The Existence of Characters on relations between certain intrinsic topologies in certain partially ordered sets.

S. K. Sahani ${ }^{1}$, Kripa Sindhu Prasad ${ }^{2}$ and A. K. Thakur ${ }^{3}$
${ }^{l}$ Department of Mathematics, MIT Campus, (T.U.), Janakpurdham, Nepal
${ }^{2}$ Department of Mathematics, Thakur Ram Multiple Campus, Tribhuvan University, Birgunj, Nepal
${ }^{3}$ Department of Mathematics, Research Scholar, Dr. C.V. Raman University, Bilaspur (C.G.)
Email: sureshkumarsahani35@gmail.com ${ }^{1}$, kripasindhuchaudhary@gmail.com ${ }^{2}$, drakthakurmath@gmail.com ${ }^{3}$

Corresponding author: sureshkumarsahani35@gmail.com ${ }^{1 *}$
DOI: 10.48047/turcomat/v10i03/01

Abstract

In this paper, we discuss the existence of characters on the relation between certain intrinsic topologies in certain partially ordered sets. We almost discuss the transformation of a normed vector lattice definition into a 2 -normed vector lattice definition. This work is motivated by the works of [9, 11-12].

Keywords: Normal vector lattice, Complete lattice, Self-mapping, etc.

Introduction:

A variety of ways have been suggested for defining topologies from the algebraic structure of a lattice (see [1-2]). If one is given a topological lattice, a natural question is whether the given topology agrees with one or more of these intrinsic topologies. Some results of this nature may be found in (see [2-5]). The theory of 2 -normed space was first introduced by Gähler [6-10] as an interesting linear generalization of the theory of the normed linear spaces which was subsequently studied by many authors.

Definition 1: Let E be a complete lattice. The elements of E are generally denoted by $a_{1}, b_{1}, c_{1}, \ldots$. The subset of E are generally denoted $A_{1}, B_{1}, C_{1}, \ldots$.

Now, we define a new function $\zeta: E \rightarrow E$ with the property (β) satisfy the following conditions: $A \leq E$,
$\zeta(\vee A)=\wedge \zeta A$,
$\zeta(A)=\{\zeta(A): a \in A\}$ and denoted it by ζ^{2}.
Thus for $a \leq b \Rightarrow \zeta(a) \geq \zeta(b)$

$$
\Rightarrow \quad \zeta^{2}(a) \leq \zeta^{2}(b)
$$

Known theorems:

In 1965, Broder [12] has established the following theorem:

Theorem 1:

Let E be a complete lattice and $b=\zeta(a)$ be isotone signals from E to E . Then we find $r=\zeta(r)$ for some $r \in E$.

In 1975, author [12] has generalized the result of [11] and established the following theorem:

Theorem 2:

If a signal ζ from E to E with the property, (β) then there exist a unique element $a \in E$ such that $a=\zeta^{2}(a)$ and $a \leq \zeta(a)$.

Now, we define a new signal $G: E \rightarrow E$ with (δ) :
$A \in E$,
$G(\vee A)=\wedge G(A)$
$G(A)=\{G(A): a \in A\}$,
the composition of G with G^{2}.

Lemmas:

Lemma 1: The function G satisfies (δ) then
(i) $\quad a \leq b \Rightarrow G(a) \geq G(b)$

$$
a \leq b \Rightarrow a \wedge b=a
$$

$$
G(a \wedge b)=G(a)
$$

$$
G(a) \vee G(b)=G(a)
$$

(ii) $\quad a \leq b \Rightarrow G^{2}(a) \leq G^{2}(b)$.

Proof: The $a \leq b \Rightarrow G(a) \geq G(b) \quad$ (by given condition)

$$
\begin{aligned}
& \Rightarrow G(a) \wedge G(b)=G(b) \\
& \Rightarrow G(G(a) \wedge G(b))=G(G(b)) \\
& \Rightarrow G^{2}(a) \vee G^{2}(b)=G^{2}(b) \\
& \Rightarrow G^{2}(a) \leq G^{2}(b)
\end{aligned}
$$

Now, $E_{D}(G)=\{a \in E: a \geq G(a)\}$

$$
E_{D}\left(G^{2}\right)=\left\{a \in E: a \geq G^{2}(a)\right\}
$$

Lemma 2:

(i) $\quad G^{2}: E_{D}(G) \rightarrow E_{D}(G)$
suppose $a \in E_{D}(G)$

$$
\begin{aligned}
& \Rightarrow a \geq G(a) \\
& \Rightarrow G^{2}(a) \geq G^{2}(G(a))=G\left(G^{2}(a)\right) \\
& \Rightarrow G^{2}(a) \in E_{D}(G)
\end{aligned}
$$

$$
\begin{equation*}
G^{2}: E_{D}\left(G^{2}\right) \rightarrow E_{D}\left(G^{2}\right) \tag{ii}
\end{equation*}
$$

consider $a \in E_{D}\left(G^{2}\right)$

$$
\begin{aligned}
& \Rightarrow a \geq G^{2}(a) \\
& \Rightarrow G^{2}(a) \geq G^{2}\left(G^{2}(a)\right) \\
& \Rightarrow G^{2}(a) \in E_{D}\left(G^{2}\right)
\end{aligned}
$$

Lemma 3:

$E_{D}\left(G^{2}\right)$ is complete lattice.
Proof: Suppose $a, b \in E_{D}\left(G^{2}\right)$

$$
\Rightarrow a \geq G^{2}(a) \text { and } b \geq G^{2}(b) .
$$

Put $a \wedge b=m$

$$
\Rightarrow a \geq m, \quad b \geq m
$$

if $a \geq m \Rightarrow G^{2}(a) \geq G^{2}(m)$
and if $b \geq m \rightarrow G^{2}(b) \geq G^{2}(m)$
thus $G^{2}(a) \wedge G^{2}(b) \geq G^{2}(m)$
$\left.\begin{array}{ll}\text { i.e. } & a \geq G^{2}(a) \\ & b \geq G^{2}(b)\end{array}\right\} \Rightarrow a \wedge b \Rightarrow G^{2}(a) \wedge G^{2}(b)$
$\Rightarrow G^{2}(m)$
$\Rightarrow G^{2}(a \wedge b)$.
So, $a \wedge b \in E_{d}\left(G^{2}\right)$.
This completes the proof of the theorem.

Now, we prove the following theorems:
Theorem 3: Let E be a complete lattice and $a \in E$ then $a=G^{2}(a)$ and $a \geq G(a)$.
Proof: Let $M=E_{M}(G) \cap E_{M}\left(G^{2}\right)$
Put $a=\wedge N$ where N is maximal chain in D .
$\Rightarrow a \in E_{M}\left(G^{2}\right) \quad$ (by lemma 3).
Let $a<G(a) \quad$ (by property (δ))
then $G(a)=\vee G(N)$
so, $a<G(a) \Rightarrow n \in N$.

Such that $a<G(n)$.
Thus there exist $n_{1} \in N$ such that $n_{1}<G(n)$.
Now, $\quad \because N \leq E_{M}(G) \Rightarrow n \geq G(n)$.

If M is chain, $n \leq n_{1}$ or $n_{1} \leq n$.

Since $n_{1}<G(n)$ then $n_{1}<n$.
By using lemma 1,
$n \geq n_{1} \Rightarrow G(n) \leq G\left(n_{1}\right)$
which gives a contraction.
Thus $a \geq G(a)$ i.e., $a \in E_{M}(G)$.
Again by using lemma 2,
$G^{2}(a) \in M$
$\Rightarrow a \geq G^{2}(a)$.

If $a>G(a)$ then N is not maximal, which again gives a contradiction.
So, $a=G^{2}(a)$.
Theorem 4: Let E be a complete lattice and 2^{E} be the complete lattice subset of E.
Let $\zeta: E \rightarrow 2^{E}$ be a multivalued mapping, then
$c=\sup \zeta(c)$ for some $c \in E$.

Proof: Let c be the l.u.b. of R of $a \in E$ such that $a \leq \sup \zeta(a)$.
It is clear that R is non-empty.
Since ζ is multi-valued isotone and $a \leq c$ for all $a \in R$,
$a \leq \sup \zeta(a) \leq \sup \zeta(c)$
Thus $c=\sup R \leq \sup \zeta(c)$.
If $\sup \zeta(c)=d$ then $c \leq d$.
Thus by hypothesis,
$d=\sup \zeta(c) \leq \sup \zeta(d)$,
where $\zeta(c) \in R$
$\Rightarrow \sup \zeta(c) \leq c \quad(\because \sup R)$

So, $\sup \zeta(c)=c$.

References:

[1] L. W. Anderson, One dimensional topological lattices, Proc. Amer. Math. Soc., 10 (1959), 327-333.
[2] J. D. Lawson, Lattices, Proc. London. Math. Soc., 52 (1951), 386-400.
[3] T. H. Choe, Intrinsic topologies in a topological lattice, Pacific. J. Math. 28 (1969), 49-52.
[4] D. P. Strauss, Topological Lattices, Proc. Lon. Math. Soc., 18 (1968), 217-230.
[5] A. J. Ward, On relations between certain intrinsic topologies in certain partially ordered sets, Proc. Cambridge Philos. Soc. 51 (1955), 254-261.
[6] S. Gähler, Lineare Z-normierte räume, Math. Nachr. 28, 1964, 1-43.
[7] H. Gunawan and M. Mashadi, On n-normed space, Int. J. Math. Math, Sci., 27-2001.
[8] H. H. Schaefer, Banach Lattices and positive operators, springer, Grundlehren, 21, 1974.
[9] B. Turan and F. Bilici, On almost z-normed lattices, Hacettepe Journal of Mathematics and statistics, 47 (5), 2018, 1094-1101.
[10] A. V. Koldunov and A. L. Veksler, On normed Lattices and Their Banach completions, Positivity, (2005) 9: 415-435.
[11] F. E. Browder, Multi-valued monotonic maps and duality maps in Banach Spaces, Trans. A. M. S., 118 (1965), 338-351.
[12] G. Birkhoff, Lattice theory, Revised edition, Amer. Math. Soc. New York, 1948.

