18) will be a crucial preliminary tool for us. 

 Under assumptions (A1)-(A9), if in addition,       in (7) satisfies  

    
   

                                                                                                                  (17) 

 and  

          
    

         
    

                                                                                   (18) 

 where           such that, for n large enough,  

     

      
     

    

 
  

      

    
                                                                                                     (19) 

 and  

     
      

     
                                                                                                          (20) 

 Then we have  

   
    

  ̂              
 
        √

  
    

 
    

 
 

                                                                    (21) 

  We can now state our main result, whose proof will be presented in Section 5. 

Theorem 4.2. Under the assumptions (A1)-(A9), and for n large enough, then we have  

   
    

  ̂              (   (
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√
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5  Proofs 

5.1  Proofs of Theorem4.1 

The proof is based on the following decomposition  

  ̂         
 

 ̂ 
    

  ̂ 
       ̂ 

      
 

 ̂ 
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 ̂ 
    

  

where, 

  ̂ 
     

 

       
           

∑   
       

            

  ̂ 
     

 

       
           

∑   
       

             
    

 ̂   
   

Thus, the proof of the proposition is valid as soon as the following three Lemmas can been checked 

respectively.  

Lemma 5.1. Under the assumptions (A1), (A3), (A4) and (A7), we have  

   
    

   ̂ 
               

 
   

Proof. We have 
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As a result we obtain 

          ̂ 
           

 

      
           

       
                   ̂              

Accordingly, with the assumptions (A1), (A4) and (16) we get 

       |  ̂ 
         |   

 

 [ (  
         )]

[ [ (  
         )             

       ]]     
 
  

which gives the result.  

Lemma 5.2. Under the assumptions of Theorem 4, we have  
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       ̂ 
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Proof. We consider the following decomposition  
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By assumption (A3) which follows that                                we treat the term    as 
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Moreover,by the assumption (A5), Markov’s inequality and Proposition A.11.(i) in [32], it follows that  
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 where                . Then, by assumptions (A9) and (20), we have  
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 for some      and large enough  . On the contrary, by the definition of Kolmogorov’s  -entropy and (19), 

it follows that                   . Hence, by assumption (A9), we obtain  
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And we have 

       √
    

    
 
    

 
 

             
              

  
 

 
 ∑   
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by using the same result as with the treatment of    we get  

          √
    

    
 
    

 
 

                                                                                                        (23) 

In the end, we treat   . It is evident that               ̂      ̂           ̂          , similar steps of 

treating    allow to get  

          √
    

    
 
    

 
 

                                                                                                         (24) 

Lemma 5.3. Under the assumptions (A1) and (A4)-(A7), we have  

    
    

  ̂ 
              √

  
    

 
    

 
 

                                                                                            (25) 

 

Proof. The steps in this proof are the same as in the proof of Lemma 5.1 . For this, we conserve these 

notations and use the decomposition that follows 
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Then, using the same proofs as (22) to (24), we get 
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Finally, the claimed result is obtained from the last decomposition and (26).  

Corollary 5.4.  Under the assumptions of Lemma 5.1, we have  

∑  
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Proof. We have that  
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We conclude that  
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As a result  
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 ∑   
        

    
  ̂ 

      
 

 
     

5.2  Proofs of main result 

Similar to the proof of ([43], Theorem 2), we must to investigate the conditions of Lemma 3. 

For that, we denote:                                                                        

 ̂       and          . Let          be an increasing sequence such that           , where 
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Let        
 

 
  , we choose   

        and   
        such that  

      
                    

   
                                                                                                  (27) 

 and  

      
                    

      
                                                                                                  (28) 

 Checking      and     : we note that the local bandwidth   
        satisfies (17), (18) and (20), we have 

now  

    
    

        
                      

   
 

 
   √  

    
 
    

 
 

    

             

Consequently,      in Lemma 3 is valid. We use the same steps for   
       , we obtain  

    
    

        
                          

Therefore      is also correct. 

We check      and     : with (27) and (28), we have 

     
                        

        . Thus, with (17) and the property of      , we have as a result  

  
                  

         a.co  

 and  

 {  
                

             }     a.co. as      

 Consequently,      and      in Lemma 5.1 are valid. Checking     : Same as Kudraszow and Vieu [43], 
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   |                                                                                                  (29) 

 

With (A3), we get  

    
    

                                                                                                                                          (30) 



Somia Guenani, Wahiba Bouabsa  and Mohammed Kadi Attouch 

 

 

170  

 In addition, with (25), we have that 

    
    

     
   
    

  ̂ 
      

               
    

  ̂ 
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Then, we use the (Lemma 1, p. 10) of [30] with (A2) and also the fact that  

      
              

             

we get  

    
    

              
 
     √      

 

 
                                                                            (31) 

 In consequence, with the fact that      and integrating (29)-(31), we have that  

    
    

 
∑  

 
     

       

  
       

 

∑   
     

       

  
       

 
                

It should be noted that      is clearly satisfied because of (A3a), additionally      is also easily satisfied by 

building of   
        and   

       . So, one can therefore apply Lemma 3, and (9) is precisely the consequence of 

Theorem 4.  

6  Simulated data application 

 This section compares the Robust kernel estimator introduced by [9] with the finite sample behavior of 

the proposed Robust kNN estimator for strong mixing dependency samples with unknown scale parameter. 

First, we consider the following nonparametric functional regression model:  

                                     

where       (∫  
   

 
  

      )
 

   
     is the first derivative of       {  }   

    are i.i.d. according to 

          and the curves       are generated as follows:  

          
     (  (  

 

 
))                    [  

 

 
]  

where {  }   
    are i.i.d. according to             

 

 
        {  }   

    are i.i.d. according to        and 

independent to {  }   
    and {  }   

    respectively,    is from       . 

Figure 1 displays the curves of the sample sizes      . 

 

Figure  1: The curves                 for          . 

 

Second, we need to select a suitable semi-metric       , kernel     , smoothing parameter      for 

functional kNN estimator. For that purpose, we choose the asymmetrical quadratic kernel defined as       
 

 
(

  

  
   )          . Meanwhile, because of the smoothness of curves     , we consider the following 

semimetric based on the first derivative: 
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       (     )  √∫  
   

 
(  

       
    )

 
                  

Our main goal is to compare our estimator (Robust Equivariant Estimator REE)  ̂    with Robust Kernel 

Estimator (RKE)  ̃    introduced by [9], where  ̂   ,  ̃    are define as following  
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The efficiency of the predictors is evaluated by the empirical Mean Squared Error(MSE)  
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In what follows, we randomly split the 200-sample into two parts: one is a training sample {     }   
    which 

is used to model, and the other is a testing sample {     }     
    which is used to verify the prediction effect. On 

the one hand, by the training sample, we can select the optimal parameter      for kNN estimator by the 

following cross-validation procedures. 

Concretely, for the robust kNN we select                     where        ∑   
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Then the robust kernel estimator by                     where        ∑   
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On the other hand, by the testing sample, we can calculate the prediction values of the response variables 

denoted by { ̂ }     

   
 for Robust kNN method and { ̃ }     

   
 for Robust kernel method respectively. Thus, MSE 

of the predicted responses for the two methods are illustrated in Figure 3 where we see clearly that the 

forecasting of Robust kNN estimator is more accurate than that of Robust kernel one under the strong mixing 

functional dependent sample. The similar results are also shown when the sample sizes are       and 

     .

 

Figure  2: MSE of the Robust kNN method and the Robust kernel method respectively 

 



Somia Guenani, Wahiba Bouabsa  and Mohammed Kadi Attouch 

 

 

172  

To further explore the performances of the two methods, we carry out       independent 

replications of the experiment for Robust kNN estimator, Robust regression estimator when the sample sizes are 

            and       respectively. In each case, let the testing sample sizes be fifty. 

 

 

Figure  3: The box plots of the MSE of the prediction values by the two methods for the different sample 

sizes when the Number of repetitions of experiments is M=100 

 

 

 Meanwhile, let us calculate the average of MSE of Robust kNN estimator and the Robust regression 

estimator. The results are reported in Table 1.  

  

We can see that, for fixed sample sizes n, Robust kNN estimator is much more smaller than the Robust 

regression estimator, or the prediction accuracy of Robust kNN regression method is better than that of the other 

method even in the case of the strong mixing dependence. 

7.Conclusions 

The kNN approach is a smoothing alternative that allows for the development of an adaptive estimator for a 

variety of statistical problems, including bandwidth choice. 

The assumption that the bandwidth parameter in the kNN method is a random variable adds to the complexity of 

this problem. 

In the situation of equivariant robustification results, the key innovation of this approach is to estimate the 

regression function by mixing two essential statistical techniques: the regression estimators for strong data when 

the scale parameter is unknown with the kNN method. This strategy allowed for the development of a new 

estimator that combines the benefits of both methods. 

Another unanswered concern is how to treat a more general case in which data are generated from a functional 

alpha-mixing dependency and the scale parameter is unknown . Precisely, we can obtain the almost complete 

convergence of the same constructed estimator under standard conditions allowing us to explore different 

structural axes of the topic. We emphasize that, contrary to the usual case when the scale parameter is fixed, it 

must be estimated, which makes it more difficult to establish the complete convergence of the estimator. 
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To summarize, the behavior of the developed estimator is unaffected by the number of outliers in the data 

collection. In comparison to the classical kernel method, the mixture of the kNN algorithm and the robust method 

allows for a reduction in the impact of outliersin results.  
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