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ABSTRACT 

This paper presents a tutorial on Kalman filtering that is designed for instruction to undergraduate 

students. The idea behind this work is that undergraduate students do not have much of the statistical and 

theoretical background necessary to fully understand the existing research papers and textbooks on this  

topic. Instead, this work offers an introductory experience for students which takes a more practical usage 

perspective on the topic, rather than the statistical derivation.  Students reading this paper should be able 

to understand how to apply Kalman filtering tools to mathematical problems without requiring a deep 

theoretical understanding of statistical theory. 
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INTRODUCTION 

Kalman filtering is a useful tool for a variety of different applications. However, this technique is 

not easily accessible to undergraduate students due to the high level details in existing 

publications on this topic. While it may not be practical to expect undergraduates to obtain a deep 

and thorough understanding of the stochastic theory behind Kalman filtering techniques, it is 

reasonable to expect undergraduates to be capable of making use of this computational tool for 

different applications. 

While there are some excellent references detailing the derivation and theory behind the Kalman 

filter [1,2,3], this article aims to take a more teaching-based approach to presenting the Kalman 

filter from a practical usage perspective. The goal of this work is to have undergraduate students 

be able to use this guide in order to learn about and implement their own Kalman filter. One of 

the major differences between this work and the current state of the art Kalman filtering tutorial 

[3] is that the statistical theory is minimized, and focus is given to developing skills in 

implementing Kalman filters, rather than to understand the inner workings. 

WHAT IS KALMAN FILTERING 

So what is a Kalman filter? Let us start by breaking it down. The “Kalman” part comes from the 

primary developer of the filter, Rudolf Kalman [4]. So this is just a name that is given to filters of 

a certain type. Kalman filtering is also sometimes called “linear quadratic estimation.” Now let 

us think about the “filter” part. All filters share a common goal: to let something pass through 

while something else does not. An example that many people can relate to is a coffee filter. This 

coffee filter will allow the liquid to pass through, while leaving the solid coffee grounds behind. 

You can also think about a low-pass filter, which lets low frequencies pass through while 

attenuating high frequencies. A Kalman filter also acts as a filter, but its operation is a bit more 

complex and harder to understand. A Kalman filter takes in information which is known to have 

some error, uncertainty, or noise. The goal of the filter is to take in this imperfect information, 

sort out the useful parts of interest, and to reduce the uncertainty or noise. Diagrams of these 

three filtering examples are offered in Figure 1. 
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Figure 1. Three Example Diagrams of Types of Filters 
 

1. IMPLEMENTATION OF A KALMAN FILTER 

 Filtering Problem Definition 

The Kalman filter is designed to operate on systems in linear state space format, i.e. 

x
k 

= F
k −1

x
k −1 

+ G
k −1

u
k −1 

+ w
k −1 

yk = Hk xk + vk 

where the variable definitions and dimensions are detailed in Table 1. 

 
Table 1. Dimensions of Discrete Time System Variables 

 

 

 

 

 

 

(1) 

(2) 

 
Variable Description Dimension 

x State Vector nx  1 

y Output Vector ny 1 

u Input Vector nu 1 

w Process Noise Vector nx  1 

v Measurement Noise Vector ny 1 

F System Matrix – State nx  nx 

G System Matrix – Input nx  nu 

H Observation Matrix ny  nx 

Note that the number of states, outputs, and inputs are independent, and therefore the matrices G 

and H can be non-square, but F is always a square matrix. The state dynamics are described by 

(1), while the output equations are given by (2). Vectors are denoted in bold font, so (1) and (2) 

are vector equations. 

Used Grounds 

Coffee Grounds 

Coffee Filter Coffee 

Hot Water 

High Frequencies 

Unfiltered Signal Low-Pass Filter 
Low 

Frequencies 

Noise/Uncertainty 

Initial Assumptions 

Kalman Filter 

Noisy Measurments 

Desired 

States 



 

1860  

 

The state vector, x, are the values that will be estimated by the filter. Using the filter analogy, the 

components of this vector are the things that you want to pass through the filter. Sometimes you 

may include more items in the state vector than you really care about if they are necessary in 

order to determine what you really want. For example if you want to determine the position of an 

object using information about the acceleration, you will likely need to determine the velocity as 

well. This is an important distinction between the state and output vectors of the system. While 

in other situations the “output” is what you are trying to get, for state estimation problems using 

Kalman filtering, the “state” is actually the desired result. 

 

The output vector, y, is not what you are trying to get out of the filter, but rather what you are able 

to measure. You need to be able to express your measurements in terms of the states so that you 

can compare them with the measurements, i.e. you need to get apples to apples to know how 

much (or little) to correct. Not all measurements need to appear in the output vector for a 

particular formulation. Sometimes certain measurements are necessary for use in the state 

dynamics (1). The output vector should consist of values which can be both determined 

mathematically from the states as well as through some independent measurement system, i.e. the 

measurements are not used elsewhere in the filter. 

The input vector, u, is probably the trickiest part of the Kalman filter definitions. This vector 

contains information that is necessary coming into the filter in order to define the system 

dynamics. These values can be sensor measurements, however in this case the uncertainty in 

these input values would need to be considered. In general, when defining your system equations 

(1) and (2), after determine the necessary states, any other terms which appear in the filter that do 

not need to be estimated as states can be considered as inputs. For example, in order to find the 

dynamics of a velocity state, you might include an acceleration measurement as an input. 

The terms w and v which correspond to the process and measurement noise vectors for the system 

are interesting in that they do not typically appear directly in the equations of interest. Instead, 

these terms are used to model the uncertainty (or noise) in the equations themselves. This can 

manifest itself in a number of ways. The first is modelling error, which is uncertainty in the 

equation itself. How much can we trust this equation? Some equations, when derived from 

physics principles for instance, have negligible modelling error. However, some situations 

contain heuristically defined equations which may not be used with full confidence in their 

correctness. In this case, a certain amount of error can be considered to appear in the equation in 

the form of w or v. Another possible source of error is error in sensor measurements used in the 

equations. The w and v terms can be used to include the errors due to sensor measurements. In 

fact, this is the most common use of v in the output equations to account for the error in the 

measurement of the output. Note that this error is not in the equation itself, but accounts for how 

good the equation should be relative to the measurement. Note that w and v are not actually 

implemented in the calculations of (1) and (2) since they are assumed to be random errors with 

zero mean, but rather are just used to determine information about the process and measurement 

noise covariance matrices Q and R. If you are unfamiliar with the definition of a covariance 

matrix, please see Appendix A for more information. 
 

What about the system matrices F, G, and H? These matrices will depend on the considered 

problem, and are used in order to represent the equations as a linear system of states and inputs. 

F will contain the coefficients of the state terms in the state dynamics (1), while H serves a 

similar function in the output equations (2). The G matrix contains coefficients of the input terms 

in the state dynamics (1). These matrices can in general vary with time, but cannot change with 

respect to the states or inputs. For many problems, these matrices are constant. 
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 Kalman Filtering Algorithm 

The Kalman filter uses a prediction followed by a correction in order to determine the states of 

the filter. This is sometimes called predictor-corrector, or prediction-update. The main idea is 

that using information about the dynamics of the state, the filter will project forward and predict 

what the next state will be. A simple example of this would be if I know where I was before 

(previous state), and how fast I was moving (state dynamics), I can guess where I am at now 

(current state). This can be thought of as a numerical integration technique such as Euler’s 

method or Runge-Kutta [5]. The correction or update part then involves comparing a 

measurement with what we predict that measurement should be based on our predicted states. 

The Kalman filtering technique is now discussed in equation format. Starting from some initial 

state estimate, x̂0 , and initial state error covariance matrix, P0, the predictor-corrector format is 

applied recursively at each time step, e.g. using a loop. First, the state vector is predicted from 

the state dynamic equation using 

x̂ 
k |k −1  

= F
k −1

x̂ 
k −1  

+ G
k −1

u
k −1 (3) 

 

where x̂ 
k |k −1 

is the predicted state vector, x̂
k −1 is the previous estimated state vector, u is 

the input vector, and F and G are matrices defining the system dynamics. Note that the subscript 

k|k-1 is read as “k given k-1” and is a shorthand notation for the state at discrete time k given its 

previous state at discrete time k-1, i.e. this is the prediction of the state using the system model 

projected forward one step in time. Next, the state error covariance matrix must also be predicted 

using 
P = F P FT + Q (4) 

k|k −1 k −1 k −1 k −1 k −1

where Pk|k-1 represents the predicted state error covariance matrix, Pk-1 is the previous estimated 

state error covariance matrix, and Q is the process noise covariance matrix. Again, k|k-1 is 

indicating that this is the expected covariance matrix at k based on the system model and the 

covariance at k-1. Once the predicted values are obtained, the Kalman gain matrix, Kk, is 

calculated by 

K   = P HT (H P HT + R 
)

−1 (5) 

where H is a matrix necessary to define the output equation and R is the measurement noise 

covariance. The state vector is then updated by scaling the “innovation,” which is the difference 

between the measurement of the output, zk, and the predicted output, H
k 
x̂ 

k |k −1 
(sometimes 

called ŷ 
k |k −1 ),  by  the  calculated  Kalman  gain  matrix  in  order  to  correct  the  prediction  by  the 

appropriate amount, as in 

x̂ 
k   

= x̂ 
k |k −1  

+ K 
k  (z

k  
− H

k 
x̂ 

k |k −1 ) 
 

(6) 

Similarly, the state error covariance is updated by 

Pk = (I − Kk Hk ) Pk|k −1 

 

 
(7) 

where I is an identity matrix. 

 Comments on Notation 

A major notational difference that occurs between sources is the use of the discrete time index, k. 

There are essentially three different discrete time formats which can be found in the literature. 

Each one is equivalent, but results in different subscripts in (1) and (2). The different time 
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formatting is summarized in Table 2. Other different notational differences found in the various 

resources on Kalman filtering are summarized in Table 3, including example sources which use 

this notation. 

 
Table 2. Different Discrete Time Notational Formatting 

 

Time Format State Dynamics (1) Output Equations (2) 

k and k – 1 [1] 

k+1 and k with output k [2,3] 

k+1 and k with output k+1 [8] 

x
k 

= F
k −1

x
k −1 

+ G
k −1

u
k −1 

+ w
k −1 

xk +1 = Fk xk + Gk uk + wk 

xk +1 = Fk xk + Gk uk + wk 

yk   = Hk xk + vk 

yk   = Hk xk + vk 

y
k +1 

= H
k +1

x
k +1 

+ v
k +1 

 

 

 

Table 3. Summary of Notational Differences in the Literature 

 

Term This Tutorial Other Notation 

State Vector x z [6] 

Output Vector y z [2] 

System State Matrix F A [3,6], Φ [7,8] 

Input matrix G B [3] 

Observation Matrix H C [6] 

State Error Covariance Matrix P Σ [2] 

  Discrete time index  k n [6] 

 

 Continuous vs. Discrete Time Kalman Filters 

This article focuses on the discrete time Kalman filter. There is also a continuous time 

counterpart which is sometimes called the Kalman-Bucy filter [1]. Since the majority of Kalman 

filtering applications are implemented in digital computers, the implementation of Kalman filters 

in continuous time is not practical in many situations. Because of this, the continuous time cases 

are left to other sources [1,7]. Note that this does not mean that continuous system models cannot 

be approached with a discrete time Kalman filter. Consider a continuous system of the following 

form 

x& (t) = Fc (t)x(t) + G c (t)u(t) + w(t) (8) 

where Fc and Gc indicate the system matrices for a continuous system, and wc is the continuous 

time process noise vector with covariance matrix Qc. The continuous model can be discretized, 

e.g. using a 1st order approximation, as in 

xk   = xk −1  + tx& k (9) 

where ∆t is the sampling time, or the duration of a single discrete time step, thus resulting 

in t = k∆t. Then, including the continuous time model gives 

xk   = xk −1 + t Fc (t)x(t) + Gc (t)u(t) + wc (t) 

which can be simplified to obtain the following discrete time system 

xk = (I + tFc (kt)) xk−1 + tGc (kt)uk + twc (kt) 

 

(10) 

 

 
(11) 

Note that the following definitions can be made to match the general discrete time system 

as given in (1) 
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2 

 
Increasing Q 

Fk −1 = I + tFc (kt) 

Gk −1   = tGc (kt) 

wk −1 = twc (kt) 

The covariance matrices for the process noise are therefore related by 

Qk −1 = (t ) Qc (t ) 

 

(12) 

 

 

 

(13) 
 

The output equations between continuous time and discrete time are equivalent, i.e. it 

does not matter if k or t is used for time in the equation, it is the same relationship. 

 Effect of Noise Covariance Assumptions 

The selection of the assumed covariance matrices Q, R, and P0 can have a significant effect on 

the estimation performance of a Kalman filter. The selection of P0 is coupled with the assumed 

initial state, and affects the initial convergence of the filter. In many situations, the effect of P0 is 

not significant, and in fact it is often arbitrarily initialized to an identity matrix for simplicity. 

The effects of Q and R and much more significant and they affect the overall performance of the 

filter. A basic way to think of Q and R is that they are weighting factors between the prediction 

(state) equations and the measurement (output) equations. This ratio is shown within the Kalman 

gain equation (5). Considering a larger Q is equivalent to considering larger uncertainty in the 

state equations, which is equivalent to trusting the result of these equations less, which effectively 

means that the filter should correct more with the measurement update. Similarly, considering a 

larger R is equivalent to considering larger uncertainty in the measurement, which is equivalent to 

trusting the measurement less, which effectively means that the filter should correct less with the 

measurement update. A diagram detailing this phenomenon is shown in Figure 2. 
 

 

 
 

 

Figure 2. Diagram of Noise Covariance Assumptions Effect on Filter Operation 

 
 Has a linear transformation 

 

The purpose of the H matrix is to essentially convert the states into outputs. For the linear 

Kalman filter this occurs by considering some linear combination of the states, i.e. H is a linear 

transformation. In some simple cases, H is just used to select certain states which are measured, 

when other states are not. For example, if the first, second, and fifth states of a 5-dimensional 

state vector are measureable, the H matrix would be defined as 

 
Increasing R 

Correct Less Correct More 
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  

1 

k 

 

 

 

 

 

such that 

1 0 0 0 0 

H  = 

0 1 0 0 0


 

0 0 0 0 1 

 
 

(14) 

yk = Hk xk  
 x1  

1 0 0 0 0 
 x  

 x  
  

 2  
  (15) 

y  = 

0 1 0 0 0

 
 x  = 


x 


 

k 0 0 0 0 1  
3  x 

2  x  
   4   5  

 x  
 5  

 

The H matrix can also be used to consider scaling effects. For example, if the radius is a state, 

but the diameter can be measured, the output equation could be represented by 

yk = Hk xk 

y = d H = 2 x = r (16) 
k k k k k 

 

Other uses of H could be to consider combinations of states. For example, if the lengths of 3 

sides of a triangle are states, but the perimeter can be measured, the output equation could be 

represented by 
 

 

y = x + x 

 

+ x , 
 

H = 1 1 1, 
 x1  

x  = 

x 


 

 

(17) 
k 1 2 3 k k  2   x  

 3  

2. A LINEAR KALMAN FILTERING EXAMPLE 

In order to illustrate the use of the Linear Kalman Filter, a simple example problem is offered. 

This example considers a simple object in freefall assuming there is no air resistance. The goal of 

the filter is to determine the position of the object based on uncertain information about the initial 

position of the object as well as measurements of the position provided by a laser rangefinder. 

Using particle kinematics, we expect that the acceleration of the object will be equal to the 

acceleration due to gravity. Defining the height of the object in meters, h, we have: 

h& (t ) = −g (18) 

where g is the acceleration due to gravity (g = 9.80665 m/s2). Integrating this relationship over a 

small time interval, ∆t, gives 

h& (t ) = 
h& (t ) − h& (t − t ) 

= −g
 

t 
(19) 

which is a backward difference equation, which is useful for Kalman filtering applications due to 

the recursive structure of the filter, i.e. each time step in the Kalman filter always references the 

previous time step. Simplifying this expression gives 

h& (t ) = h& (t − t ) − gt (20) 
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= 
k 

  

Integrating again yields a commonly used kinematic equation relating successive positions of a 

particle with respect to time for constant acceleration 

h (t ) = h (t − t ) + h&(t − t) − 
1 

g (t )
2

 

2 

 

(21) 

Rather than consider these equations in terms of continuous time, t, it is beneficial to rewrite the 

equations in terms of a discrete time index, k, which is defined by t = k∆t. Additionally, discrete 

time values are traditionally written as subscripts rather than as a functional dependence, i.e. 

h(t) = h(kt) = hk 

h (t − t ) = h (kt − t ) = h (t (k −1)) = hk −1 

(22) 

 

Rewriting the kinematic relationships for the example problem in terms of the discrete time 

variable, k, gives 

h&  = h& − gt 
k k −1 

h = h + h&    t − 
1 

g (t )
2

 
(23) 

k k −1 k −1 
2
 

From these kinematic expressions, we see that we have two equations describing the motion of 

the object: one for velocity and one for position. Since we are interested in estimating the 

position, we know that the position must be included as a state. However, since we can see that 

the velocity also appears in the position equation, it is also necessary to obtain that information. 

One way to make sure that we have information about the velocity is to additionally include the 

velocity as a state. As a result, we now define the state vector for the Kalman filter as 

h  
xk h&   (24) 

 k  

which results in the following expression 


h + h&    t − 

1 
g (t )

2 
 

x =  
k  

k −1 k −1 
2  

&  (25) 

 hk −1 − gt  

With this definition, we can rewrite these equations in terms of the state vector, x, as in 

1 t  

− 

1 
(t )

2 
 

x = x +    2  g (26) 
k 0 1  k −1   

  

 −t  

Now, we have the problem in necessary format for the Kalman filter 

x
k 

= F
k −1

x
k −1 

+ G
k −1

u
k −1 (27) 

where the system matrices F and G are given by 

1 t  
− 

1 
(t )

2 
 

F
k −1 

= 0 1  
, 

G =  
k −1  

 
 −t 

(28) 

  

2 
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and the input vector can be defined as  

uk −1 = g 

 

 
(29) 

 

The reason for selecting g as an input is because this information is necessary to define the state 

dynamics, but g is not defined as a state in the filter. This additional information is “input” into 

the equations at each time step. Note that for this particular problem the values of F, G, and u do 

not vary with respect to k. It is important to note in these equations that there is no process noise 

uncertainty term, w. For this particular set of equations, we are assuming that there are no errors 

in the equations themselves. For this problem, this is an assumption, as there could be 

disturbances from air resistance or other sources. However, assuming that these errors are small 

enough to ignore, we do not need to model the process noise for this problem. Because of this, 

the process noise covariance matrix, Q, can be set to zero. 
 

Next, we need to consider the measurement part of the system. Let us consider a scenario where 

the position of the object can be measured using a laser rangefinder with 2 m standard deviation 

of error. Because the position is what can be measured, we need to define an output equation that 

gives the position as a function of the states of the filter. There is some uncertainty in the 

measurement, which is noted in the equations by the measurement noise vector, v: 
 

yk = hk + vk (30) 

 

Since the position can be written in terms of the state vector, this can be rewritten as 

 

y k   = 1   0xk  + vk 

 

 
(31) 

 

Now, we have the output equations of the system defined in the proper form as in (2), where the 

system matrix, H, is given by 

Hk = 1 0 (32) 
 

The considered measurement system has a standard deviation of error of 2 m, which is a variance 

of 4 m2. Because of this, and the fact that there is only one term in the output vector, the resulting 

measurement noise covariance matrix reduces to a scalar value, R = 4 m2. 

In addition to the measurement noise, we also need to consider any uncertainty in the initial state 

assumption. The initial position is approximately known to be 105 m before the ball is dropped, 

while the actual initial position is 100 m. The initial guess was roughly determined, and should 

therefore have a relatively high corresponding component in the assumed initial covariance. For 

this example, we consider an error of 10 m2 for the initial position. For the initial velocity, we 

assume that the object starts from rest. This assumption is fairly reasonable in this case, so a 

smaller uncertainty value of 0.01 m2/s2 is assumed. To aid the reader in the implementation of 

this example, the necessary parameters and definitions for this filtering application are 

summarized in Table 4. 

 
Table 4. Example Problem Definitions 
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= 
k 

  

G = 

  

2 

 1 

 
 

  Term Definition  

 
State Vector 

h  
xk h&   

 k  

Output Vector 

Input Vector 

yk = hk + vk 

uk −1 = g 

1 t  

System State Matrix Fk −1 = 
0 1 

 


− 

1 
(t )

2 
 

 Input Matrix   
k −1 

  

 −t  

 
Observation Matrix 

 
 

Process Noise Covariance Matrix 

Hk = 1 0 

0 0 

Qk −1 = 
0 0

 

Measurement Noise Covariance 

Matrix 
R k = 4 

100 
True Initial State Vector x0 =  

0 
 

  

105 
Assumed Initial State Vector x̂ 

0  =   
0  

 
 

 
Assumed Initial State Error 

Covariance Matrix 

  

10 0  
P0 =  

0 0.0 

 

 

 

Time Increment 
t = 0.001 

 
 

 
In order to complete this Kalman filtering example, we want to simulate values for the “true” 

states of the system as well as the noisy measurements. In a real application problem, this step is 

not done, as the “true” states are not known and the measurements are obtained from the 

measurement system. 

 
The provided Kalman filtering example was executed over 1000 time steps, and the estimated and 

true states are offered in Figure 3.  Additionally, the estimation errors are shown in Figure 4. 

The code used to generate these figures is provided in Appendix B. It is recommended, however, 

that the reader of this tutorial try to implement their own version of the code before consulting 

with the solution in Appendix B. 
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Figure 3. Kalman Filtering Example Estimated and True States 
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Figure 4. Kalman Filtering Example Estimation Errors 

3. THE EXTENDED KALMAN FILTER 

The Extended Kalman Filter (EKF) is just an extension of the Kalman filter to nonlinear systems. 

This means that the difference with the EKF is that the state and/or the output equations can 

contain nonlinear functions. So rather than considering systems of the form (1) and (2), the EKF 

can consider a more general nonlinear set of equations: 

x
k   

= f (x
k −1

,u
k −1 ) + w

k −1 

yk = h (xk ) + vk 

 

(33) 

(34) 
 

where f is the vector-valued nonlinear state transition function and h is the vector-valued, 

nonlinear observation or output function. In order to handle the nonlinear functions, Jacobian 

 

 

 

 

 
Measured 

  Estimated 

  True 

  Estimated 

  True 


x
 

x
 

=
 h

 (
m

) 
(m

/s
) 

x
 

(m
/s

) 
2
 

1
 

2
 


x
 

(m
) 

1
 

          

          

          

          

 

   

         
 

         

         

 0 0.1 0.2 0.3 0.4 0.5 

t (s) 

0.6 0.7 0.8 0.9  

          

          

          

          

 0 0.1 0.2 0.3 0.4 0.5 

t (s) 

0.6 0.7 0.8 0.9  

 



 

1869  

x2 + y2 x2 + y2 

 
x 

 

k k |k −1 k k  k |k −1 k k 

matrices are calculated in order to linearize the equations at each time step about the previous 

state, as in 

F =
 f 

k x 

H  =
 h 

k x 

 

 

x̂ k −1 

 

 
 

x̂k|k −1 

 

(35) 

 
 

(36) 

Using these calculated Jacobian matrices, the EKF algorithm can be summarized as 

x̂
k |k −1  

= f ( x̂
k −1

, u
k −1 ) 

P = F P   FT   + Q 
k|k −1 k −1 k −1 k −1 k −1 

K   = P HT (H P HT + R )
−1 

(37) 

x̂
k   

= x̂
k |k −1  

+ K 
k  



z

k  
− h ( x̂ 

k |k −1 ) 

Pk = (I − K k Hk ) Pk|k −1 

 

Note that the EKF equations are very similar to the Kalman filter equations, but with a few 

exceptions. One difference is that the values of F and H are determined from the Jacobian matrix 

calculations at each time step. The other difference is that the nonlinear functions f and h are 

used directly in the prediction of the states and the outputs, rather than use the linearized version, 

i.e. the EKF uses f ( x̂
k −1 

,u
k −1 ) instead of F

k −1
x̂

k −1  
+ G

k −1
u

k −1 
,  and h ( x̂ 

k |k −1 ) instead of 

Hk x̂ 
k |k −1 .  Besides these differences, the operation and usage of the EKF is comparable to that of 

the Kalman filter. 

 Nonlinear Observation/Output Equations 
The purpose of the observation or output equations is to map the existing set of states to a set of 

“outputs” that are able to be measured within the considered system. As an example, consider a 

system with states describing the 2-dimensional Cartesian position of an object (x, y). A tracking 

system is used to follow the object and measures the distance to the object, r, and the angle that it 

makes with respect to the horizontal, θ. Note that this measurement system offers a polar 

representation of the 2-dimensional coordinates. With this system, the output equations would 

then be defined as 
 

r = 

 = tan−1 
 y 

 

  

For this system, the Jacobian matrix, H, would be calculated using 

 

(38) 

 r r   x y  
h 

 x 
y    

H = =   =   
 

(39) 
x     − y x   x y  

 
x2 + y2 x2 + y2 


 

    
 

This expression could then be used at each time step in order to evaluate the value of H at the 

current predicted state. 

x2 + y2 
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 Other Nonlinear Kalman Filtering Techniques 

The Extended Kalman Filter (EKF) is not the only nonlinear Kalman filtering technique. Perhaps 

the most common alternative to the EKF is the Unscented Kalman Filter (UKF) which is 

sometimes referred to as a Sigma-Point Kalman Filter (SPKF). Rather than use Jacobian matrices 

to handle the nonlinear in the system, the UKF uses a statistical linearization technique called the 

unscented transformation [9]. The UKF has demonstrated some advantages in more accurate 

linearization, particularly in highly nonlinear problems [9,10], however in some situations it has 

been shown to produce similar results to that of the EKF [11]. The EKF tends to be more 

computationally efficient than the UKF, thus making it more desirable for real-time applications 

[11,12]. Additionally, the EKF is a bit easier to understand conceptually, which is beneficial for 

student use. The UKF, however, can provide superior linearization in certain situations, and can 

also be easier to implement since there is no need to calculate Jacobian matrices [10]. For details 

on the implementation of the UKF, see [13] or [14]. 

4. CONCLUSION 

This work provided a tutorial for Kalman filtering that is geared toward undergraduate students 

with little or no experience on this topic. Detailed descriptions and an example problem were 

offered in order to help aid in the basic understanding of this complex topic. 
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