

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1915

Research Article

| | | |

| | | |

| | | |

| | | |

A Pythagoras Tree Shape Fractal Antenna for Multiband Applications
K Tirupathi Rao, S. Leelashyam, B Narasimha Rao

Associate Professor
3
, Assistant Professor

2

Department of ECE,

vleelashyam.ece@anurag.ac.in, bnarasimharao.ece@anurag.ac.in

Anurag Engineering College, Kodada, Telangana

Abstract—Given a large graph G = (V, E) with millions of nodes and edges, how do we compute its connected components

efficiently? Recent work addresses this problem in map-reduce, where a fundamental trade-off exists between the number of map-

reduce rounds and the communication of each round. Denoting d the diameter of the graph, and n the number of nodes in

the largest component, all prior techniques for map-reduce either require a linear, Θ(d), number of rounds, or a quadratic, Θ(n|V |

+ |E|), communication per round.

We propose here two efficient map-reduce algorithms: (i)

Hash-Greater-to-Min, which is a randomized algorithm based on PRAM techniques, requiring O(log n) rounds and O(|V | + |E|)
communication per round, and (ii) Hash-to-Min, which is a novel algorithm, provably finishing in O(log n) iterations for path

graphs. The proof technique used for Hash-to-Min is novel, but not tight, and it is actually faster than Hash-Greater-to- Min in

practice. We conjecture that it requires 2 log d rounds and 3(|V | + |E|) communication per round, as demonstrated in our

experiments. Using secondary sorting, a standard map- reduce feature, we scale Hash-to-Min to graphs with very large connected

components.

Our techniques for connected components can be applied to

clustering as well. We propose a novel algorithm for agglomera- tive single linkage clustering in map-reduce. This is the first map-

reduce algorithm for clustering in at most O(log n) rounds, where n is the size of the largest cluster. We show the effectiveness of all

our algorithms through detailed experiments on large synthetic as well as real-world datasets.

INTRODUCTION

Given a large graph G = (V, E) with millions of nodes and edges, how do we compute its connected components efficiently?

With the proliferation of large databases of linked data, it has become very important to scale to large graphs. Ex- amples of large
datasets include the graph of webpages, where edges are hyperlinks between documents, social networks that link entities like
people, and Linked Open Data

1
 that represents a collection of linked structured entities. The problem of finding connected

components on such graphs, and the related problem of undirected s-t connectivity (USTCON [14]) that checks whether two nodes

s and t are connected, are funda- mental as they are basic building blocks for more complex graph analyses, like clustering.

The number of vertices V and edges E in these graphs is very large. Moreover, such graphs often arise as intermediate outputs of

large batch-processing tasks (e.g., clustering Web pages and entity resolution), thus requiring us to design algorithms in a
distributed setting. Map-reduce [6] has become a very popular choice for distributed data processing. In map-reduce, there are two

critical metrics to be optimized – number of map-reduce rounds, since each additional job incurs significant running time overhead

because of synchronization

and congestion issues, and communication per round, since this determines the size of the intermediate data.

There has been prior work on finding connected components iteratively in map-reduce, and a fundamental trade-off exists
between the number of rounds and the communication per round. Starting from small clusters, these techniques iteratively expand
existing clusters, by either adding adjacent one-hop graph neighbors, or by merging existing overlapping clusters. The former

kind [5], [10], [17] require Θ(d) map-reduce rounds for a graph with diameter d, while the latter [1] require a larger, Θ(n V + E
), computation per round, with n being the number of nodes in the largest component.

More efficient O(log n) time PRAM algorithms have been proposed for computing connected components. While theo- retical

results simulating O(log n) PRAM algorithms in map- reduce using O(log n) rounds exist [12], the PRAM algorithms for
connected components have not yet been ported to a practical and efficient map-reduce algorithm. (See Sec. II-A for a more
detailed description)

In this paper, we present two new map-reduce algorithms for computing connected components. The first algorithm, called
Hash-Greater-to-Min, is an efficient map-reduce implementa- tion of existing PRAM algorithms [11], [20], and provably

requires at most 3 log n rounds with high probability, and a per round communication cost
2
 of at most 2(V + E). The

second algorithm, called Hash-to-Min, is novel, and provably finishes in O(log n) rounds for path graphs. The proof

technique used for Hash-to-Min is novel, but not tight, and our experiments show that it requires at most 2 log d rounds and 3(
V + E) communication per rounds.

Both of our map-reduce algorithms iteratively merge over- lapping clusters to compute connected components. Low com-

munication cost is achieved by ensuring that a single cluster is replicated exactly once, using tricks like pointer-doubling,

commonly used in the PRAM literature. The more intricate problem is processing graphs for which connected components are so

big that either (i) they do not fit in the memory of a single machine, and hence cause failures, or (ii) they result in heavy data

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1916

Research Article

| | | |

| | | |

| | | |

| | | |

| | | |

skew with some clusters being small, while others being large.

The above problems mean that we need to merge overlap- ping clusters, i.e. remove duplicate nodes occurring in multi- ple

clusters, without materializing entire clusters in memory. Using Hash-to-Min, we solve this problem by maintaining each

cluster as key-value pairs, where the key is a common cluster id and values are nodes. Moreover, the values are kept sorted (in

lexicographic order), using a map-reduce capability

2Measured as total number of c-bit messages communicated, where c is number of bits to represent a single node in the graph.

called secondary-sorting, which incurs no extra computation cost. Intuitively, when clusters are merged by the algorithm, mappers

individually get values (i.e, nodes) for a key, sort them, and send them to the reducer for that key. Then the reducer gets the ‘merge-

sorted’ list of all values, corresponding to nodes from all clusters needing to be merged. In a single scan, the reducer then removes

any duplicates from the sorted list, without materializing entire clusters in memory. We also present two novel map-reduce

algorithms for single-linkage agglomerative clustering using similar ideas. One using Hash-to-All that provably completes in O(log
n) map-reduce rounds, and at most O(n V + E) commu- nication per round, and other using Hash-to-Min that

Name # of steps Communication
Pegasus [10]

Zones [5]
L Datalog [1]

NL Datalog [1]
PRAM [20], [18], [8], [11], [12]

O(d)
O(d)
O(d)

O(log d)
O(log n)

O(|V | + |E|)
O(|V | + |E|)
O(n|V | + |E|)
O(n|V | + |E|)
shared memory3

Hash-Greater-to-Min 3 log n 2(|V | + |E|)

TABLE I
COMPLEXITY COMPARISON WITH RELATED WORK: n = # OF NODES IN LARGEST COMPONENT, AND d = GRAPH DIAMETER

A. Parallel Random Access Machine (PRAM)

The PRAM computation model allows several processors to compute in parallel using a common shared memory. PRAM can

be classified as CRCW PRAM if concurrent writes to

conjecture completes in O(log d) map-reduce rounds, and at most O(V + E) communication per round. We believe that these are

the first Map-Reduce algorithm for single linkage clustering that finish in o(n) rounds.

All our algorithms can be easily adapted to the Bulk Syn- chronous Parallel paradigm used by recent distributed graph processing

systems like Pregel [16] and Giraph [4]. We choose to focus on the map-reduce setting, since it is more impacted by a reduction in

number of iterations, thus more readily showing the gains brought by our algorithms (see Sections II and VI-C for a more detailed

discussion).

Contributions and Outline:

We propose two novel algorithms for connected compo- nents – (i) Hash-Greater-to-Min, which provably requires at most 3 log
n rounds with high probability, and at most 2(V + E) communication per round, and (ii) Hash-to- Min, which we prove

requires at most 4 log n rounds on path graphs, and requires 2 log d rounds and 3(V + E) communication per round in practice.
(Section III)

While Hash-Greater-to-Min requires connected compo- nents to fit in a single machine’s memory, we propose a robust

implementation of Hash-to-Min that scales with arbitrarily large connected components. We also describe extensions to Hash-

to-Min for load balancing, and show that on large social network graphs, for which Hash- Greater-to-Min runs out of memory,

Hash-to-Min still works efficiently. (Section IV)

We also present two algorithms for single linkage ag- glomerative clustering using our framework: one using Hash-to-All

that provably finishes in O(log n) map-reduce rounds, and at most O(n V + E) communication per round, and the other using

Hash-to-Min that we again conjecture finishes in O(log d) map-reduce rounds, and at

most O(|V | + |E|) communication per round. (Section V)

We present detailed experimental results evaluating our algorithms for connected components and clustering and compare them

with previously proposed algorithms on multiple real-world datasets. (Section VI)

We present related work in Sec. II, followed by algorithm and experiment sections, and then conclude in Se RELATED WORK

The problems of finding connected components and undi- rected s-t connectivity (USTCON) are fundamental and very well

studied in many distributed settings including PRAM, MapReduce, and BSP. We discuss each of them below.

shared memory are permitted, and CREW PRAM if not. Although, map-reduce does not have a shared memory, PRAM
algorithms are still relevant, due to two reasons: (i) some PRAM algorithms can been ported to map-reduce by case-to- case

analyses, and (ii), a general theoretical result [12] shows that any O(t) CREW PRAM algorithm can be simulated in O(t) map-

reduce steps.

For the CRCW PRAM model, Shiloach and Vishkin [20] proposed a deterministic O(log n) algorithm to compute con- nected

components, with n being the size of the largest com- ponent. Since then, several other O(log n) CRCW algorithms have been

proposed in [8], [13], [18]. However, since they require concurrent writes, it is not obvious how to translate them to map-reduce
efficiently, as the simulation result of [12] applies only to CREW PRAM.

•

•

•

•

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1917

Research Article

For the CREW PRAM model, Johnson et. al. [9] pro- vided a deterministic O(log
3/2

 n) time algorithm, which was

subsequently improved to O(log n) by Karger et. al. [11]. These algorithms can be simulated in map-reduce using the result of

[12]. However, they require computing all nodes at a distance 2 of each node, which would require O(n
2
) communication per

map-reduce iteration on a star graph.

Conceptually, our algorithms are most similar to the CRCW PRAM algorithm of Shiloach and Vishkin [20]. That algorithm

maintains a connected component as a forest of trees, and repeatedly applies either the operation of pointer doubling (pointing a

node to its grand-parent in the tree), or of hooking a tree to another tree. Krishnamurthy et al [13] propose a more efficient

implementation, similar to map-reduce, by interleaving local computation on local memory, and parallel computation on shared

memory. However, pointer doubling and hooking require concurrent writes, which are hard to implement in map-reduce. Our

Hash-to-Min algorithm does conceptually similar but, slightly different, operations in a single map-reduce step.

B. Map-reduce Model

Google’s map-reduce lecture series describes an iterative approach for computing connected components. In each itera- tion a series

of map-reduce steps are used to find and include all nodes adjacent to current connected components. The number of iterations

required for this method, and many of its improvements [5], [10], [17], is O(d) where d is the diameter of the largest connected

component. These techniques do not scale well for large diameter graphs (such as graphical models where edges represent

correlations between variables). Even

for moderate diameter graphs (with d = 20), our techniques outperform the O(d) techniques, as shown in the experiments. Afrati et

al [1] propose map-reduce algorithms for com- puting transitive closure of a graph – a relation containing tuples of pairs of

nodes that are in the same connected component. These techniques have a larger communication per iteration as the transitive

closure relation itself is quadratic in the size of largest component. Recently, Seidl et al [19] have independently proposed map-

reduce algorithms similar to ours, including the use of secondary sorting. However, they do not show the O(log n) bound on the

number of map-reduce

rounds.

Table I summarizes the related work comparison and shows that our Hash-Greater-to-Min algorithm is the first map-reduce technique

with logarithmic number of iterations and linear communication per iteration.

Bulk Synchronous Parallel (BSP)

In the BSP paradigm, computation is done in parallel by processors in between a series of synchronized point-to-point communication

steps. The BSP paradigm is used by recent distributed graph processing systems like Pregel [16] and Giraph [4]. BSP is generally

considered more efficient for graph processing than map-reduce as it has less setup and overhead costs for each new iteration. While

the algorithmic improvements of reducing number of iterations presented in this paper are applicable to BSP as well, these

improvements are of less significance in BSP due to lower overhead of additional iterations.

However, we show that BSP does not necessarily dominate map-reduce for large-scale graph processing (and thus our algorithmic

improvements for map-reduce are still relevant and important). We show this by running an interesting experiment in shared grids

having congested environments in Sec. VI-C. The experiment shows that in congested clusters, map- reduce can have a better

latency than BSP, since in the latter one needs to acquire and hold machines with a combined memory larger than the graph size.

For instance, consider a

graph with a billion nodes and ten billion edges.

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1918

Research Article

1: Input: A graph G = (V, E),
hashing function h
merging function m, and
export function EXPORT

3: Either Initialize Cv = {v} Or Cv = {v} ∪ nbrs(v)
2: Output: A set of connected components C ⊂ 2

V

depending on the algorithm.
4: repeat

5: mapper for node v:

6: Compute h(Cv), which is a collection of key-value pairs

8: reducer for node v:
7: Emit all (u, Cu) ∈ h(Cv).

(u, Cu) for u ∈ Cv.

9: Let {C , . . . , Cv } denote the set of values received
(1) (K)
v

from different mappers.

10: Set C ← m(v {C , . . . , Cv })
(1) (K)
v

11: until Cv does not change for all v

12: Return C = EXPORT(∪v{Cv})

v

∈

∈

v ∈
∈

{ }

≤

∈

∈

{ }

{ }

{ }

min

{ }

v w

∈

Hash-Min emits (v, Cv), and (u, {vmin}) for all nodes u ∈ nbrs(v).
Hash-to-All emits (u, Cv) for all nodes u ∈ Cv.
Hash-to-Min emits (vmin, Cv), and (u, {vmin}) for all nodes u ∈ Cv.
Hash-Greater-to-Min computes C≥v, the set of nodes in Cv not less than

v. It emits (vmin, C≥v), and (u, {vmin}) for all nodes u ∈ C≥v

Algorithm 1: General Map Reduce Algorithm

TABLE II
HASHING FUNCTIONS: EACH STRATEGY DESCRIBES THE KEY-VALUE PAIRS EMITTED BY MAPPER WITH INPUT KEY v AND VALUE Cv (vmin DENOTES SMALLEST

NODE IN Cv)

Cv is initialized as either containing only the node v, or containing v and all its neighbors nbrs(v) in G, depending on the

algorithm (see line 3 of Algorithm 1). The framework updates Cv through multiple mapreduce iterations.

In the map stage of each iteration, the mapper for a key v applies the hashing function h on the value Cv to emit a set of key-value

pairs (u, Cu), one for every node u appearing in Cv (see lines 6-7). The choice of hashing function governs the behavior of the

algorithm, and we will discuss different instantiations shortly. In the reduce stage, each reducer for a

key v aggregates tuples (v, C
(1)

), . . . , (v, C
(K)

) emitted by

CONNECTED COMPONENTS ON MAP-REDUCE

In this section, we present map-reduce algorithms for com- puting connected components. All our algorithms are instan- tiations of a

general map-reduce framework (Algorithm 1), which is parameterized by two functions – a hashing function h, and a merging

function m (see line 1 of Algorithm 1). Different choices for h and m (listed in Table II) result in algorithms having very different

complexity.

Our algorithm framework maintains a tuple (key, value) for each node v of the graph – key is the node identifier v, and the value

is a cluster of nodes, denoted Cv. The value

different mappers. The reducer applies the merging function m over C
(i)

 to compute a new value Cv (see lines 9-10). This process

is repeated until there is no change to any of the clusters Cv (see line 11). Finally, an appropriate EXPORT function computes the

connected components C from the final clusters Cv using one map-reduce round.

Hash Functions We describe four hashing strategies in Ta- ble II and their complexities in Table III. The first one, denoted Hash-

Min, was used in [10]. In the mapper for key v, Hash- Min emits key-value pairs (v, Cv) and (u, vmin) for all nodes u nbrs(v).
In other words, it sends the entire cluster Cv to reducer v again, and sends only the minimum node vmin of the cluster Cv to all

reducers for nodes u nbrs(v). Thus communication is low, but so is rate of convergence, as information spreads only by

propagating the minimum node. On the other hand, Hash-to-All emits key-value pairs (u, Cv) for all nodes u Cv. In

other words, it sends the cluster Cv to all reducers u Cv. Hence if clusters Cv and C′ overlap on some node u, they

will both be sent to reducer of u, where they can be merged, resulting in a faster convergence. Proof: We can show using induction

that after k map- reduce steps, every node u that is at a distance 2
k
 from v is contained in Cv. Initially this is true, since all neighbors

are

part of C . Again, for the k + 1
st

 step, u ∈ C for some w
TABLE III

COMPLEXITY OF DIFFERENT ALGORITHMS (⋆
DENOTES RESULTS HOLD FOR ONLY PATH GRAPHS)

But, sending the entire cluster Cv to all reducers u ∈ Cv re-

and w Cv such that distance between u, w and w, v is at most 2
k
. Hence, for every node u at a distance at most 2

k+1
 from v, u Cv

after k + 1 steps. Proof for communication complexity follows from the fact that each node is replicated at most n times.

sults in large quadratic communication cost. To overcome this, Hash-to-Min sends the entire cluster Cv to only one reducer vmin, while

other reducers are just sent vmin . This decreases the communication cost drastically, while still achieving fast convergence. Finally,

the best theoretical complexity bounds can be shown for Hash-Greater-to-Min, which sends out a smaller subset C≥v of Cv. We

look at how these functions are used in specific algorithms next.

Hash-Min Algorithm

The Hash-Min algorithm is a version of the Pegasus al- gorithm [10].
4
 In this algorithm each node v is associated with a label

vmin (i.e., Cv is a singleton set vmin) which corresponds to the smallest id amongst nodes that v knows are in its connected

component. Initially vmin = v and so Cv = v . It then uses Hash-Min hashing function to propagate its label vmin in Cv to all

reducers u nbrs(v) in every round. On receiving the messages, the merging function m computes the smallest node v
new

 amongst

the incoming messages and sets Cv = v
new

 . Thus a node adopts the minimum label found in its neighborhood as its own label. On

convergence, nodes that have the same label are in the same connected component. Finally, the connected components are

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1919

Research Article

∈
{ }

{ } ∪ { }

∈

| | | |

{ }∪{ }

{ }

{ }

{ } { }

{ } { }
{ }

{ }

i=1 v { }

| | | |

{ }

{ }

{ }

{ }

computed by the following EXPORT function: return sets of nodes grouped by their label.

Theorem 3.1 (Hash-Min [10]): Algorithm Hash-Min cor- rectly computes the connected components of G = (V, E) using O(V + E)
communication and O(d) map-reduce rounds.

Hash-to-All Algorithm

The Hash-to-All algorithm initializes each cluster Cv = v nbrs(v) . Then it uses Hash-to-All hashing function to send the entire

cluster Cv to all reducers u Cv. On receiving the messages, merge function m updates the cluster by taking the union of all the

clusters received by the node. More

formally, if the reducer at v receives clusters C
(1)

, . . . , C
(K)

,

Hash-to-Min Algorithm

While the Hash-to-All algorithm computes the connected components in a smaller number of map-reduce steps than Hash-Min, the

size of the intermediate data (and hence the communication) can become prohibitively large for even sparse graphs having large

connected components. We now present Hash-to-Min, a variation on Hash-to-All, that we show finishes in at most 4 log n steps for

path graphs. We also show that in practice it takes at most 2 log d rounds and linear communication cost per round (see Section

VI),where d is the diameter of the graph.

The Hash-to-Min algorithm initializes each cluster Cv = v nbrs(v) . Then it uses Hash-to-Min hash function to send the

entire cluster Cv to reducer vmin, where vmin is the smallest node in the cluster Cv, and vmin to all reducers u Cv. The merging

function m works exactly like in Hash-to-All: Cv is the union of all the nodes appearing in the received messages. We explain how

this algorithm works by an example.

Example 3.3: Consider an intermediate step where clusters C1 = 1, 2, 4 and C5 = 3, 4, 5 have been associated with keys 1 and 5.

We will show how these clusters are merged in both Hash-to-All and Hash-to-Min algorithms.

In the Hash-to-All scheme, the mapper at 1 sends the entire cluster C1 to reducers 1, 2, and 4, while mapper at 5 sends

C5 to reducers 3, 4, and 5. Therefore, on reducer 4, the entire

cluster C4 = 1, 2, 3, 4, 5 is computed by the merge function. In the next step, this cluster C4 is sent to all the five reducers. In the

Hash-to-Min scheme, the mapper at 1 sends C1 to reducer 1, and 1 to reducer 2 and 4. Similarly, the mapper

at 5 sends C5 to reducer 3, and 3 to reducer 4 and 5. So reducer 4 gets 1 and 3 , and therefore computes the cluster C4 = 1, 3 using

the merge function.

Now, in the second round, the mapper at 4, has 1 as the minimum node of the cluster C4 = {1, 3}. Thus, it sends {1} to reducer 3,

which already has the cluster C2 = {3, 4, 5}.

then Cv is updated to ∪K

Thus after the second round, the cluster C3 = 1, 3, 4, 5 is

formed on reducer 3. Since 1 is the minimum for C3, the

We can show that after log d map-reduce rounds, for every v, Cv contains all the nodes in the connected component containing v.

Hence, the EXPORT function just returns the distinct sets in C (using one map-reduce step).

Theorem 3.2 (Hash-to-All): Algorithm Hash-to-All cor- rectly computes the connected components of G = (V, E) using O(n V + E)
communication per round and log d map- reduce rounds, where n is the size of the largest component and d the diameter of G.
4[10] has additional optimizations that do not change the asymptotic complexity. We do not describe them here. mapper at 3 sends C3 to reducer 1 in the

third round. Hence after the end of third round, reducer 1 gets the entire cluster 1, 2, 3, 4, 5 .
Note in this example that Hash-to-Min required three map-reduce steps; however, the intermediate data transmitted is lower since

entire clusters C1 and C2 were only sent to their minimum element’s reducer (1 and 3, resp).

As the example above shows, unlike Hash-to-All, at the end of Hash-to-Min, all reducers v are not guaranteed to contain in Cv the

connected component they are part of. In fact, we can

show that the reducer at vmin contains all the nodes in that component, where vmin is the smallest node in a connected

component. For other nodes v, Cv = vmin . Hence, EXPORT outputs only those Cv such that v is the smallest node in Cv. Theorem

3.4 (Hash-to-Min Correctness): At the end of al- gorithm Hash-to-Min, Cv satisfies the following property: If vmin is the

smallest node of a connected component C, then

Cvmin = C. For all other nodes v, Cv = vmin .

Proof: Consider any node v such that Cv contains vmin. Then in the next step, mapper at v sends Cv to vmin, and only vmin to v.

After this iteration, Cv will always have vmin as the minimum node, and the mapper at v will always send its

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1920

Research Article

∈

{ }

| | | |

min

∈

{ } · | | | |

updated to {v } ∪ {C(v)}.

{ } ∈

v

∈

v

v

v

— | |

{ }
{ }

{ − } −
{ − } ∈

{ }

{ }
−

{ − − } ∈
{ } { }

{ − } { } { }
{ } −

{ } ∈

| | | |

≤ | | | |

with high probability and 2(V + E) communication com- plexity per round in the worst-case. In Hash-Greater-to-Min algorithm, the

clusters Cv are again initialized as v . Then Hash-Greater-to-Min algorithm runs two rounds using Hash- Min hash function, followed

by a round using Hash-Greater- to-Min hash function, and keeps on repeating these three rounds until convergence.

In a round using Hash-Min hash function, the entire cluster Cv is sent to reducer v and vmin to all reducers u nbrs(v). For, the

merging function m on machine m(v), the algo- rithm first computes the minimum node among all incoming messages, and then

adds it to the message C(v) received

cluster Cv to vmin. Now at some point of time, all nodes v in

the connected component C will have vmin Cv (this follows from the fact that min will propagate at least one hop in every iteration

just like in Theorem 3.1). Thus, every mapper for node v sends its final cluster to vmin, and only retains vmin. Thus at

convergence Cvmin = C and Cv = vmin .
Theorem 3.5 (Hash-to-Min Communication):

Algorithm takes O(k (V + E)) expected communication per round, where k is the total number of rounds. Here expectation is over the

random choices of the node ordering.

Proof: Note that the total communication in any step equals the total size of all Cv in the next round. Let nk denote Σthe size of

this intermediate after k rounds. That is, nk =

v Cv . We shΣow by induction that nk = O(k · (|V | + |E|)).

First, n0 = v C
0
 2(V + E), since each node contains itself and all its neighbors. In each subsequent round, a node v is present in

Cu, for all u Cv. Then v is sent to a different

cluster in one of two ways:

If v is the smallest node in Cu, then v is sent to all nodes in Cu. Due to this, v gets replicated to |Cu| different clusters. However, this

happens with probability 1/|Cu|.
If v is not the smallest node, then v is sent to the smallest node of Cu. This happens with probability 1 1/ Cu . Moreover, once v is not

the smallest for a cluster, it will never become the smallest node; hence it will never be replicated more that once.

From the above two facts, on expectation after one round, the node v is sent to s1 = |C
0
| clusters as the smallest node and to m1

= |C
0
| clusters as not the smallest node. After two rounds, the node v is additionally sent to s2 = |C

0
|,

m2 = |C
0
|, in addition to the m1 clusters. Therefore, after k

nodes among all the messages received by u, then Cnew(v) is
new
min

In a round using Hash-Greater-to-Min hash function, the

set C≥v is computed as all nodes in Cv not less than v. This set is sent to reducer vmin, where vmin is the smallest node in C(v),
and vmin is sent to all reducers u C≥v. The merging function m works exactly like in Hash-to-All: C(v) is the union of all

the nodes appearing in the received messages. We explain this process by the following example.

Example 3.7: Consider a path graph with n edges (1, 2), (2, 3), (3, 4), and so on. We will now show three rounds of Hash-Greater-to-

Min.

In Hash-Greater-to-Min algorithm, the clusters are initial- ized as Ci = i for i [1, n]. In the first round, the Hash-Min function will send i
to reducers i 1, i, and i + 1. So each reducer i will receive messages i 1 , i and i + 1 , and aggregation function will add the incoming

minimum, i 1, to the previous Ci = i .

Thus in the second round, the clusters are C1 = 1 and Ci = i 1, i for i [2, n]. Again Hash-Min will send the

minimum node i 1 of Ci to reducers i 1, i, and i + 1. Again merging function would be used. At the end of second

step, the clusters are C1 = 1 , C2 = 1, 2 , Ci = i 2, i 1, i, for i [3, n].
In the third round, Hash-Greater-to-Min will be used. This is where interesting behavior is seen. Mapper at 2 will send its

C≥(2) = 2 to reducer 1. Mapper at 3 will send its C≥(3) = 3 to reducer 1. Note that C≥(3) does not include 2 even though it

appears in C3 as 2 < 3. Thus

4 log n. The proof is rather long, and due to space constraints appears in Sec. A of the Appendix.

Theorem 3.6 (Hash-to-Min Rounds): Let G = (V, E) be a path graph (i.e. a tree with only nodes of degree 2 or 1). Then, Hash-to-Min

correctly computes the connected component of G = (V, E) in 4 log n map-reduce rounds.

Although, Theorem 3.6 works only for path graphs, we conjecture that Hash-to-Min finishes in 2 log d rounds on all inputs, with

O(V + E) communication per round. Our experiments (Sec. VI) seem to validate this conjecture.

Hash-Greater-to-Min Algorithm

Now we describe the Hash-Greater-to-Min algorithm that has the best theoretical bounds: 3 log n map-reduce rounds

Similarly, mapper at 4 sends C≥(4) = {4} to reducer 2, and mapper 5 sends C≥(5) = {5} to reducer 3, etc. Thus we get the

•

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1921

Research Article

{ } { }

{ }
≤

≤ { }

{ }

sets, C1 = {1, 2, 3}, C2 = {1, 2, 4}, C3 = {1, 3, 6},

C4 = {4, 5, 6}, and so on.

The analysis of the Hash-Greater-to-Min algorithm relies on the following lemma.

Lemma 3.8: Let vmin be any node. Denote GT (vmin) the set of all nodes v for which vmin is the smallest node in Cv after

Hash-Greater-to-Min algorithm converges. Then GT (vmin) is precisely the set C≥(vmin).
Note that in the above example, after 3 rounds of Hash- Greater-to-Min, GT (2) is 2, 4 and C≥(2) is also 2, 4 .
We now analyze the performance of this algorithm. The proof is based on techniques introduced in [8], [11], and

omitted here due to lack of space. The proof appears in the Appendix.

Theorem 3.9 (Complexity): Algorithm Hash-Greater- to-Min correctly computes the connected components of G = (V, E)

in expected 3 log n map-reduce rounds (expectation is over the random choices of the node ordering) with 2(|V |+ |E|)
communication per round in the worst case.

SCALING THE HASH-TO-MIN ALGORITHM

Hash-to-Min and Hash-Greater-to-Min complete in less number of rounds than Hash-Min, but as currently described, they require

that every connected component of the graph fit in memory of a single reducer. We now describe a more ro- bust implementation for

Hash-to-Min, which allows handling arbitrarily large connected components. We also describe an extension to do load balancing.

Using this implementation, we show in Section VI examples of social network graphs that have small diameter and extremely large

connected com- ponents, for which Hash-Greater-to-Min runs out of memory, but Hash-to-Min still works efficiently.

Large Connected Components

We address the problem of larger than memory connected components, by using secondary sorting in map-reduce, which allows a

reducer to receive values for each key in a sorted order. Note this sorting is generally done in map-reduce to keep the keys in a

reducer in sorted order, and can be extended to sort values as well, at no extra cost, using composite keys and custom partitioning

[15].

To use secondary sorting, we represent a connected com- ponent as follows: if Cv is the cluster at node v, then we represent Cv
as a graph with an edge from v to each of the node in Cv. Recall that each iteration of Hash-to-Min is as follows: for hashing,

denoting vmin as the min node in Cv, the mapper at v sends Cv to reducer vmin, and vmin to all reducers u in Cv. For

merging, we take the union of all incoming clusters at reducer v.

Hash-to-Min can be implemented in a single map-reduce

step. The hashing step is implemented by emitting in the mapper, key-value pairs, with key as vmin, and values as each of the nodes

in Cv, and conversely, with key as each node in Cv, and vmin as the value. The merging step is implemented by collecting all the

values for a key v and removing duplicates.

To remove duplicates without loading all values in the memory, we use secondary sorting to guarantee that the values for a key are

provided to the reducer in a sorted order. Then the reducer can just make a single pass through the values to remove duplicates,

without ever loading all of them in memory, since duplicates are guaranteed to occur adjacent to each other. Furthermore, computing

the minimum node vmin is also trivial as it is simply the first value in the sorted order.

Load Balancing Problem

Even though Hash-to-Min can handle arbitrarily large graphs without failure (unlike Hash-Greater-to-Min), it can still suffer

from data skew problems if some connected com- ponents are large, while others are small. We handle this problem by tweaking

the algorithm as follows. If a cluster

Algorithm 2: Centralized single linkage clustering

at machine v is larger than a predefined threshold, we send all nodes u v to reducer vmin and vmin to all reducers u
 v, as done in Hash-to-Min. However, for nodes u > v, we send them to reducer v and v to reducer u. This ensures that

reducer vmin does not receive too many nodes, and some of the nodes go to reducer v instead, ensuring balanced load.

This modified Hash-to-Min is guaranteed to converge in at most the number of steps as the standard Hash-to-Min converges.

However, at convergence, all nodes in a connected component are not guaranteed to have the minimum node vmin of the connected

1: Input: Weighted graph G = (V, E, w),
stopping criterion Stop.

3: Initialize clustering C ← {{v}|v ∈ V };

2: Output: A clustering C ⊆ 2
V
 .

4: repeat

5: Find the closest pair of clusters C1, C2 in C (as per d);

6: Update C ← C − {C1, C2} ∪ {C1 ∪ C2)};
7: until C does not change or Stop(C) is true

8: Return C

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1922

Research Article

∞

→

C

′ ′ ′ ′

component. In fact, they can have as their minimum, a node v if the cluster at v was bigger than the specified threshold. We can then

run standard Hash-to-Min, on the modified graph over nodes that correspond to cluster ids, and get the final output. Note that this

increases the number of rounds by at most 2, as after load-balanced Hash-to-Min converges, we use the standard Hash-to-Min.

Example 4.1: If the specified threshold is 1, then the modi- fied algorithm converges in exactly one step, returning clusters equal to

one-hop neighbors. If the specified threshold is , then the modified algorithm converges to the same output as the standard one,

i.e. it returns connected components. If the specified threshold is somewhere in between (for our experiments we choose it to

100,000 nodes), then the output clusters are subsets of connected components, for which no cluster is larger than the threshold.

SINGLE LINKAGE AGGLOMERATIVE CLUSTERING

To the best of our knowledge, no map-reduce implemen- tation exists for single linkage clustering that completes in o(n) map-

reduce steps, where n is the size of the largest cluster. We now present two map-reduce implementations for the same, one using

Hash-to-All that completes in O(log n) rounds, and another using Hash-to-Min that we conjecture to finish in O(log d) rounds.

For clustering, we take as input a weighted graph denoted as G = (V, E, w), where w : E [0, 1] is a weight function on edges.

An output cluster C is any set of nodes, and a clustering of the graph is any set of clusters such that each node belongs to

exactly one cluster in C.

Centralized Algorithm:

Algorithm 2 shows the typical bottom up centralized algo- rithm for single linkage clustering. Initially, each node is its own cluster.

Define the distance between two clusters C1, C2 to be the minimum weight of an edge between the two clusters Algorithm 3:

Distributed single linkage clustering

in the last map-reduce iteration. We describe next how to stop the map-reduce clustering algorithm, and split incorrectly merged

clusters.

C. Stopping and Splitting Clusters

It is difficult to evaluate an arbitrary stopping predicate in a distributed fashion using map-reduce. We restrict our attention to a

restricted yet frequently used class of local monotonic stopping criteria, which is defined below.

Definition 5.1 (Monotonic Criterion): Stop is monotone if for every clusterings C, C′, if C′ refines C (i.e, ∀C ∈ C ⇒

∃C ∈ C , C ⊆ C), then Stop(C) = 1 ⇒ Stop(C) = 1.

i.e.,

Thus monotonicity implies that stopping predicate continues to remain true if some clusters are made smaller. Virtually every stopping

criterion used in practice is monotonic. Next we define the assumption of locality, which states that stopping

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1923

Research Article

⊆

∈

∈
∈

⊆

⊆
⊆

∈ C

{ } ∪

→ { } C

In each step, the algorithm picks the two closest clusters and

merges them by taking their union. The algorithm terminates either when the clustering does not change, or when a stopping

condition, Stop, is reached. Typical stopping conditions are threshold stopping, where the clustering stops when the closest distance

between any pair of clusters is larger than a threshold, and cluster size stopping condition, where the clustering stops when the merged

cluster in the most recent step is too large. Next we describe a map-reduce algorithm that simulates the centralized algorithm,

i.e., outputs the same clustering. If there are two edges in the graph having the exact same weight, then single linkage clustering might

not be unique, making it impossible to prove our claim. Thus, we assume that ties have been broken arbitrarily, perhaps, by perturbing

the weights slightly, and thus no two edges in the graph have the same weight. Note that this step is required only for

simplifying

our proofs, but not for the correctness of our algorithm.

Map-Reduce Algorithm

Our Map-Reduce algorithm is shown in Algorithm 3. In- tuitively, we can compute single-linkage clustering by first computing the

connected components (since no cluster can lie across multiple connected components), and then splitting the connected

components into appropriate clusters. Thus, Algorithm 3 has the same map-reduce steps as Algorithm 1, and is implemented either

using Hash-to-All or Hash-to-Min. However, in general, clusters, defined by the stopping criteria, Stop, may be much smaller than

the connected components. In the extreme case, the graph might be just one giant connected component, but the clusters are often

small enough that they individually fit in the memory of a single machine. Thus we need a way to check and stop execution as soon as

clusters have been computed. We do this by evaluating Stop(C) after each iteration of map-reduce. If Stop(C) is false, a new

iteration of map-reduce clustering is started. If

Stop(C) is true, then we stop iterations.

While the central algorithm can implement any stopping condition, checking an arbitrary predicate in a distributed setting can be

difficult. Furthermore, while the central al- gorithm merges one cluster at a time, and then evaluates the stopping condition, the

distributed algorithm evaluates stopping condition only at the end of a map-reduce iteration. This means that some reducers can

merge clusters incorrectly

criterion can be evaluated locally on each cluster individually. Definition 5.2 (Local Criterion): Stop is local if there ex- ists a

function Stoplocal : 2
V
 0, 1 such that Stop() = 1

iff Stoplocal(C) = 1 for all C .

Examples of local stopping criteria include distance-

threshold (stop merging clusters if their distance becomes too large) and size-threshold (stop merging if the size of a cluster becomes

too large). Example of non-local stopping criterion is to stop when the total number of clusters becomes too high. If the stopping

condition is local and monotonic, then we can compute it efficiently in a single map-reduce step. To explain how, we first

define some notations. Given a cluster C V , denote GC the subgraph of G induced over nodes C. Since C is a cluster, we know

GC is connected. We denote tree(C) as the
5
 minimum weight spanning tree of GC, and split(C) as the pair of clusters CL, CR

obtained by removing the edge with the maximum weight in tree(C). Intuitively, CL and CR are the clusters that get merged

to get C in the centralized single linkage clustering algorithm. Finally, denote nbrs(C) the set of clusters closest to C by the distance

metric d, i.e. if C1 nbrs(C), then for every other cluster C2,

d(C, C2) > d(C, C1).
We also define the notion of core and minimal core decom- position as follows.

Definition 5.3 (Core): A singleton cluster is always a core. Furthermore, any cluster C V is a core if its split CL, CR are both

cores and closest to each other, i.e. CL nbrs(CR) and CR nbrs(CL).
Definition 5.4 (Minimal core decomposition): Given a cluster C its minimal core decomposition, MCD(C), is a set of cores C1,
C2, . . . , Cl such that iCi = C and for every core C′ C there exists a core Ci in the decomposition for which C′ Ci.

Intuitively, a cluster C is a core, if it is a valid, i.e., it is a subset of some cluster C′ in the output of the centralized single

linkage clustering algorithm, and MCD(C) finds the largest cores in C, i.e. cores that cannot be merged with any other node in C
and still be cores.

Computing MCD We give in Algorithm 4, a method to find the minimal core decomposition of a cluster. It checks whether the

input cluster is a core. Otherwise it computes cluster splits Cl, and Cr and computes their MCD recursively.
5The tree is unique because of unique edge weights

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1924

Research Article

1: Input: Cluster C ⊆ V .
2: Output: A set of cores {C1, C2, . . . , Cl} corresponding

to MCD(C).

4: Construct the spanning tree TC of C, and compute CL, CR
to be the cluster split of C.

5: Recursively compute MCD(CL) and MCD(CR).

6: Return MCD(CL) ∪ MCD(CR)

3: If C is a core, return {C}.

1: Input: Stopping predicate Stop, Clustering C.

2: Output: Stop(C)

3: For each cluster C ∈ C, compute MCD(C). (performed
in reduce of calling of Algo. 3)

4: Map: Run Hash-to-All on cores, i.e, hash each core Ci ∈

5: Reducer for node v: Of all incoming cores, pick the

largest core, say, Cv, and compute Stoplocal(Cv).

6: Return ∧v∈V Stoplocal(Cv)

MCD(C) to all machines m(u) for u ∈ Ci

∈

∈

⊆

∪

∪

| | | |

Algorithm 4: Minimal Core Decomposition MCD

Algorithm 6: Recursive Splitting Algorithm Split

such that its clusters splits C , C have both Stop (C) and
l r local l

Algorithm 5: Stopping Algorithm

Note that this algorithm is centralized and takes as input a single cluster, which we assume fits in the memory of a single

machine (unlike connected components, graph clusters are rather small).

Stopping Algorithm Our stopping algorithm, shown in Algo- rithm 5, is run after each map-reduce iteration of Algorithm 3. It

takes as input the clustering C obtained after the map- reduce iteration of Algorithm 3 . It starts by computing the minimal

core decomposition, MCD(C), of each cluster C in C. This computation can be performed during the reduce step of the pervious
map-reduce iteration of Algorithm 3. Then, it runs a map-reduce iteration of its own. In the map step, using Hash-to-All, each

core Ci is hashed to all machines m(u) for u Ci. In reducer, for machine m(v), we pick the incoming core with largest

size, say Cv. Since Stop is local, there exists a local function Stoplocal. We compute

Stoplocal(Cv) to determine whether to stop processing this core further. Finally, the algorithm stops if all the cores for

nodes v in the graph are stopped.

Splitting Clusters If the stopping algorithm (Algorithm 5) returns true, then clustering is complete. However, some clusters
could have merged incorrectly in the final map-reduce iteration done before the stopping condition was checked. Our recursive

splitting algorithm, Algorithm 6, correctly splits such a cluster C by first computing the minimal core decomposi- tion, MCD(C).
Then it checks for each core Ci MCD(C) that its cluster splits Cl and Cr could have been merged by ensuring that both

Stoplocal(Cl) and Stoplocal(Cr) are false.

If that is the case, then core Ci is valid and added to the
output, otherwise the clusters Cl and Cr should not have been merged, and Ci is split further.

D. Correctness & Complexity Results

We first show the correctness of Algorithm 3. For that we first show the following lemma about the validity of cores.

Lemma 5.5 (Cores are valid): Let Ccentral be the output of Algorithm 2, and C be any core (defined according to Def. 5.3)
Stoplocal(Cr) as false. Then C is valid, i.e. Algorithm 2 does compute C some time during its execution, and there exists a

cluster Ccentral in Ccentral such that C Ccentral.

Proof: The proof uses induction. For the base case, note that any singleton core is obviously valid. Now assume that C
has cluster splits Cl and Cr, which by induction hypothesis, are valid. Then we show that C is also valid. Since
Stoplocal(Cl) and Stoplocal(Cr) are false for the cluster splits of C, they do get merged with some clusters in Algorithm 2.

Furthermore, by definition of a core, Cl, Cr are closest to each other, hence they actually get merged with each other.Thus

C = Cl Cr is constructed some during execution of Algorithm 2, and there exists a cluster Ccentral in its output that

contains Cl Cr = C, completing the proof.

Next we show the correctness of Algorithm 3. Due to lack of space, the proof is omitted and appears in the Appendix.

Theorem 5.6 (Correctness): The distributed Algorithm 3 simulates the centralized Algorithm 2, i.e., it outputs the same

clustering as Algorithm 2.

Next we state the complexity result for single linkage clustering. We omit the proof as it is very similar to that of the

complexity result for connected components.

Theorem 5.7 (Single-linkage Runtime): If Hash-to-All is used in Algorithm 3, then it finishes in O(log n) map-reduce

iterations and O(n V + E) communication per iteration, where n denotes the size of the largest cluster.

We also conjecture that if Hash-to-Min is used in Algo- rithm 3, then it finishes in O(log d) steps.

EXPERIMENTS

In this section, we experimentally analyze the performance of the proposed algorithms for computing connected compo-

nents of a graph. We also evaluate the performance of our agglomerative clustering algorithms.

1: Input: Incorrectly merged cluster C w.r.t Stoplocal.
2: Output: Set S of correctly split clusters in C.

3: Initialize S = {}.
4: for Ci in MCD(C) do

5: Let Cl and Cr be the cluster splits of Ci.

6: if Stoplocal(Cl) and Stoplocal(Cr) are false then

8: else
7: S = S ∪ Ci.

10: end if

11: end for

9: S = S ∪ Split(Ci)

12: Return S.

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1925

Research Article

| |
| |

| |

| | | |

| | | |

| | | |

Datasets: To illustrate the properties of our algorithms we use both synthetic and real datasets.

Movie: The movie dataset has movie listings collected from Y! Movies
6
 and DBpedia

7
. Edges between two listings

correspond to movies that are duplicates of one another; these edges are output by a pairwise matcher algorithm. Listings

maybe duplicates from the same or

different source, hence the sizes of connected components vary. The number of nodes V = 431, 221 (nearly 430K) and the

number of edges E = 889, 205 (nearly 890K). We also have a sample of this graph (238K nodes and 459K edges) with weighted

edges, denoted MovieW, which we use for agglomerative clustering experiments.

Biz: The biz dataset has business listings coming from two overlapping feeds that are licensed by a large internet company.

Again edges between two businesses correspond to business listings that are duplicates of one another. Here, V = 10, 802, 777
(nearly 10.8M) and E = 10, 197, 043
(nearly 10.2M). We also have a version of this graph with weighted edges, denoted BizW, which we use for agglomerative

clustering experiments.

Social: The Social dataset has social network edges between users of a large internet company. Social has V =
58552777 (nearly 58M) and E = 156355406
(nearly 156M). Since social network graphs have low diameter, we remove a random sample of edges, and generate

SocialSparse. With E = 15, 638, 853 (nearly 15M), SocialSparse graph is more sparse, but has much higher diameter than

Social.

Twitter: The Twitter dataset (collected by Cha et al [3]) has follower relationship between twitter users. Twitter has V =
42069704 (nearly 42M) and E = 1423194279
(nearly 1423M). Again we remove a random sample of

edges, and generate a more sparse graph, TwitterSparse, with |E|= 142308452 (nearly 142M).

Synth: We also synthetically generate graphs of a vary- ing diameter and sizes in order to better understand the properties

of the algorithms.

A. Connected Components

Algorithms: We compare Hash-Min, Hash-Greater-to-Min, Hash-to-All, Hash-to-Min and its load-balanced version Hash-to-

Min∗ (Section IV). For Hash-Min, we use the open- source Pegasus implementation
8
, which has several optimiza- tions over

the Hash-Min algorithm. We implemented all other algorithms in Pig
9
 on Hadoop

10
. There is no native support for iterative

computation on Pig or Hadoop map-reduce. We implement one iteration of our algorithm in Pig and drive a loop using a

python script. Implementing the algorithms on iterative map-reduce platforms like HaLoop [2] and Twister [7] is an interesting

avenue for future work.

1) Analyzing Hash-to-Min on Synthetic Data: We start by experimentally analyzing the rounds complexity and space

requirements of Hash-to-Min. We run it on two kinds of synthetic graphs: paths and complete binary trees. We use synthetic

data for this experiment so that we have explicit

8http://www.cs.cmu.edu/∼pegasus/ 9http://pig.apache.org/
10http://hadoop.apache.org

(a) Group I:Runtimes (in minutes) (b) Group I: # of Map-Reduce jobs

•

•

•

•

•

http://www.cs.cmu.edu/~pegasus/
http://pig.apache.org/
http://hadoop.apache.org/

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1926

Research Article

| | | |

| | | |

| |

| | | |

(c) Group II: Runtimes (in minutes) (d) Group II: # of Map-Reduce jobs

Fig. 3. Comparison of Pegasus and our algorithms on real datasets.

control over parameters d, V , and E . Later we report the performance of Hash-to-Min on real data as well. We use path

graphs since they have largest d for a given |V | and complete binary trees since they give a very small d = log |V |.
For measuring space requirement, we measure the largest intermediate data size in any iteration of Hash-to-Min. Since the

performance of Hash-to-Min depends on the random ordering of the nodes chosen, we choose 10 different random orderings for

each input. For number of iterations, we report the worst-case among runs on all random orderings, while for intermediates data
size we average the maximum intermediate data size over all runs of Hash-to-Min. This is to verify our conjecture that number of

iterations is 2 log d in the worst- case (independent of node ordering) and intermediate space complexity is O(V + E) in

expectation (over possible node orderings).

For path graphs, we vary the number of nodes from 32 (2
5
) to 524, 288 (2

19
). In Figure 1(a), we plot the number of

iterations (worst-case over 10 runs on random orderings) with respect to log d. Since the diameter of a path graph is equal to

number of nodes, d varies from 32 to 524, 288 as well. As conjectured the plot is linear and always lies below the line

corresponding to 2 log d. In Figure 1(b), we plot the largest intermediate data size (averaged over 10 runs on random orderings)

with respect to V + E . Note that both x-axis and y-axis are in log-scale. Again as conjectured, the plot is linear and always

lies below 3(|V | + |E|).

For complete binary trees, we again vary the number of nodes from 32 (2
5
) to 524, 288 (2

19
). The main difference from the

path case is that for a complete binary tree, diameter is 2 log(V) and hence the diameter varies only from 10 to 38. Again in

Figure 2(a), we see that the rounds complexity still lies below the curve for 2 log d supporting our conjecture even for trees. In

Figure 2(b), we again see that space complexity grows linearly and is bounded by 3(|V | + |E|).

Input |V | |E| n Pegasus Hash-to-Min Hash-Greater-to-Min Hash-to-All
 # MR jobs Time # MR jobs Time # MR jobs Time # MR jobs Time

Biz 10.8M 10.1M 93 36 40 7 29 23 34 4 14
Movie 430K 890K 17K 60 263 7 17 23 59 DNF DNF

SocialSparse 58M 15M 2.9M 60 173 11 59 38 144 DNF DNF

TABLE IV
COMPARISON OF PEGASUS, HASH-TO-MIN, HASH-GREATER-TO-MIN, AND HASH-TO-ALL ON THE GROUP I DATASETS. TIME IS AVERAGED OVER 4

RUNS AND ROUNDED TO MINUTES. OPTIMAL TIMES APPEAR IN BOLD: IN ALL CASES EITHER HASH-TO-MIN OR HASH-TO-ALL IS OPTIMAL.

Input |V | |E| n Pegasus Hash-to-Min∗
 # MR jobs Time # MR jobs Time

Social 58M 156M 36M 20 145 7 65
TwitterSparse 42M 142M 24M 12 57 5 32

Twitter 42M 1423M 42M 12 61 5 50

TABLE V

COMPARISON OF PEGASUS AND THE HASH-TO-MIN
∗

ALGORITHM ON GROUP II DATASETS. TIME IS AVERAGED OVER 4 RUNS AND ROUNDED TO

MINUTES. OPTIMAL TIMES APPEAR IN BOLD: IN ALL CASES, HM
∗

IS OPTIMAL.

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1927

Research Article

(a) Runtimes (in minutes) (b) # of Map-Reduce jobs

Fig. 4. Comparison of Hash-to-All and Hash-to-Min for single linkage clustering on BizW and MovieW.

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1928

Research Article

2) Analysis on Real Data: We next compared Hash-to- Min, Hash-Greater-to-Min, and Hash-to-All algorithms on real datasets
against Pegasus [10]. To the best of our knowledge, Pegasus is the fastest technique on MapReduce for computing connected
components. Although all datasets are sparse (have average degree less than 3), each dataset has very different distribution on the

size n of the largest connected components and graph diameter d. We partition our datasets into two groups – group I with d >= 20
and relatively small n, and group II with d < 20 and very large n.

Group I: Graphs with large d and small n: This group includes Biz, Movie, and SocialSparse datasets that have large diameters

ranging from 20 to 80. On account of large diameters, these graphs requires more MR jobs and hence longer time, even though they

are somewhat smaller than the graphs in the other group. These graphs have small connected components that fit in memory.

Each connected component in the Biz dataset represents the number of duplicates of a real-world entity. Since there are only

two feeds creating this dataset, and each of the two feeds is almost void of duplicates, the size of most connected components is 2.

In some extreme cases, there are more duplicates, and the largest connected component we saw had size 93. The Movie dataset has

more number of sources,

and consequently significantly more number of duplicates. Hence the size of some of the connected components for it is

significantly larger, with the largest containing 17,213 nodes. Finally, the SocialSparse dataset has the largest connected

component in this group, with the largest having 2,945,644 nodes. Table IV summarizes the input graph parameters. It also

includes the number of map-reduce jobs and the total runtime for all of the four techniques.

Differences in the connected component sizes has a very interesting effect on the run-times of the algorithm as shown in
Figures 3(a) and 3(b). On account of the extremely small size of connected components, runtime for all algorithms is fastest for

the Biz dataset, even though the number of nodes and edges in Biz is larger than the Movie dataset. Hash-to-All has the best

performance for this dataset, almost 3 times faster than Pegasus. This is to be expected as Hash-to-All just takes 4 iterations (in

general it takes log d iterations) to converge. Since connected components are small, the replication of components, and the

large intermediate data size does not affect its performance that much. We believe that Hash-to-All is the fastest algorithm

whenever the intermediate data size is not a bottleneck. Hash-to-Min takes twice as many iterations (2 log d in general) and

hence takes almost twice the time. Finally, Pegasus takes even more time because of a larger

k MR-k Completion Time BSP-k Completion Time
maximum median maximum median

1 10:45 10:45 7:40 7:40
5 17:03 11:30 11:20 8:05
10 19:10 12:46 23:39 15:49

15 28:17 26:07 64:51 43:37

TABLE VI

MEDIAN AND MAXIMUM COMPLETION TIMES (IN MIN:SEC) FOR k
CONNECTED COMPONENT JOBS DEPLOYED SIMULTANEOUSLY USING MAP-REDUCE (MR-K) AND GIRAPH (BSP-K)

number of iterations, and a larger number of map-reduce jobs. For the Movie and SocialSparse datasets, connected com- ponents

are much larger. Hence Hash-to-All does not finish on this dataset due to large intermediate data sizes. However, Hash-to-Min

beats Pegasus by a factor of nearly 3 in the SocialSparse dataset since it requires a fewer number of iterations. On movies, the

difference is the most stark: Hash- to-Min has 15 times faster runtime than Pegasus again due to

significant difference in the number of iterations.

Group II: Graphs with small d and large n: This group includes Social, TwitterSparse, and Twitter dataset that have a small

diameter of less than 20, and results are shown in Figures 3(c) and 3(d) and Table V. Unlike Group I, these datasets have very large

connected components, such that even a single connected component does not fit into memory of a single mapper. Thus we apply

our robust implementation of Hash-to-Min (denoted Hash-to-Min∗) described in Sec. IV.

The Hash-to-Min∗ algorithm is nearly twice as fast as pegasus, owing to reduction in the number of MR rounds. Only exception

is the Twitter graph, where reduction in times is only 18%. This is because the Twitter graph has some nodes with very high degree,

which makes load-balancing a problem for all algorithms.

B. Single Linkage Clustering

We implemented single linkage clustering on map-reduce using both Hash-to-All and Hash-to-Min hashing strategies. We used

these algorithms to cluster the MovieW and BizW datasets. Figures 4(a) and 4(b) shows the runtime and number of map-reduce

iterations for both these algorithms, respec- tively. Analogous to our results for connected components, for the MovieW dataset, we

find that Hash-to-Min outperforms Hash-to-All both in terms of total time as well as number of rounds. On the BizW dataset,

we find that both Hash-to- Min and Hash-to-All take exactly the same number of rounds. Nevertheless, Hash-to-All takes lesser

time to complete that Hash-to-Min. This is because some clusters (with small n) finish much earlier in Hash-to-All; finished clusters

reduce the amount of communication required in further iterations.

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1929

Research Article

| | | |

| | | |

C. Comparison to Bulk Synchronous Parallel Algorithms

Bulk synchronous parallel (BSP) paradigm is generally con- sidered more efficient for graph processing than map-reduce as it

has less setup and overhead costs for each new iteration. While the algorithmic improvements of reducing number of iterations

presented in this paper are important independent of the underlying system used, these improvements are of less significance in

BSP due to low overhead of additional iterations.

In this section, we show that BSP does not necessarily dominate Map-Reduce for large-scale graph processing (and thus our

algorithmic improvements for Map-Reduce are still relevant and important). We show this by running an interest- ing
experiment in shared grids having congested environments. We took the Movie graph and computed connected compo- nents

using Hash-to-Min (map-reduce, with 50 reducers) and using Hash-Min
11

 on Giraph [4] (BSP, with 100 mappers), an open

source implementation of Pregel [16] for Hadoop. We deployed k = 1, 5, 10, and 15 copies of each algorithm (denoted by MR-

k and BSP-k), and tracked the maximum and median completion times of the jobs. The jobs were deployed on a shared Hadoop

cluster with 454 map slots and 151 reduce slots, and the cluster experienced normal and equal load from other unrelated tasks.

Table VI summarizes our results. As expected, BSP-1 out- performs MR-1;
12

 unlike map-reduce, the BSP paradigm does not

have the per-iteration overheads. However, as k increases from 1 to 15, we can see that the maximum and median completion

times for jobs increases at a faster rate for BSP-k than for MR-k. This is because the BSP implementation needs to hold all 100

mappers till the job completes. On the other hand, the map-reduce implementation can naturally parallelize the map and reduce
rounds of different jobs, thus eliminating the impact of per round overheads. So it is not surprising that while all jobs in MR-15

completed in about 20 minutes, it took an hour for jobs in BSP-15 to complete. Note that the cluster configurations favor BSP

implementations since the reducer capacity (which limits the map-reduce implementation of Hash-to-Min) is much smaller (<
34%) than the mapper capacity (which limits the BSP implementation of Hash-Min). We also ran the experiments on clusters

with higher ratios of reducers to mappers, and we observe similar results (not included due to space constraints) showing that
map-reduce handles congestion better than BSP implementations.

I. CONCLUSIONS AND FUTURE WORK

In this paper we considered the problem of find connected components in a large graph. We proposed the first map- reduce
algorithms that can find the connected components in logarithmic number of iterations – (i) Hash-Greater-to- Min, which

provably requires at most 3 log n iterations with high probability, and at most 2(V + E) communication per iteration, and (ii)

Hash-to-Min, which has a worse theoreti- cal complexity, but in practice completes in at most 2 log d iterations and 3(V +
E) communication per iteration; n is the size of the largest component and d is the diameter of the graph. We showed
how to extend our techniques to the problem of single linkage clustering, and proposed the first algorithm that computes a

clustering in provably O(log n) iterations.

REFERENCES

F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman. Map- reduce extensions and recursive queries. In EDBT, 2011.

11Hash-Min is used as it is easier to implement and not much different than Hash-to-Min in terms of runtime for BSP environment
12The time taken for MR-1 is different in Tables IV and VI since they were run on different clusters with different number of reducers

(100 and 50 resp.).

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: Efficient iterative data processing on large clusters. In VLDB, 2010.

M. Cha, H. Haddadi, F. Benevenutoz, and K. P. Gummadi. Measuring user influence in twitter: The million follower fallacy. In

ICWSM, 2010.

A. Ching and C. Kunz. Giraph : Large-scale graph processing on hadoop. In Hadoop Summit, 2010.

J. Cohen. Graph Twiddling in a MapReduce World. Computing in Science and Engineering, 11(4):29–41, July 2009.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51, January 2008.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and

G. Fox. Twister: A runtime for iterative mapreduce. In MAPREDUCE, 2010.

H. Gazit. An optimal randomized parallel algorithm for finding con- nected components in a graph. SIAM J. Comput., 20(6):1046–

1067, 1991.

D. B. Johnson and P. Metaxas. Connected components in o(log3/2n) parallel time for the crew pram. J. Comput. Syst. Sci., 54(2):227–

242, 1997.

U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A Peta-Scale Graph Mining System- Implementation and Observations.

2009.

D. R. Karger, N. Nisan, and M. Parnas. Fast connected components algorithms for the erew pram. SIAM J. Comput., 28(3):1021–1034,

1999. H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce. In SODA, 2010.

A. Krishnamurthy, S. S. Lumetta, D. E. Culler, and K. Yelick. Connected components on distributed memory machines. In Parallel

Algorithms: 3rd DIMACS Implementation Challenge, 1994.

Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020),1915-1930

1930

Research Article

H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded computation. Theor. Comput. Sci., 19:161–187, 1982.

J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Morgan & Claypool Publishers, 2010.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph

processing. In SIGMOD, 2010.

S. J. Plimpton and K. D. Devine. MapReduce in MPI for Large-scale Graph Algorithms. Special issue of Parallel Computing,

2011.

J. Reif. Optimal parallel algorithms for interger sorting and graph connectivity. In Technical report, 1985.

T. Seidl, B. Boden, and S. Fries. CC-MR - finding connected compo- nents in huge graphs with mapreduce. In ECML/PKDD (1),

2012.

Y. Shiloach and U. Vishkin. An O(log n) parallel connectivity algorithm. Journal of Algorithms, 3:57–67, 1982.

