Some Results on Strongly*-2 Divisor Cordial Labeling

C. Jayasekaran¹, V.G. Michael Florance²

¹Associate Professor, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India. ²Research Scholar, Reg. No: 19223042092019, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India. Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India. *email : jayacpkc@gmail.com*¹, *miclaelflorance@gmail.com*²

A strongly*-2 divisor cordial labeling of a graph *G* with the vertex set V(G) is a bijection $f:V(G) \rightarrow \{1,2,3,...,|V(G)|\}$ such that each edge uv assigned the label 1 if $\lfloor \frac{f(u)+f(v)+f(u)f(v)}{2} \rfloor$ is odd and 0 if $\lfloor \frac{f(u)+f(v)+f(u)f(v)}{2} \rfloor$ is even, then the number of edges labeled with 0 and the number of edges labeled with 1 differs by atmost 1. A graph which admits a Strongly*-2 divisor cordial labeling is called a Srongly*-2 divisor cordial graph. In this paper, we proved that Path, Cycle, Star and comb graph are Strongly*-2 divisor cordial graphs. *Keywords* : Function, Bijection, Cordial labeling, Strongly*-graph. *Subject Classification Number: 05C78*

1 Introduction

Graph labeling was introduced in 1960's. We refer Harary [4] for looking over the fundamental terms and notations. We refer [3] and [5] for divisor cordial labeling. In [1] and [2], the strongly*-graphs are studied.

Stimulated by these, we introduce strongly*-2 divisor cordial labeling. In this paper we prove that the path, cycle, star and comb graph are strongly*-2 divisor cordial graphs. We give the basic definitions which are neccessary for our present work.

Definition 1.1 A graph of G = (V, E) is said to be a strongly*-graph if there exists a bijection $f: V \rightarrow \{1, 2, ..., n\}$ in such a way that when an edge, whose vertices are labeled i and j, is labeled with the value i + j + ij, all edge labels are distinct.

Definition 1.2 A graph is called cordial if it is possible to label its vertices with 0^s and 1^s so that when the edges are labeled with the difference of the labels at their end points, the number of vertices(edges) labeled with ones and zeros differs atmost by one.

Definition 1.3 Let P_n be a path. Attach a single pendent vertex to every vertex of the path. The resulting graph is a comb graph.

2 Main Results

Theorem 2.1 Any path P_n is a strongly*-2 divisor cordial graph.

Proof. Let P_n be a path with $V(P_n) = \{u_i : 1 \le i \le n\}$ and $E(P_n) = \{u_i u_{i+1} : 1 \le i \le n-1\}$.

 $\begin{array}{ll} \text{Then} \ P_n \ \text{has} \ n \ \text{vertices} \ \text{and} \ n-1 \ \text{edges.} \ \text{Define} \ f: V(P_n) \to \{1,2,\ldots,n\} \ \text{by} \ f(u_i) = i \ , \\ 1 \leq i \leq n. \ \text{Let} \ f^* \ \text{be the induced edge label of} \ f. \ \text{Then} \\ f^*(u_i u_{i+1}) = \ \lfloor \frac{f^{(u_i)+f(u_{i+1})+f(u_i)f(u_{i+1})}}{2} \rfloor \ = \ \lfloor \frac{i^{i+i+1+i(i+1)}}{2} \rfloor = \ \lfloor \frac{i^{2}+3i+1}{2} \rfloor. \end{array}$

Clearly, $\lfloor \frac{i^2+3i+1}{2} \rfloor$ is even if $i \equiv 0,1 \pmod{4}$ and $\lfloor \frac{i^2+3i+1}{2} \rfloor$ is odd if $i \equiv 2,3 \pmod{4}$. Therefore the edges $u_i u_{i+1}$, $1 \le i \le n-1$ can be assinged label 0 if $i \equiv 0,1 \pmod{4}$ and 1 if $i \equiv 2,3 \pmod{4}$. (1)

Let us find the number of edges with label 0 and 1.

Case 1. $n \equiv 1 \pmod{4}$

Let n = 4k + 1. Then there are 4k edges. Clearly there are k numbers which are congruent to $i \mod 4$, $(0 \le i \le 3)$. Hence by (1), there are 2k edges with label 0 and 2k edges with label 1 and so $|e_f(0) - e_f(1)| = 0$.

Case 2. $n \equiv 2 \pmod{4}$

Let n = 4k + 2. Then there are 4k + 1 edges. Clearly there are k numbers which are congruent to *i* modulo 4, (*i* = 0,2,3) and k + 1 numbers which is congruent to 1 modulo 4. Hence by (1), there are 2k + 1 edges with label 0 and 2k edges with label 1 and so $|e_f(0) - e_f(1)| = 1$.

Case 3. $n \equiv 3 \pmod{4}$

Let n = 4k + 3. Then there are 4k + 2 edges. Clearly there are k + 1 numbers which are congruent to *i* modulo 4, (*i* = 1,2) and *k* numbers which are congruent to *i* modulo 4, (*i* = 0,3). Hence by (1), there are 2k + 1 edges with label 0 and 2k + 1 edges with label 1 and so $|e_f(0) - e_f(1)| = 0$.

Case 4. $n \equiv 0 \pmod{4}$

Let n = 4k. Then there are 4k - 1 edges. Clearly there are k numbers which are congruent to *i* modulo 4, (*i* = 1,2,3) and k - 1 numbers which is cngruent to 0 modulo 4. Hence by (1), there are 2k - 1 edges with label 0 and 2k edges with label 1 and so $|e_f(0) - e_f(1)| = 1$.

Thus $|e_f(0) - e_f(1)| \le 1$ and hence any path P_n is a strongly*-2 divisor cordial graph.

Example 2.2 A strongly*-2 divisor cordial labeling of the graph P_{10} is given in Figure 1.

$$\begin{array}{c} 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ Figure 1. \end{array}$$

Theorem 2.3 Any cycle C_n is a strongly*-2 divisor cordial graph.

Proof. Let $C_n: u_1 u_2 \dots u_n$ be the cycle with $V(C_n) = \{u_i: 1 \le i \le n\}$ and $E(C_n) = \{u_i u_{i+1}, u_1 u_n: 1 \le i \le n-1\}.$

Case 1. n is odd

Define $f: V(C_n) \to \{1, 2, \dots, n\}$ by $f(u_i) = i, 1 \le i \le n$. Let f^* be the induced edge label of f. Consider the edges $u_i u_{i+1}, 1 \le i \le n-1$. Now $f^*(u_i u_{i+1}) = \lfloor \frac{f(u_i)+f(u_i)+f(u_i)f(u_{i+1})}{2} \rfloor = \lfloor \frac{i+i+1+i(i+1)}{2} \rfloor = \lfloor \frac{i^2+3i+1}{2} \rfloor$ which is even if $i \equiv 0, 1 \pmod{4}$ and

odd *if* $i \equiv 2,3 \pmod{4}$. Therefore, the edges $u_i u_{i+1}, 1 \leq i \leq n-1$ can be assinged label 0 if $i \equiv 0,1 \pmod{4}$ and 1 if $i \equiv 2,3 \pmod{4}$ (1)

For the edge u_1u_n , $f^*(u_1u_n) = \lfloor \frac{1+n+n}{2} \rfloor = \lfloor \frac{2n+1}{2} \rfloor = n$ which is odd since *n* is odd and so the edge u_1u_n gets the label 1. (2)

Let us find the number of edges with label 0 and 1.

Subcase 1.1. $n \equiv 1 \pmod{4}$

Let n = 4k + 1. Then there are 4k + 1 edges. Clearly there are k numbers which are congruent to *i* modulo 4, $(0 \le i \le 3)$. By (1), there are 2k edges with label 0 and 2k edges with label 1 and the edge u_1u_n with label 1. Hence there are 2k edges with label 0 and 2k + 1 edges with label 1 and so $|e_f(0) - e_f(1)| = 1$.

Subcase 1.2. $n \equiv 3 \pmod{4}$

Let n = 4k + 3. Then there are 4k + 3 edges. Clearly there are k + 1 numbers which are congruent to *i* modulo 4, (*i* = 1,2) and *k* numbers which are congruent to *i* modulo 4, (*i* = 0,3). By (1), there are 2k + 1 edges with label 0 and 2k + 1 edges with label 1 and the edge u_1u_n with label 1. Hence there are 2k + 1 edges with label 0 and 2k + 2 edges with label 1 and so $|e_f(0) - e_f(1)| = 1$.

Case 2. n is even

Subcase 2.1. $n \equiv 0 \pmod{4}$

Define $f: V(C_n) \to \{1, 2, ..., n\}$ by $f(u_i) = i, 1 \le i \le n$. Let f^* be the induced edge label of f. As in case 1, $f^*(u_i u_{i+1}) = \lfloor \frac{i^2 + 3i + 1}{2} \rfloor$ which is even if $i \equiv 0, 1 \pmod{4}$ and odd if $i \equiv 2, 3 \pmod{4}$. For the edge $u_1 u_n$, $f^*(u_1 u_n) = \lfloor \frac{1 + n + n}{2} \rfloor = \lfloor \frac{2n + 1}{2} \rfloor = \lfloor \frac{2n + 1}{2} \rfloor = n$ which is even and so the edge $u_1 u_n$ gets label 0.

Let us find the number of edges with label 0 and 1. Now n = 4k. Then there are 4k edges. Clearly there are k numbers which are congruent to i modulo 4, (i = 1,2,3) and k - 1 numbers which is cngruent to 0 modulo 4. By (1), there are 2k - 1 edges with label 0 and 2k edges with label 1 and the edge u_1u_n with label 0. Hence there are 2k edges with label 0 and 2k edges with label 1 and so $|e_f(0) - e_f(1)| = 0$.

Subcase 2.2. $n \equiv 2 \pmod{4}$

Define $f: V(C_n) \rightarrow \{1, 2, ..., n\}$ by $f(u_i) = \{ 1 \quad i=1 \quad i+1 \quad if \quad i \text{ isourd} i \neq 1. \}$

Consider the edges $u_i u_{i+1}$, $1 \le i \le n-1$. For i = 1, $f^*(u_i u_{i+1}) = f^*(u_1 u_2) = \lfloor \frac{f(u_1) + f(u_2) + f(u_1)f(u_2)}{2} \rfloor = \lfloor \frac{1 + 3 + 1(3)}{2} \rfloor = \lfloor \frac{7}{2} \rfloor = 3$. For odd i and $i \ne 1$, $f^*(u_i u_{i+1}) = \lfloor \frac{i - 1 + i + 2 + (i - 1)(i + 2)}{2} \rfloor = \lfloor \frac{i^2 + 3i - 1}{2} \rfloor$ which is even if $i \equiv 3 \pmod{4}$ and odd if $i \equiv 1 \pmod{4}$.

For even *i*, $f^*(u_i u_{i+1}) = \lfloor \frac{i+i+i(i+1)}{2} \rfloor = \lfloor \frac{i^2+3i+1}{2} \rfloor$ which is even *if* $i \equiv 0 \pmod{4}$ and odd *if* $i \equiv 2 \pmod{4}$. Therefore the edges $u_i u_{i+1}$, $1 \le i \le n-1$ can be assinged label 0 if $i \equiv 0,3 \pmod{4}$ and 1 if $i \equiv 1,2 \pmod{4}$. (3)

For the edge u_1u_n , $f^*(u_1u_n) = \lfloor \frac{1+n+n}{2} \rfloor = \lfloor \frac{2n+1}{2} \rfloor = n$ which is even and so the edge u_1u_n gets label 0. Let us find the number of edges with label 0 and 1. Here n = 4k + 2. Then there

are 4k + 2 edges. Clearly there are k numbers which are congruent to i modulo 4, (i = 0,2,3) and k + 1 numbers which is congruent to 1 modulo 4. By (3), there are 2k edges with label 0 and 2k + 1 edges with label 1 and the edge u_1u_n label with 0. Hence there are 2k + 1 edges with label 1 and so $|e_f(0) - e_f(1)| = 0$.

Thus $|e_f(0) - e_f(1)| \le 1$ and hence any cycle C_n is a strongly*-2 divisor cordial graph.

Example 2.4 A strongly*-2 divisor cordial labeling of the graph C_{10} is given in Figure 2.

Theorem 2.5 Any star $K_{1,n}$ is a strongly*-2 divisor cordial graph.

Proof. Let $V(K_{1,n}) = \{u, v_i : 1 \le i \le n\}$ and $E(K_{1,n}) = \{uv_i : 1 \le i \le n\}$. Then $|V(K_{1,n})| = n + 1$ and $|E(K_{1,n})| = n$. Define $f: V(K_{1,n}) \to \{1, 2, ..., n + 1\}$ by f(u) = 1 and $f(v_i) = i + 1$, $1 \le i \le n$. Let f^* be the induced edge label of f. Then $f^*(uv_i) = \lfloor \frac{1+i+1+i+1}{2} \rfloor = \lfloor \frac{2i+3}{2} \rfloor = i + 1$ which is odd if i is even and even if i is odd. (1) **Case 1.** n is even

Let n = 2k. Then there are 2k edges. Clearly there are k odd and k even numbers. Hence by (1), k edges with label 1 and k edges with label 0 and so $|e_f(0) - e_f(1)| = 0$. Case 2. n is odd

Let n = 2k + 1. Then there are 2k + 1 edges. Then there are k even numbers and k + 1 odd numbers. Hence by (1), there are k edges with label 1 and k + 1 edges with label 0 and so $|e_f(0) - e_f(1)| = 1$.

Thus $|e_f(0) - e_f(1)| \le 1$ and hence any star $K_{1,n}$ is a strongly*-2 divisor cordial graph. **Example 2.6** A strongly*-2 divisor cordial labeling of the graph $K_{1,6}$ is shown in Figure 3.

Theorem 2.7 The comb $P_n \odot K_1$ is a strongly*-2 divisor cordial graph.

Proof. Let $V(P_n \odot K_1) = \{u_i, v_i : 1 \le i \le n\}$ and $E(P_n \odot K_1) = \{u_i u_{i+1}, u_j v_j : 1 \le i \le n - 1, 1 \le j \le n\}$. Then the graph $P_n \odot K_1$ has 2n vertices and 2n - 1 edges. **Case 1.** n is odd

Define $f: V(P_n \odot K_1) \to \{1, 2, 3, \dots, 2n\}$ by $f(u_i) = i, 1 \le i \le n$ and $f(v_i) = n + i, 1 \le i \le n$. Let f^* be the induced edge label of f. Consider the edges $u_i u_{i+1}$, $1 \le i \le n - 1$.

Now $f^*(u_i u_{i+1}) = \lfloor \frac{i+i+1+i(i+1)}{2} \rfloor = \lfloor \frac{i^2+3i+1}{2} \rfloor$ which is even *if* $i \equiv 0,1 \pmod{4}$ and odd *if* $i \equiv 2,3 \pmod{4}$. Therefore, the edges $u_i u_{i+1}, 1 \leq i \leq n-1$ can be assinged label 0 if $i \equiv 0,1 \pmod{4}$ and 1 if $i \equiv 2,3 \pmod{4}$ (1)

Subcase 1.1. $n \equiv 1 \pmod{4}$

In this case, n = 4k + 1. For the edges $u_j v_j$, $1 \le j \le n$,

$$f^*(u_jv_j) = \lfloor \frac{j+n+j+j(n+j)}{2} \rfloor = \lfloor \frac{(n+2)j+n+j^2}{2} \rfloor = \lfloor \frac{(4k+3)j+4k+1+j^2}{2} \rfloor = \lfloor \frac{4kj+3j+4k+1+j^2}{2} \rfloor = 2k(1+j) + \lfloor \frac{j^2+3j+1}{2} \rfloor.$$

For $j \equiv 0,1 \pmod{4}$, $\lfloor \frac{j^2+3j+1}{2} \rfloor$ is even and so $f^*(u_j v_j)$ is even and for $j \equiv 2,3 \pmod{4}$, $\lfloor \frac{j^2+3j+1}{2} \rfloor$ is odd and so $f^*(u_j v_j)$ is odd. Therefore, for $1 \le j \le n$, the edges $u_j v_j$ can be assinged label 0 if $j \equiv 0,1 \pmod{4}$ and 1 if $j \equiv 2,3 \pmod{4}$. (2)

Let us find the number of edges with label 0 and 1. Now n = 4k + 1 implies that there are 8k + 1 edges. There are n - 1 = 4k edges of the form u_iu_{i+1} , $1 \le i \le n - 1$ and so there are k numbers which are congruent to i modulo 4, $(0 \le i \le 3)$. By (1), there are 2k edges with label 0 and 2k edges with label 1. Also there are n = 4k + 1 edges of the form u_jv_j , $1 \le j \le n$ and so there are k numbers which are congruent to j modulo 4, (j = 0,2,3) and k + 1 numbers congruent to 1 modulo 4. By (2), there are 2k + 1 edges with label 0 and 2k edges with label 1. Hence there are 4k + 1 edges with label 0 and 4k edges with label 1 and so $|e_f(0) - e_f(1)| = 1$.

Subcase 1.2. $n \equiv 3 \pmod{4}$

Here
$$n = 4k + 3$$
. For the edges $u_j v_j, 1 \le j \le n$, $f^*(u_j v_j) = \lfloor \frac{j+n+j+j(n+j)}{2} \rfloor = \lfloor \frac{(n+2)j+n+j^2}{2} \rfloor = \lfloor \frac{(4k+5)j+4k+3+j^2}{2} \rfloor = \lfloor \frac{4kj+3j+4k+3+j^2}{2} \rfloor = 2k(1+j) + \lfloor \frac{j^2+5j+3}{2} \rfloor$.
For $j \equiv 1,2 \pmod{4}$, $\lfloor \frac{j^2+5j+3}{2} \rfloor$ is even and so $f^*(u_j v_j)$ is even and for $j \equiv 1/2$.

0,3(mod 4), $\lfloor \frac{j^2+5j+3}{2} \rfloor$ is odd and so $f^*(u_j v_j)$ is odd. Therefore, for $1 \le j \le n$, the edges $u_j v_j$ can be assinged label 0 if $j \equiv 1,2 \pmod{4}$ and 1 if $j \equiv 0,3 \pmod{4}$. (3)

Let us find the number of edges with label 0 and 1. Now n = 4k + 3 implies that there are 8k + 5 edges. Then there are n - 1 = 4k + 2 edges of the form $u_i u_{i+1}$, $1 \le i \le n - 1$ and so there are k + 1 numbers which are congruent to *i* modulo 4, (i = 1,2) and *k* numbers which are congruent to *i* modulo 4, (i = 0,3). By (1), there are 2k + 1 edges with label 0 and 2k + 1 edges with label 1. Also there are n = 4k + 3 edges of the form $u_j v_j$, $1 \le j \le n$. Then there are k + 1 numbers which are congruent to *j* modulo 4, (j = 1,2,3) and *k* numbers congruent to 0 modulo 4. By (3), there are 2k + 2 edges with label 0 and 2k + 1 edges with label 1. Hence there are 4k + 3 edges with label 0 and 4k + 2 edges with label 1 and so $|e_f(0) - e_f(1)| = 1.$ Case 2: *n* is even

Define $f: V(P_n \odot K_1) \rightarrow \{1, 2, 3, \dots, 2n\}$ by $f(u_i) = i, 1 \le i \le n$ and $f(v_i) = 2n + 1 - i, 1 \le i \le n$. Let f^* be the induced edge label of f. As in case 1, $f^*(u_i u_{i+1}) = \lfloor \frac{i^2 + 3i + 1}{2} \rfloor$ which is even if $i \equiv 0, 1 \pmod{4}$ and odd if $i \equiv 2, 3 \pmod{4}, 1 \le i \le n - 1$. (4)

Subcase 2.1. $n \equiv 0 \pmod{4}$

In this case, n = 4k. For the edges $u_i v_i$, $1 \le j \le n$,

$$f^{*}(u_{j}v_{j}) = \left\lfloor \frac{j+2n+1-j+j(2n+1-j)}{2} \right\rfloor = \left\lfloor \frac{2n+1+2nj+j-j^{2}}{2} \right\rfloor = \left\lfloor \frac{2(4k)+1+2(4k)j+j-j^{2}}{2} \right\rfloor = \left\lfloor \frac{8k+8kj+1+j-j^{2}}{2} \right\rfloor = 4k(1+j) + \left\lfloor \frac{1+j-j^{2}}{2} \right\rfloor.$$

For $j \equiv 2,3 \pmod{4}$, $\left\lfloor \frac{1+j-j^2}{2} \right\rfloor$ is odd and so $f^*(u_j v_j)$ is odd and for $j \equiv 0,1 \pmod{4}$, $\left\lfloor \frac{1+j-j^2}{2} \right\rfloor$ is even and so $f^*(u_j v_j)$ is even. Therefore, for $1 \le j \le n$, the edges $u_j v_j$ can be assinged label 1 if $j \equiv 2,3 \pmod{4}$ and 0 if $j \equiv 0,1 \pmod{4}$. (5)

Let us find the number of edges with label 0 and 1. Now n = 4k implies that there are 8k - 1 edges. Then there are n - 1 = 4k - 1 edges are of the form $u_i u_{i+1}$, $1 \le i \le n - 1$ and so there are k numbers which are congruent to i modulo 4, (i = 1,2,3) and k - 1 numbers which are congruent to 0 modulo 4. By (4), there are 2k - 1 edges with label 0 and 2k edges with label 1. Also there are n = 4k edges of the form $u_j v_j$, $1 \le j \le n$ and so there are k numbers which are congruent to j modulo 4, $(0 \le i \le 3)$. By (5), there are 2k edges with label 1 and 2k edges with label 0. Hence there are 4k - 1 edges with label 0 and 4k edges with label 1 and so $|e_f(0) - e_f(1)| = 1$.

Subcase 2.2. $n \equiv 2 \pmod{4}$

In this case,
$$n = 4k + 2$$
. For the edges $u_j v_j, 1 \le j \le n$, $f^*(u_j v_j) = \lfloor \frac{j+2n+1-j+j(2n+1-j)}{2} \rfloor = \lfloor \frac{2n+1+2nj+j-j^2}{2} \rfloor = \lfloor \frac{2(4k+2)+1+2(4k+2)j+j-j^2}{2} \rfloor = \lfloor \frac{8k+8kj+4+4j+1+j-j^2}{2} \rfloor = \lfloor \frac{4(1+j)(2k+1)+1+j-j^2}{2} \rfloor = 2(1+j)(2k+1) + \lfloor \frac{1+j-j^2}{2} \rfloor.$
For $j \equiv 2,3 \pmod{4}$, $\lfloor \frac{1+j-j^2}{2} \rfloor$ is odd and so $f^*(u_j v_j)$ is odd and for $j \equiv 0.1 \pmod{4}$, $\lfloor \frac{1+j-j^2}{2} \rfloor$ is even and so $f^*(u_i v_i)$ is even. Therefore, for $1 \le i \le n$, the edges $u_i v_i$

0,1(mod 4), $\lfloor \frac{1+j-j^2}{2} \rfloor$ is even and so $f^*(u_j v_j)$ is even. Therefore, for $1 \le j \le n$, the edges $u_j v_j$ can be assinged label 1 if $j \equiv 2,3 \pmod{4}$ and 0 if $j \equiv 0,1 \pmod{4}$. (6)

Let us find the number of edges with label 0 and 1. Now n = 4k + 2 implies that there are 8k + 3 edges. Then there are n - 1 = 4k + 1 edges are of the form $u_i u_{i+1}$, $1 \le i \le n - 1$ and so there are k numbers which are congruent to i modulo 4, (i = 0,2,3) and k + 1 numbers which are congruent to 1 modulo 4. By (4), there are 2k + 1 edges with label 0 and 2k edges with label 1. Also there are n = 4k + 2 edges of the form $u_j v_j$, $1 \le j \le n$, then there are k numbers which are congruent to j modulo 4, (i = 0,3) and k + 1 numbers are congruent to j modulo 4, (i = 1,2). By (6), there are 2k + 1 edges with label 1 and 2k + 1 edges with label 0. Hence there are 4k + 2 edges with label 0 and 4k + 1 edges with label 1 and so $|e_f(0) - e_f(1)| = 1$.

Thus $|e_f(0) - e_f(1)| \le 1$ and hence the comb $P_n \odot K_1$ is a strongly*-2 divisor cordial

graph.

Example 2.8 A strongly*-2 divisor cordial labeling of the graph $P_6 \bigcirc K_1$ is given in Figure 4

References

[1] C. Adiga and D. Somnashekara, *Strongly*-graphs*, Math. Forum, Vol. 13, 1999, 31-36.

[2] S. Terasa Arockia Mary and J. Maria Angelin Visithra, *Strongly*- labeling*, International Journal of Mathematics Trends and Technology, Vol. 63(1), 2018, 75-81.

[3] I. Cahit, *Cordial graphs*, A weaker version of harmonious graphs, Ars Combinatoria, Vol. 23, 1987, 201-207.

[4] F. Harary, *Graph Theory*, Narosa Publishing House, New Delhi, 1988.

[5] R. Varatharajan, S. Navaneetha Krishnan and K. Nagarajan, *Divisor Cordial graph*, International Journal of Mathematical Combinatorics, Vol. 4, 2011, 15-25.