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Abstract: In this paper, we discuss the existence of characters on the relation between certain intrinsic 

topologies in certain partially ordered sets. We almost discuss the transformation of a normed vector 

lattice definition into a 2-normed vector lattice definition. This work is motivated by the works of [9, 

11-12]. 
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Introduction: 

A variety of ways have been suggested for defining topologies from the algebraic structure of a lattice 

(see [1-2]). If one is given a topological lattice, a natural question is whether the given topology 

agrees with one or more of these intrinsic topologies. Some results of this nature may be found in (see 

[2-5]). The theory of 2-normed space was first introduced by Gähler [6-10] as an interesting linear 

generalization of the theory of the normed linear spaces which was subsequently studied by many 

authors. 

Definition 1: Let E be a complete lattice. The elements of E are generally denoted by 1 1 1, , ,...a b c . 

The subset of E are generally denoted 1 1 1, , ,...A B C . 

Now, we define a new function : E E   with the property    satisfy the following conditions: 

A E , 

 A A    , 

    :A A a A    and denoted it by 
2 . 

Thus for    a b a b     

     2 2a b  . 

Known theorems: 

In 1965, Broder [12] has established the following theorem: 

Theorem 1: 

Let E be a complete lattice and  b a  be isotone signals from E to E. Then we find  r r  for 

some r E . 

In 1975, author [12] has generalized the result of [11] and established the following theorem: 
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Theorem 2: 

If a signal   from E to E with the property,    then there exist a unique element a E  such that 

 2a a  and  a a . 

Now, we define a new signal :G E E  with   : 

A E , 

   G A G A    

    :G A G A a A  , 

the composition of G  with 
2G . 

Lemmas: 

Lemma 1: The function G satisfies    then 

(i)    a b G a G b    

 a b a b a    , 

    G a b G a   

      G a G b G a   

(ii)    2 2a b G a G b   . 

Proof: The    a b G a G b     (by given condition) 

      G a G b G b    

        G G a G b G G b    

      2 2 2G a G b G b    

    2 2G a G b  . 

Now,     :DE G a E a G a    

     2 2:DE G a E a G a   . 

Lemma 2: 

(i)    2 : D DG E G E G  
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suppose  Da E G  

  a G a   

        2 2 2G a G G a G G a    

    2

DG a E G  . 

(ii)    2 2 2: D DG E G E G  

consider  2

Da E G  

  2a G a   

     2 2 2G a G G a   

    2 2

DG a E G  . 

Lemma 3: 

 2

DE G  is complete lattice. 

Proof: Suppose  2, Da b E G  

  2a G a   and  2b G b . 

Put a b m   

 ,a m b m    

if    2 2a m G a G m    

and if    2 2b m G b G m    

thus      2 2 2G a G b G m   

i.e. 
 

 
   

2

2 2

2

a G a
a b G a G b

b G b

 
   

 

 

  2G m  

  2G a b  . 

So,  2

da b E G  . 

This completes the proof of the theorem. 
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Now, we prove the following theorems: 

Theorem 3: Let E be a complete lattice and a E  then  2a G a  and  a G a . 

Proof: Let    2

M MM E G E G   

Put a N   where N is maximal chain in D. 

 2

Ma E G   (by lemma 3). 

Let  a G a   (by property   ) 

then    G a G N   

so,  a G a n N   . 

Such that  a G n . 

Thus there exist 1n N  such that  1n G n . 

Now,     MN E G n G n   . 

If M is chain, 1n n  or 1n n . 

Since  1n G n  then 1 .n n  

By using lemma 1, 

   1 1n n G n G n    

which gives a contraction. 

Thus  a G a  i.e.,  Ma E G . 

Again by using lemma 2, 

 2G a M  

 2a G a  . 

If  a G a  then N is not maximal, which again gives a contradiction. 

So,  2a G a . 

Theorem 4: Let E be a complete lattice and 2E
 be the complete lattice subset of E. 

Let : 2EE   be a multivalued mapping, then 

 supc c  for some c E . 
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Proof: Let c be the l.u.b. of R of a E  such that  supa a . 

It is clear that R is non-empty. 

Since   is multi-valued isotone and a c  for all a R , 

   sup supa a c    

Thus  sup supc R c  . 

If  sup c d   then c d . 

Thus by hypothesis, 

   sup supd c d   , 

where  c R   

   sup supc c R   

So,  sup c c  . 
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