Some Results on Strongly*-2 Divisor Cordial Labeling

C. Jayasekaran ${ }^{\mathbf{1}}$, V.G. Michael Florance ${ }^{2}$
${ }^{1}$ Associate Professor, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Tamil Nadu, India.
${ }^{2}$ Research Scholar, Reg. No: 19223042092019, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India.
Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India. email : jayacpkc@gmail.com ${ }^{1}$, miclaelflorance@gmail.com ${ }^{2}$

A strongly*-2 divisor cordial labeling of a graph G with the vertex set $V(G)$ is a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ such that each edge $u v$ assigned the label 1 if $\left[\frac{f(u)+f(v)+f(u) f(v)}{2}\right\rfloor$ is odd and 0 if $\left[\frac{f(u)+f(v)+f(u) f(v)}{2}\right]$ is even, then the number of edges labeled with 0 and the number of edges labeled with 1 differs by atmost 1 . A graph which admits a Strongly*-2 divisor cordial labeling is called a Srongly*-2 divisor cordial graph. In this paper, we proved that Path, Cycle, Star and comb graph are Strongly*-2 divisor cordial graphs.
Keywords : Function, Bijection, Cordial labeling, Strongly*-graph. Subject Classification Number: 05C78

1 Introduction

Graph labeling was introduced in 1960's. We refer Harary [4] for looking over the fundamental terms and notations. We refer [3] and [5] for divisor cordial labeling. In [1] and [2], the strongly*-graphs are studied.

Stimulated by these, we introduce strongly*-2 divisor cordial labeling. In this paper we prove that the path, cycle, star and comb graph are strongly*-2 divisor cordial graphs. We give the basic definitions which are neccessary for our present work.

Definition 1.1 A graph of $G=(V, E)$ is said to be a strongly*-graph if there exists a bijection $f: V \rightarrow\{1,2, \ldots, n\}$ in such a way that when an edge, whose vertices are labeled i and j, is labeled with the value $i+j+i j$, all edge labels are dintinct.

Definition 1.2 A graph is called cordial if it is possible to label its vertices wih 0^{s} and 1^{s} so that when the edges are labeled with the difference of the labels at their end points, the number of vertices(edges) labeled with ones and zeros differs atmost by one.
Definition 1.3 Let P_{n} be a path. Attach a single pendent vertex to every vertex of the path. The resulting graph is a comb graph.

2 Main Results

Theorem 2.1 Any path P_{n} is a strongly*-2 divisor cordial graph.
Proof. Let P_{n} be a path with $V\left(P_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$.

Then P_{n} has n vertices and $n-1$ edges. Define $f: V\left(P_{n}\right) \rightarrow\{1,2, \ldots, n\}$ by $f\left(u_{i}\right)=i$, $1 \leq i \leq n$. Let f^{*} be the induced edge label of f. Then

$$
f^{*}\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{f\left(u_{i}\right)+f\left(u_{i+1}\right)+f\left(u_{i}\right) f\left(u_{i+1}\right)}{2}\right\rfloor=\left\lfloor\frac{i+i+1+i(i+1)}{2}\right\rfloor=\left\lfloor\frac{i^{2}+3 i+1}{2}\right\rfloor \text {. }
$$

Clearly, $\left[\frac{i^{2}+3 i+1}{2}\right]$ is even if $i \equiv 0,1(\bmod 4)$ and $\left[\frac{i^{2}+3 i+1}{2}\right\rfloor$ is odd if $i \equiv 2,3(\bmod 4)$. Therefore the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$ can be assinged label 0 if $i \equiv 0,1(\bmod 4)$ and 1 if $i \equiv 2,3(\bmod 4)$.

Let us find the number of edges with label 0 and 1.
Case 1. $n \equiv 1(\bmod 4)$
Let $n=4 k+1$. Then there are $4 k$ edges. Clearly there are k numbers which are congruent to i modulo 4 , $(0 \leq i \leq 3)$. Hence by (1), there are $2 k$ edges with label 0 and $2 k$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=0$.
Case 2. $n \equiv 2(\bmod 4)$
Let $n=4 k+2$. Then there are $4 k+1$ edges. Clearly there are k numbers which are congruent to i modulo $4,(i=0,2,3)$ and $k+1$ numbers which is congruent to 1 modulo 4 . Hence by (1), there are $2 k+1$ edges with label 0 and $2 k$ edges with label 1 and so $\mid e_{f}(0)-$ $e_{f}(1)=1$.
Case 3. $n \equiv 3(\bmod 4)$
Let $n=4 k+3$. Then there are $4 k+2$ edges. Clearly there are $k+1$ numbers which are congruent to i modulo $4,(i=1,2)$ and k numbers which are congruent to i modulo 4 , $(i=$ 0,3). Hence by (1), there are $2 k+1$ edges with label 0 and $2 k+1$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=0$.
Case 4. $n \equiv 0(\bmod 4)$
Let $n=4 k$. Then there are $4 k-1$ edges. Clearly there are k numbers which are congruent to i modulo 4 , ($i=1,2,3$) and $k-1$ numbers which is cngruent to 0 modulo 4 . Hence by (1), there are $2 k-1$ edges with label 0 and $2 k$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=1$.

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and hence any path P_{n} is a strongly*-2 divisor cordial graph.

Example 2.2 A strongly*-2 divisor cordial labeling of the graph P_{10} is given in Figure 1.

Theorem 2.3 Any cycle C_{n} is a strongly*-2 divisor cordial graph.
Proof. Let $C_{n}: u_{1} u_{2} \ldots u_{n}$ be the cycle with $V\left(C_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{n}\right)=$ $\left\{u_{i} u_{i+1}, u_{1} u_{n}: 1 \leq i \leq n-1\right\}$.
Case 1. n is odd
Define $f: V\left(C_{n}\right) \rightarrow\{1,2, \ldots, n\}$ by $f\left(u_{i}\right)=i, 1 \leq i \leq n$. Let f^{*} be the induced edge label of f. Consider the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$. Now $f^{*}\left(u_{i} u_{i+1}\right)=$ $\left\lfloor\frac{f\left(u_{i}\right)+f\left(u_{i+1}\right)+f\left(u_{i}\right) f\left(u_{i+1}\right)}{2}\right\rfloor=\left\lfloor\frac{i+i+1+i(i+1)}{2}\right\rfloor=\left\lfloor\frac{i^{2}+3 i+1}{2}\right\rfloor$ which is even if $i \equiv 0,1(\bmod 4)$ and
odd if $i \equiv 2,3(\bmod 4)$. Therefore, the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$ can be assinged label 0 if $i \equiv 0,1(\bmod 4)$ and 1 if $i \equiv 2,3(\bmod 4)$

For the edge $u_{1} u_{n}, f^{*}\left(u_{1} u_{n}\right)=\left\lfloor\frac{1+n+n}{2}\right\rfloor=\left\lfloor\frac{2 n+1}{2}\right\rfloor=n$ which is odd since n is odd and so the edge $u_{1} u_{n}$ gets the label 1 .

Let us find the number of edges with label 0 and 1.
Subcase 1.1. $n \equiv 1(\bmod 4)$
Let $n=4 k+1$. Then there are $4 k+1$ edges. Clearly there are k numbers which are congruent to i modulo 4 , $(0 \leq i \leq 3)$. By (1), there are $2 k$ edges with label 0 and $2 k$ edges with label 1 and the edge $u_{1} u_{n}$ with label 1 . Hence there are $2 k$ edges with label 0 and $2 k+1$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=1$.
Subcase 1.2. $n \equiv 3(\bmod 4)$
Let $n=4 k+3$. Then there are $4 k+3$ edges. Clearly there are $k+1$ numbers which are congruent to i modulo $4,(i=1,2)$ and k numbers which are cngruent to i modulo 4 , $(i=0,3)$. By (1), there are $2 k+1$ edges with label 0 and $2 k+1$ edges with label 1 and the edge $u_{1} u_{n}$ wth label 1 . Hence there are $2 k+1$ edges with label 0 and $2 k+2$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=1$.
Case 2. n is even
Subcase 2.1. $n \equiv 0(\bmod 4)$
Define $f: V\left(C_{n}\right) \rightarrow\{1,2, \ldots, n\}$ by $f\left(u_{i}\right)=i, 1 \leq i \leq n$. Let f^{*} be the induced edge label of f. As in case $1, f^{*}\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{i^{2}+3 i+1}{2}\right\rfloor$ which is even if $i \equiv 0,1(\bmod 4)$ and odd if $i \equiv 2,3(\bmod 4)$. For the edge $u_{1} u_{n}, f^{*}\left(u_{1} u_{n}\right)=\left\lfloor\frac{1+n+n}{2}\right\rfloor=\left\lfloor\frac{2 n+1}{2}\right\rfloor=\left\lfloor\frac{2 n+1}{2}\right\rfloor=n$ which is even and so the edge $u_{1} u_{n}$ gets label 0 .

Let us find the number of edges with label 0 and 1 . Now $n=4 k$. Then there are $4 k$ edges. Clearly there are k numbers which are congruent to i modulo $4,(i=1,2,3)$ and $k-1$ numbers which is cngruent to 0 modulo 4 . By (1), there are $2 k-1$ edges with label 0 and $2 k$ edges with label 1 and the edge $u_{1} u_{n}$ with label 0 . Hence there are $2 k$ edges with label 0 and $2 k$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=0$.
Subcase 2.2. $n \equiv 2(\bmod 4)$
Define $f: V\left(C_{n}\right) \rightarrow\{1,2, \ldots, n\}$ by
$f\left(u_{i}\right)=\left\{\begin{array}{c}1 \\ \mathrm{i}=1 \\ \mathrm{i}+1\end{array}\right.$ if i iseven $\mathrm{i}-1$ if i isoddand $i \neq 1$.
Consider the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$.
For $i=1, f^{*}\left(u_{i} u_{i+1}\right)=f^{*}\left(u_{1} u_{2}\right)=\left\lfloor\frac{f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(u_{1}\right) f\left(u_{2}\right)}{2}\right\rfloor=\left\lfloor\frac{1+3+1(3)}{2}\right\rfloor=\left\lfloor\frac{7}{2}\right\rfloor=3$.
For odd i and $i \neq 1, f^{*}\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{i-1+i+2+(i-1)(i+2)}{2}\right\rfloor=\left\lfloor\frac{i^{2}+3 i-1}{2}\right\rfloor$ which is even if $i \equiv 3(\bmod 4)$ and odd if $i \equiv 1(\bmod 4)$.

For even $i, f^{*}\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{i+i+i(i+1)}{2}\right\rfloor=\left\lfloor\frac{i^{2}+3 i+1}{2}\right\rfloor$ which is even if $i \equiv 0(\bmod 4)$ and odd if $i \equiv 2(\bmod 4)$. Therefore the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$ can be assinged label 0 if $i \equiv 0,3(\bmod 4)$ and 1 if $i \equiv 1,2(\bmod 4)$.

For the edge $u_{1} u_{n}, f^{*}\left(u_{1} u_{n}\right)=\left\lfloor\frac{1+n+n}{2}\right\rfloor=\left\lfloor\frac{2 n+1}{2}\right\rfloor=n$ which is even and so the edge $u_{1} u_{n}$ gets label 0 . Let us find the number of edges with label 0 and 1 . Here $n=4 k+2$. Then there
are $4 k+2$ edges. Clearly there are k numbers which are congruent to i modulo 4 , $(i=0,2,3)$ and $k+1$ numbers which is congruent to 1 modulo 4 . By (3), there are $2 k$ edges with label 0 and $2 k+1$ edges with label 1 and the edge $u_{1} u_{n}$ label with 0 . Hence there are $2 k+1$ edges with label 0 and $2 k+1$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=0$.

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and hence any cycle C_{n} is a strongly*-2 divisor cordial graph.

Example 2.4 A strongly*-2 divisor cordial labeling of the graph C_{10} is given in Figure 2.

Figure 2.

Theorem 2.5 Any star $K_{1, n}$ is a strongly*-2 divisor cordial graph.
Proof. Let $V\left(K_{1, n}\right)=\left\{u, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u v_{i}: 1 \leq i \leq n\right\}$. Then $\left|V\left(K_{1, n}\right)\right|=$ $n+1$ and $\left|E\left(K_{1, n}\right)\right|=n$. Define $f: V\left(K_{1, n}\right) \rightarrow\{1,2, \ldots, n+1\}$ by $f(u)=1$ and $f\left(v_{i}\right)=i+$ $1,1 \leq i \leq n$. Let f^{*} be the induced edge label of f. Then $f^{*}\left(u v_{i}\right)=\left\lfloor\frac{1+i+1+i+1}{2}\right\rfloor=\left\lfloor\frac{2 i+3}{2}\right\rfloor=$ $i+1$ which is odd if i is even and even if i is odd.
Case 1. n is even
Let $n=2 k$. Then there are $2 k$ edges. Clearly there are k odd and k even numbers. Hence by (1), k edges with label 1 and k edges with label 0 and so $\left|e_{f}(0)-e_{f}(1)\right|=0$.
Case 2. n is odd
Let $n=2 k+1$. Then there are $2 k+1$ edges. Then there are k even numbers and $k+1$ odd numbers. Hence by (1), there are k edges with label 1 and $k+1$ edges with label 0 and so $\left|e_{f}(0)-e_{f}(1)\right|=1$.

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and hence any star $K_{1, n}$ is a strongly*-2 divisor cordial graph. Example 2.6 A strongly*-2 divisor cordial labeling of the graph $K_{1,6}$ is shown in Figure 3.

Figure 3.

Theorem 2.7 The comb $P_{n} \odot \quad K_{1}$ is a strongly*-2 divisor cordial graph.
Proof. Let $V\left(P_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n} \odot \quad K_{1}\right)=\left\{u_{i} u_{i+1}, u_{j} v_{j}: 1 \leq\right.$ $i \leq n-1,1 \leq j \leq n\}$. Then the graph $P_{n} \odot \quad K_{1}$ has $2 n$ vertices and $2 n-1$ edges.
Case 1. n is odd
Define $f: V\left(P_{n} \odot K_{1}\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ by $f\left(u_{i}\right)=i, 1 \leq i \leq n$ and $f\left(v_{i}\right)=n+i$, $1 \leq i \leq n$. Let f^{*} be the induced edge label of f. Consider the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$.

Now $f^{*}\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{i+i+1+i(i+1)}{2}\right\rfloor=\left\lfloor\frac{i^{2}+3 i+1}{2}\right\rfloor$ which is even if $i \equiv 0,1(\bmod 4)$ and odd if $i \equiv 2,3(\bmod 4)$. Therefore, the edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$ can be assinged label 0 if $i \equiv 0,1(\bmod 4)$ and 1 if $i \equiv 2,3(\bmod 4)$
Subcase 1.1. $n \equiv 1(\bmod 4)$
In this case, $n=4 k+1$. For the edges $u_{j} v_{j}, 1 \leq j \leq n$,
$f^{*}\left(u_{j} v_{j}\right)=\left\lfloor\frac{j+n+j+j(n+j)}{2}\right\rfloor=\left\lfloor\frac{(n+2) j+n+j^{2}}{2}\right\rfloor=\left\lfloor\frac{(4 k+3) j+4 k+1+j^{2}}{2}\right\rfloor=\left\lfloor\frac{4 k j+3 j+4 k+1+j^{2}}{2}\right\rfloor=$ $2 k(1+j)+\left\lfloor\frac{j^{2}+3 j+1}{2}\right\rfloor$.

For $j \equiv 0,1(\bmod 4),\left\lfloor\frac{j^{2}+3 j+1}{2}\right\rfloor$ is even and so $f^{*}\left(u_{j} v_{j}\right)$ is even and for $j \equiv$ $2,3(\bmod 4),\left[\frac{j^{2}+3 j+1}{2}\right]$ is odd and so $f^{*}\left(u_{j} v_{j}\right)$ is odd. Therefore, for $1 \leq j \leq n$, the edges $u_{j} v_{j}$ can be assinged label 0 if $j \equiv 0,1(\bmod 4)$ and 1 if $j \equiv 2,3(\bmod 4)$.

Let us find the number of edges with label 0 and 1 . Now $n=4 k+1$ implies that there are $8 k+1$ edges. There are $n-1=4 k$ edges of the form $u_{i} u_{i+1}, 1 \leq i \leq n-1$ and so there are k numbers which are congruent to i modulo 4 , ($0 \leq i \leq 3$). By (1), there are $2 k$ edges with label 0 and $2 k$ edges with label 1 . Also there are $n=4 k+1$ edges of the form $u_{j} v_{j}, 1 \leq$ $j \leq n$ and so there are k numbers which are congruent to j modulo $4,(j=0,2,3)$ and $k+1$ numbers congruent to 1 modulo 4 . By (2), there are $2 k+1$ edges with label 0 and $2 k$ edges with label 1 . Hence there are $4 k+1$ edges with label 0 and $4 k$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=1$.
Subcase 1.2. $n \equiv 3(\bmod 4)$
Here $n=4 k+3$. For the edges $u_{j} v_{j}, 1 \leq j \leq n, f^{*}\left(u_{j} v_{j}\right)=\left\lfloor\frac{j+n+j+j(n+j)}{2}\right\rfloor=$ $\left\lfloor\frac{(n+2) j+n+j^{2}}{2}\right\rfloor=\left\lfloor\frac{(4 k+5) j+4 k+3+j^{2}}{2}\right\rfloor=\left\lfloor\frac{4 k j+3 j+4 k+3+j^{2}}{2}\right\rfloor=2 k(1+j)+\left\lfloor\frac{j^{2}+5 j+3}{2}\right\rfloor$.

For $j \equiv 1,2(\bmod 4),\left\lfloor\frac{j^{2}+5 j+3}{2}\right\rfloor$ is even and so $f^{*}\left(u_{j} v_{j}\right)$ is even and for $j \equiv$ $0,3(\bmod 4),\left[\frac{j^{2}+5 j+3}{2}\right\rfloor$ is odd and so $f^{*}\left(u_{j} v_{j}\right)$ is odd. Threrfore, for $1 \leq j \leq n$, the edges $u_{j} v_{j}$ can be assinged label 0 if $j \equiv 1,2(\bmod 4)$ and 1 if $j \equiv 0,3(\bmod 4)$.

Let us find the number of edges with label 0 and 1 . Now $n=4 k+3$ implies that there are $8 k+5$ edges. Then there are $n-1=4 k+2$ edges of the form $u_{i} u_{i+1}, 1 \leq i \leq n-1$ and so there are $k+1$ numbers which are congruent to i modulo $4,(i=1,2)$ and k numbers which are congruent to i modulo 4 , $(i=0,3)$. By (1), there are $2 k+1$ edges with label 0 and $2 k+1$ edges with label 1 . Also there are $n=4 k+3$ edges of the form $u_{j} v_{j}, 1 \leq j \leq n$. Then there are $k+1$ numbers which are congruent to j modulo $4,(j=1,2,3)$ and k numbers congruent to 0 modulo 4 . By (3), there are $2 k+2$ edges with label 0 and $2 k+1$ edges with label 1. Hence there are $4 k+3$ edges with label 0 and $4 k+2$ edges with label 1 and so
$\left|e_{f}(0)-e_{f}(1)\right|=1$.
Case 2: n is even
Define $f: V\left(P_{n} \odot K_{1}\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ by $f\left(u_{i}\right)=i, 1 \leq i \leq n$ and $f\left(v_{i}\right)=2 n+$ $1-i, 1 \leq i \leq n$. Let f^{*} be the induced edge label of f. As in case $1, f^{*}\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{i^{2}+3 i+1}{2}\right\rfloor$ which is even if $i \equiv 0,1(\bmod 4) \quad$ and \quad odd \quad if $i \equiv 2,3(\bmod 4), 1 \leq i \leq n-1$. (4)

Subcase 2.1. $n \equiv 0(\bmod 4)$
In this case, $n=4 k$. For the edges $u_{j} v_{j}, 1 \leq j \leq n$,

$$
\begin{aligned}
f^{*}\left(u_{j} v_{j}\right) & =\left\lfloor\frac{j+2 n+1-j+j(2 n+1-j)}{2}\right\rfloor=\left\lfloor\frac{2 n+1+2 n j+j-j^{2}}{2}\right\rfloor=\left\lfloor\frac{2(4 k)+1+2(4 k) j+j-j^{2}}{2}\right\rfloor= \\
\left\lfloor\frac{8 k+8 k j+1+j-j^{2}}{2}\right\rfloor & =4 k(1+j)+\left\lfloor\frac{1+j-j^{2}}{2}\right\rfloor
\end{aligned}
$$

For $j \equiv 2,3(\bmod 4),\left\lfloor\frac{1+j-j^{2}}{2}\right\rfloor$ is odd and so $f^{*}\left(u_{j} v_{j}\right)$ is odd and for $j \equiv$ $0,1(\bmod 4),\left\lfloor\frac{1+j-j^{2}}{2}\right\rfloor$ is even and so $f^{*}\left(u_{j} v_{j}\right)$ is even. Threrfore, for $1 \leq j \leq n$, the edges $u_{j} v_{j}$ can be assinged label 1 if $j \equiv 2,3(\bmod 4)$ and 0 if $j \equiv 0,1(\bmod 4)$.

Let us find the number of edges with label 0 and 1 . Now $n=4 k$ implies that there are $8 k-1$ edges. Then there are $n-1=4 k-1$ edges are of the form $u_{i} u_{i+1}, 1 \leq i \leq n-1$ and so there are k numbers which are congruent to i modulo 4 , $(i=1,2,3)$ and $k-1$ numbers which are congruent to 0 modulo 4 . By (4), there are $2 k-1$ edges with label 0 and $2 k$ edges with label 1. Also there are $n=4 k$ edges of the form $u_{j} v_{j}, 1 \leq j \leq n$ and so there are k numbers which are congruent to j modulo 4 , $(0 \leq i \leq 3)$. By (5), there are $2 k$ edges with label 1 and $2 k$ edges with label 0 . Hence there are $4 k-1$ edges with label 0 and $4 k$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=1$.
Subcase 2.2. $n \equiv 2(\bmod 4)$
In this case, $n=4 k+2$. For the edges $u_{j} v_{j}, 1 \leq j \leq n, f^{*}\left(u_{j} v_{j}\right)=$ $\left\lfloor\frac{j+2 n+1-j+j(2 n+1-j)}{2}\right\rfloor=\left\lfloor\frac{2 n+1+2 n j+j-j^{2}}{2}\right\rfloor=\left\lfloor\frac{2(4 k+2)+1+2(4 k+2) j+j-j^{2}}{2}\right\rfloor=$
$\left\lfloor\frac{8 k+8 k j+4+4 j+1+j-j^{2}}{2}\right\rfloor=\left\lfloor\frac{4(1+j)(2 k+1)+1+j-j^{2}}{2}\right\rfloor=2(1+j)(2 k+1)+\left\lfloor\frac{1+j-j^{2}}{2}\right\rfloor$.
For $j \equiv 2,3(\bmod 4),\left\lfloor\frac{1+j-j^{2}}{2}\right\rfloor$ is odd and so $f^{*}\left(u_{j} v_{j}\right)$ is odd and for $j \equiv$ $0,1(\bmod 4),\left\lfloor\frac{1+j-j^{2}}{2}\right\rfloor$ is even and so $f^{*}\left(u_{j} v_{j}\right)$ is even. Threrfore, for $1 \leq j \leq n$, the edges $u_{j} v_{j}$ can be assinged label 1 if $j \equiv 2,3(\bmod 4)$ and 0 if $j \equiv 0,1(\bmod 4)$.

Let us find the number of edges with label 0 and 1 . Now $n=4 k+2$ implies that there are $8 k+3$ edges. Then there are $n-1=4 k+1$ edges are of the form $u_{i} u_{i+1}, 1 \leq i \leq n-1$ and so there are k numbers which are congruent to i modulo $4,(i=0,2,3)$ and $k+1$ numbers which are congruent to 1 modulo 4 . By (4), there are $2 k+1$ edges with label 0 and $2 k$ edges with label 1 . Also there are $n=4 k+2$ edges of the form $u_{j} v_{j}, 1 \leq j \leq n$, then there are k numbers which are congruent to j modulo 4 , $(i=0,3)$ and $k+1$ numbers are congruent to j modulo 4 , $(i=1,2)$. By (6), there are $2 k+1$ edges with label 1 and $2 k+1$ edges with label 0 . Hence there are $4 k+2$ edges with label 0 and $4 k+1$ edges with label 1 and so $\left|e_{f}(0)-e_{f}(1)\right|=1$.

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and hence the comb $P_{n} \odot \quad K_{1}$ is a strongly*-2 divisor cordial
graph.
Example 2.8 A strongly*-2 divisor cordial labeling of the graph $P_{6} \odot K_{1}$ is given in Figure 4

Figure 4.

References

[1] C. Adiga and D. Somnashekara, Strongly*-graphs, Math. Forum, Vol. 13, 1999, 31-36.
[2] S. Terasa Arockia Mary and J. Maria Angelin Visithra, Strongly*- labeling, International Journal of Mathematics Trends and Technology, Vol. 63(1), 2018, 75-81.
[3] I. Cahit, Cordial graphs, A weaker version of harmonious graphs, Ars Combinatoria, Vol. 23, 1987, 201-207.
[4] F. Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
[5] R. Varatharajan, S. Navaneetha Krishnan and K. Nagarajan, Divisor Cordial graph, International Journal of Mathematical Combinatorics, Vol. 4, 2011, 15-25.

