

1859

Towards an Automated Recognition System for Chat-based Social

Engineering Attacks in Enterprise Environments
Dr.M.V Siva Prasad,Dr.M. Murugesan,K Vijay Kumar

Professor1,2,Associate Professor3,
Dept. of CSE,

mail-id: principal@anurag.ac.in, murugeshvim@gmail.com, vijaykumarit@anurag.ac.in
 Anurag Engineering College,Anatagiri(V&M),Suryapet(Dt),Telangana-508206

ABSTRACT

This paper presents a tutorial on Kalman filtering that is designed for instruction to undergraduate

students. The idea behind this work is that undergraduate students do not have much of the statistical and

theoretical background necessary to fully understand the existing research papers and textbooks on this

topic. Instead, this work offers an introductory experience for students which takes a more practical usage

perspective on the topic, rather than the statistical derivation. Students reading this paper should be able

to understand how to apply Kalman filtering tools to mathematical problems without requiring a deep

theoretical understanding of statistical theory.

KEYWORDS

Data Processing, Kalman Filtering, Tutorial

INTRODUCTION

Kalman filtering is a useful tool for a variety of different applications. However, this technique is

not easily accessible to undergraduate students due to the high level details in existing

publications on this topic. While it may not be practical to expect undergraduates to obtain a deep

and thorough understanding of the stochastic theory behind Kalman filtering techniques, it is

reasonable to expect undergraduates to be capable of making use of this computational tool for

different applications.

While there are some excellent references detailing the derivation and theory behind the Kalman

filter [1,2,3], this article aims to take a more teaching-based approach to presenting the Kalman

filter from a practical usage perspective. The goal of this work is to have undergraduate students

be able to use this guide in order to learn about and implement their own Kalman filter. One of

the major differences between this work and the current state of the art Kalman filtering tutorial

[3] is that the statistical theory is minimized, and focus is given to developing skills in

implementing Kalman filters, rather than to understand the inner workings.

WHAT IS KALMAN FILTERING

So what is a Kalman filter? Let us start by breaking it down. The “Kalman” part comes from the

primary developer of the filter, Rudolf Kalman [4]. So this is just a name that is given to filters of

a certain type. Kalman filtering is also sometimes called “linear quadratic estimation.” Now let

us think about the “filter” part. All filters share a common goal: to let something pass through

while something else does not. An example that many people can relate to is a coffee filter. This

coffee filter will allow the liquid to pass through, while leaving the solid coffee grounds behind.

You can also think about a low-pass filter, which lets low frequencies pass through while

attenuating high frequencies. A Kalman filter also acts as a filter, but its operation is a bit more

complex and harder to understand. A Kalman filter takes in information which is known to have

some error, uncertainty, or noise. The goal of the filter is to take in this imperfect information,

sort out the useful parts of interest, and to reduce the uncertainty or noise. Diagrams of these

three filtering examples are offered in Figure 1.

1859

Figure 1. Three Example Diagrams of Types of Filters

1. IMPLEMENTATION OF A KALMAN FILTER

 Filtering Problem Definition

The Kalman filter is designed to operate on systems in linear state space format, i.e.

x
k

= F
k −1

x
k −1

+ G
k −1

u
k −1

+ w
k −1

yk = Hk xk + vk

where the variable definitions and dimensions are detailed in Table 1.

Table 1. Dimensions of Discrete Time System Variables

(1)

(2)

Variable Description Dimension

x State Vector nx  1

y Output Vector ny 1

u Input Vector nu 1

w Process Noise Vector nx  1

v Measurement Noise Vector ny 1

F System Matrix – State nx  nx

G System Matrix – Input nx  nu

H Observation Matrix ny  nx

Note that the number of states, outputs, and inputs are independent, and therefore the matrices G

and H can be non-square, but F is always a square matrix. The state dynamics are described by

(1), while the output equations are given by (2). Vectors are denoted in bold font, so (1) and (2)

are vector equations.

Used Grounds

Coffee Grounds

Coffee Filter Coffee

Hot Water

High Frequencies

Unfiltered Signal Low-Pass Filter
Low

Frequencies

Noise/Uncertainty

Initial Assumptions

Kalman Filter

Noisy Measurments

Desired

States

1860

The state vector, x, are the values that will be estimated by the filter. Using the filter analogy, the

components of this vector are the things that you want to pass through the filter. Sometimes you

may include more items in the state vector than you really care about if they are necessary in

order to determine what you really want. For example if you want to determine the position of an

object using information about the acceleration, you will likely need to determine the velocity as

well. This is an important distinction between the state and output vectors of the system. While

in other situations the “output” is what you are trying to get, for state estimation problems using

Kalman filtering, the “state” is actually the desired result.

The output vector, y, is not what you are trying to get out of the filter, but rather what you are able

to measure. You need to be able to express your measurements in terms of the states so that you

can compare them with the measurements, i.e. you need to get apples to apples to know how

much (or little) to correct. Not all measurements need to appear in the output vector for a

particular formulation. Sometimes certain measurements are necessary for use in the state

dynamics (1). The output vector should consist of values which can be both determined

mathematically from the states as well as through some independent measurement system, i.e. the

measurements are not used elsewhere in the filter.

The input vector, u, is probably the trickiest part of the Kalman filter definitions. This vector

contains information that is necessary coming into the filter in order to define the system

dynamics. These values can be sensor measurements, however in this case the uncertainty in

these input values would need to be considered. In general, when defining your system equations

(1) and (2), after determine the necessary states, any other terms which appear in the filter that do

not need to be estimated as states can be considered as inputs. For example, in order to find the

dynamics of a velocity state, you might include an acceleration measurement as an input.

The terms w and v which correspond to the process and measurement noise vectors for the system

are interesting in that they do not typically appear directly in the equations of interest. Instead,

these terms are used to model the uncertainty (or noise) in the equations themselves. This can

manifest itself in a number of ways. The first is modelling error, which is uncertainty in the

equation itself. How much can we trust this equation? Some equations, when derived from

physics principles for instance, have negligible modelling error. However, some situations

contain heuristically defined equations which may not be used with full confidence in their

correctness. In this case, a certain amount of error can be considered to appear in the equation in

the form of w or v. Another possible source of error is error in sensor measurements used in the

equations. The w and v terms can be used to include the errors due to sensor measurements. In

fact, this is the most common use of v in the output equations to account for the error in the

measurement of the output. Note that this error is not in the equation itself, but accounts for how

good the equation should be relative to the measurement. Note that w and v are not actually

implemented in the calculations of (1) and (2) since they are assumed to be random errors with

zero mean, but rather are just used to determine information about the process and measurement

noise covariance matrices Q and R. If you are unfamiliar with the definition of a covariance

matrix, please see Appendix A for more information.

What about the system matrices F, G, and H? These matrices will depend on the considered

problem, and are used in order to represent the equations as a linear system of states and inputs.

F will contain the coefficients of the state terms in the state dynamics (1), while H serves a

similar function in the output equations (2). The G matrix contains coefficients of the input terms

in the state dynamics (1). These matrices can in general vary with time, but cannot change with

respect to the states or inputs. For many problems, these matrices are constant.

1861

k k |k −1 k k k|k −1 k k

 Kalman Filtering Algorithm

The Kalman filter uses a prediction followed by a correction in order to determine the states of

the filter. This is sometimes called predictor-corrector, or prediction-update. The main idea is

that using information about the dynamics of the state, the filter will project forward and predict

what the next state will be. A simple example of this would be if I know where I was before

(previous state), and how fast I was moving (state dynamics), I can guess where I am at now

(current state). This can be thought of as a numerical integration technique such as Euler’s

method or Runge-Kutta [5]. The correction or update part then involves comparing a

measurement with what we predict that measurement should be based on our predicted states.

The Kalman filtering technique is now discussed in equation format. Starting from some initial

state estimate, x̂0 , and initial state error covariance matrix, P0, the predictor-corrector format is

applied recursively at each time step, e.g. using a loop. First, the state vector is predicted from

the state dynamic equation using

x̂
k |k −1

= F
k −1

x̂
k −1

+ G
k −1

u
k −1 (3)

where x̂
k |k −1

is the predicted state vector, x̂
k −1 is the previous estimated state vector, u is

the input vector, and F and G are matrices defining the system dynamics. Note that the subscript

k|k-1 is read as “k given k-1” and is a shorthand notation for the state at discrete time k given its

previous state at discrete time k-1, i.e. this is the prediction of the state using the system model

projected forward one step in time. Next, the state error covariance matrix must also be predicted

using
P = F P FT + Q (4)

k|k −1 k −1 k −1 k −1 k −1

where Pk|k-1 represents the predicted state error covariance matrix, Pk-1 is the previous estimated

state error covariance matrix, and Q is the process noise covariance matrix. Again, k|k-1 is

indicating that this is the expected covariance matrix at k based on the system model and the

covariance at k-1. Once the predicted values are obtained, the Kalman gain matrix, Kk, is

calculated by

K = P HT (H P HT + R
)

−1 (5)

where H is a matrix necessary to define the output equation and R is the measurement noise

covariance. The state vector is then updated by scaling the “innovation,” which is the difference

between the measurement of the output, zk, and the predicted output, H
k
x̂

k |k −1
(sometimes

called ŷ
k |k −1), by the calculated Kalman gain matrix in order to correct the prediction by the

appropriate amount, as in

x̂
k

= x̂
k |k −1

+ K
k (z

k
− H

k
x̂

k |k −1)

(6)

Similarly, the state error covariance is updated by

Pk = (I − Kk Hk) Pk|k −1

(7)

where I is an identity matrix.

 Comments on Notation

A major notational difference that occurs between sources is the use of the discrete time index, k.

There are essentially three different discrete time formats which can be found in the literature.

Each one is equivalent, but results in different subscripts in (1) and (2). The different time

1862

formatting is summarized in Table 2. Other different notational differences found in the various

resources on Kalman filtering are summarized in Table 3, including example sources which use

this notation.

Table 2. Different Discrete Time Notational Formatting

Time Format State Dynamics (1) Output Equations (2)

k and k – 1 [1]

k+1 and k with output k [2,3]

k+1 and k with output k+1 [8]

x
k

= F
k −1

x
k −1

+ G
k −1

u
k −1

+ w
k −1

xk +1 = Fk xk + Gk uk + wk

xk +1 = Fk xk + Gk uk + wk

yk = Hk xk + vk

yk = Hk xk + vk

y
k +1

= H
k +1

x
k +1

+ v
k +1

Table 3. Summary of Notational Differences in the Literature

Term This Tutorial Other Notation

State Vector x z [6]

Output Vector y z [2]

System State Matrix F A [3,6], Φ [7,8]

Input matrix G B [3]

Observation Matrix H C [6]

State Error Covariance Matrix P Σ [2]

 Discrete time index k n [6]

 Continuous vs. Discrete Time Kalman Filters

This article focuses on the discrete time Kalman filter. There is also a continuous time

counterpart which is sometimes called the Kalman-Bucy filter [1]. Since the majority of Kalman

filtering applications are implemented in digital computers, the implementation of Kalman filters

in continuous time is not practical in many situations. Because of this, the continuous time cases

are left to other sources [1,7]. Note that this does not mean that continuous system models cannot

be approached with a discrete time Kalman filter. Consider a continuous system of the following

form

x& (t) = Fc (t)x(t) + G c (t)u(t) + w(t) (8)

where Fc and Gc indicate the system matrices for a continuous system, and wc is the continuous

time process noise vector with covariance matrix Qc. The continuous model can be discretized,

e.g. using a 1st order approximation, as in

xk = xk −1 + tx& k (9)

where ∆t is the sampling time, or the duration of a single discrete time step, thus resulting

in t = k∆t. Then, including the continuous time model gives

xk = xk −1 + t Fc (t)x(t) + Gc (t)u(t) + wc (t)

which can be simplified to obtain the following discrete time system

xk = (I + tFc (kt)) xk−1 + tGc (kt)uk + twc (kt)

(10)

(11)

Note that the following definitions can be made to match the general discrete time system

as given in (1)

1863

2

Increasing Q

Fk −1 = I + tFc (kt)

Gk −1 = tGc (kt)

wk −1 = twc (kt)

The covariance matrices for the process noise are therefore related by

Qk −1 = (t) Qc (t)

(12)

(13)

The output equations between continuous time and discrete time are equivalent, i.e. it

does not matter if k or t is used for time in the equation, it is the same relationship.

 Effect of Noise Covariance Assumptions

The selection of the assumed covariance matrices Q, R, and P0 can have a significant effect on

the estimation performance of a Kalman filter. The selection of P0 is coupled with the assumed

initial state, and affects the initial convergence of the filter. In many situations, the effect of P0 is

not significant, and in fact it is often arbitrarily initialized to an identity matrix for simplicity.

The effects of Q and R and much more significant and they affect the overall performance of the

filter. A basic way to think of Q and R is that they are weighting factors between the prediction

(state) equations and the measurement (output) equations. This ratio is shown within the Kalman

gain equation (5). Considering a larger Q is equivalent to considering larger uncertainty in the

state equations, which is equivalent to trusting the result of these equations less, which effectively

means that the filter should correct more with the measurement update. Similarly, considering a

larger R is equivalent to considering larger uncertainty in the measurement, which is equivalent to

trusting the measurement less, which effectively means that the filter should correct less with the

measurement update. A diagram detailing this phenomenon is shown in Figure 2.

Figure 2. Diagram of Noise Covariance Assumptions Effect on Filter Operation

 Has a linear transformation

The purpose of the H matrix is to essentially convert the states into outputs. For the linear

Kalman filter this occurs by considering some linear combination of the states, i.e. H is a linear

transformation. In some simple cases, H is just used to select certain states which are measured,

when other states are not. For example, if the first, second, and fifth states of a 5-dimensional

state vector are measureable, the H matrix would be defined as

Increasing R

Correct Less Correct More

1864

 

1

k

such that

1 0 0 0 0

H =

0 1 0 0 0



0 0 0 0 1

(14)

yk = Hk xk
 x1 

1 0 0 0 0
 x 

 x 
 

 2 
  (15)

y =

0 1 0 0 0


 x  =


x



k 0 0 0 0 1 
3  x

2  x 
   4   5 

 x 
 5 

The H matrix can also be used to consider scaling effects. For example, if the radius is a state,

but the diameter can be measured, the output equation could be represented by

yk = Hk xk

y = d H = 2 x = r (16)
k k k k k

Other uses of H could be to consider combinations of states. For example, if the lengths of 3

sides of a triangle are states, but the perimeter can be measured, the output equation could be

represented by

y = x + x

+ x ,

H = 1 1 1,
 x1 

x =

x



(17)
k 1 2 3 k k  2   x 

 3 

2. A LINEAR KALMAN FILTERING EXAMPLE

In order to illustrate the use of the Linear Kalman Filter, a simple example problem is offered.

This example considers a simple object in freefall assuming there is no air resistance. The goal of

the filter is to determine the position of the object based on uncertain information about the initial

position of the object as well as measurements of the position provided by a laser rangefinder.

Using particle kinematics, we expect that the acceleration of the object will be equal to the

acceleration due to gravity. Defining the height of the object in meters, h, we have:

h& (t) = −g (18)

where g is the acceleration due to gravity (g = 9.80665 m/s2). Integrating this relationship over a

small time interval, ∆t, gives

h& (t) =
h& (t) − h& (t − t)

= −g

t
(19)

which is a backward difference equation, which is useful for Kalman filtering applications due to

the recursive structure of the filter, i.e. each time step in the Kalman filter always references the

previous time step. Simplifying this expression gives

h& (t) = h& (t − t) − gt (20)

1865

=
k

 

Integrating again yields a commonly used kinematic equation relating successive positions of a

particle with respect to time for constant acceleration

h (t) = h (t − t) + h&(t − t) −
1

g (t)
2

2

(21)

Rather than consider these equations in terms of continuous time, t, it is beneficial to rewrite the

equations in terms of a discrete time index, k, which is defined by t = k∆t. Additionally, discrete

time values are traditionally written as subscripts rather than as a functional dependence, i.e.

h(t) = h(kt) = hk

h (t − t) = h (kt − t) = h (t (k −1)) = hk −1

(22)

Rewriting the kinematic relationships for the example problem in terms of the discrete time

variable, k, gives

h& = h& − gt
k k −1

h = h + h& t −
1

g (t)
2

(23)

k k −1 k −1
2

From these kinematic expressions, we see that we have two equations describing the motion of

the object: one for velocity and one for position. Since we are interested in estimating the

position, we know that the position must be included as a state. However, since we can see that

the velocity also appears in the position equation, it is also necessary to obtain that information.

One way to make sure that we have information about the velocity is to additionally include the

velocity as a state. As a result, we now define the state vector for the Kalman filter as

h 
xk h&  (24)

 k 

which results in the following expression


h + h& t −

1
g (t)

2 

x = 
k 

k −1 k −1
2 

&  (25)

 hk −1 − gt 

With this definition, we can rewrite these equations in terms of the state vector, x, as in

1 t 

−

1
(t)

2 

x = x +  2  g (26)
k 0 1  k −1  

 

 −t 

Now, we have the problem in necessary format for the Kalman filter

x
k

= F
k −1

x
k −1

+ G
k −1

u
k −1 (27)

where the system matrices F and G are given by

1 t 
−

1
(t)

2 

F
k −1

= 0 1 
,

G = 
k −1 


 −t

(28)

 

2

1866

and the input vector can be defined as

uk −1 = g

(29)

The reason for selecting g as an input is because this information is necessary to define the state

dynamics, but g is not defined as a state in the filter. This additional information is “input” into

the equations at each time step. Note that for this particular problem the values of F, G, and u do

not vary with respect to k. It is important to note in these equations that there is no process noise

uncertainty term, w. For this particular set of equations, we are assuming that there are no errors

in the equations themselves. For this problem, this is an assumption, as there could be

disturbances from air resistance or other sources. However, assuming that these errors are small

enough to ignore, we do not need to model the process noise for this problem. Because of this,

the process noise covariance matrix, Q, can be set to zero.

Next, we need to consider the measurement part of the system. Let us consider a scenario where

the position of the object can be measured using a laser rangefinder with 2 m standard deviation

of error. Because the position is what can be measured, we need to define an output equation that

gives the position as a function of the states of the filter. There is some uncertainty in the

measurement, which is noted in the equations by the measurement noise vector, v:

yk = hk + vk (30)

Since the position can be written in terms of the state vector, this can be rewritten as

y k = 1 0xk + vk

(31)

Now, we have the output equations of the system defined in the proper form as in (2), where the

system matrix, H, is given by

Hk = 1 0 (32)

The considered measurement system has a standard deviation of error of 2 m, which is a variance

of 4 m2. Because of this, and the fact that there is only one term in the output vector, the resulting

measurement noise covariance matrix reduces to a scalar value, R = 4 m2.

In addition to the measurement noise, we also need to consider any uncertainty in the initial state

assumption. The initial position is approximately known to be 105 m before the ball is dropped,

while the actual initial position is 100 m. The initial guess was roughly determined, and should

therefore have a relatively high corresponding component in the assumed initial covariance. For

this example, we consider an error of 10 m2 for the initial position. For the initial velocity, we

assume that the object starts from rest. This assumption is fairly reasonable in this case, so a

smaller uncertainty value of 0.01 m2/s2 is assumed. To aid the reader in the implementation of

this example, the necessary parameters and definitions for this filtering application are

summarized in Table 4.

Table 4. Example Problem Definitions

1867

=
k

 

G =

 

2

 1

 Term Definition

State Vector

h 
xk h& 

 k 

Output Vector

Input Vector

yk = hk + vk

uk −1 = g

1 t 

System State Matrix Fk −1 = 
0 1




−

1
(t)

2 

 Input Matrix  
k −1

 

 −t 

Observation Matrix

Process Noise Covariance Matrix

Hk = 1 0

0 0

Qk −1 = 
0 0



Measurement Noise Covariance

Matrix
R k = 4

100
True Initial State Vector x0 = 

0


 

105
Assumed Initial State Vector x̂

0 = 
0



Assumed Initial State Error

Covariance Matrix

 

10 0 
P0 = 

0 0.0


Time Increment
t = 0.001

In order to complete this Kalman filtering example, we want to simulate values for the “true”

states of the system as well as the noisy measurements. In a real application problem, this step is

not done, as the “true” states are not known and the measurements are obtained from the

measurement system.

The provided Kalman filtering example was executed over 1000 time steps, and the estimated and

true states are offered in Figure 3. Additionally, the estimation errors are shown in Figure 4.

The code used to generate these figures is provided in Appendix B. It is recommended, however,

that the reader of this tutorial try to implement their own version of the code before consulting

with the solution in Appendix B.

1868

105

100

95

90

85
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

0

-5

-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

Figure 3. Kalman Filtering Example Estimated and True States

6

4

2

0

-2
1

0.06

0.04

0.02

0

-0.02

1

Figure 4. Kalman Filtering Example Estimation Errors

3. THE EXTENDED KALMAN FILTER

The Extended Kalman Filter (EKF) is just an extension of the Kalman filter to nonlinear systems.

This means that the difference with the EKF is that the state and/or the output equations can

contain nonlinear functions. So rather than considering systems of the form (1) and (2), the EKF

can consider a more general nonlinear set of equations:

x
k

= f (x
k −1

,u
k −1) + w

k −1

yk = h (xk) + vk

(33)

(34)

where f is the vector-valued nonlinear state transition function and h is the vector-valued,

nonlinear observation or output function. In order to handle the nonlinear functions, Jacobian

Measured

 Estimated

 True

 Estimated

 True


x

x

=
 h

 (
m

)
(m

/s
)

x

(m
/s

)
2

1

2


x

(m
)

1

 0 0.1 0.2 0.3 0.4 0.5

t (s)

0.6 0.7 0.8 0.9

 0 0.1 0.2 0.3 0.4 0.5

t (s)

0.6 0.7 0.8 0.9

1869

x2 + y2 x2 + y2


x



k k |k −1 k k k |k −1 k k

matrices are calculated in order to linearize the equations at each time step about the previous

state, as in

F =
 f

k x

H =
 h

k x

x̂ k −1

x̂k|k −1

(35)

(36)

Using these calculated Jacobian matrices, the EKF algorithm can be summarized as

x̂
k |k −1

= f (x̂
k −1

, u
k −1)

P = F P FT + Q
k|k −1 k −1 k −1 k −1 k −1

K = P HT (H P HT + R)
−1

(37)

x̂
k

= x̂
k |k −1

+ K
k



z

k
− h (x̂

k |k −1)

Pk = (I − K k Hk) Pk|k −1

Note that the EKF equations are very similar to the Kalman filter equations, but with a few

exceptions. One difference is that the values of F and H are determined from the Jacobian matrix

calculations at each time step. The other difference is that the nonlinear functions f and h are

used directly in the prediction of the states and the outputs, rather than use the linearized version,

i.e. the EKF uses f (x̂
k −1

,u
k −1) instead of F

k −1
x̂

k −1
+ G

k −1
u

k −1
, and h (x̂

k |k −1) instead of

Hk x̂
k |k −1 . Besides these differences, the operation and usage of the EKF is comparable to that of

the Kalman filter.

 Nonlinear Observation/Output Equations
The purpose of the observation or output equations is to map the existing set of states to a set of

“outputs” that are able to be measured within the considered system. As an example, consider a

system with states describing the 2-dimensional Cartesian position of an object (x, y). A tracking

system is used to follow the object and measures the distance to the object, r, and the angle that it

makes with respect to the horizontal, θ. Note that this measurement system offers a polar

representation of the 2-dimensional coordinates. With this system, the output equations would

then be defined as

r =

 = tan−1
 y 

 

For this system, the Jacobian matrix, H, would be calculated using

(38)

 r r   x y 
h

 x
y   

H = =   =  

(39)
x     − y x   x y 


x2 + y2 x2 + y2



   

This expression could then be used at each time step in order to evaluate the value of H at the

current predicted state.

x2 + y2

1870

 Other Nonlinear Kalman Filtering Techniques

The Extended Kalman Filter (EKF) is not the only nonlinear Kalman filtering technique. Perhaps

the most common alternative to the EKF is the Unscented Kalman Filter (UKF) which is

sometimes referred to as a Sigma-Point Kalman Filter (SPKF). Rather than use Jacobian matrices

to handle the nonlinear in the system, the UKF uses a statistical linearization technique called the

unscented transformation [9]. The UKF has demonstrated some advantages in more accurate

linearization, particularly in highly nonlinear problems [9,10], however in some situations it has

been shown to produce similar results to that of the EKF [11]. The EKF tends to be more

computationally efficient than the UKF, thus making it more desirable for real-time applications

[11,12]. Additionally, the EKF is a bit easier to understand conceptually, which is beneficial for

student use. The UKF, however, can provide superior linearization in certain situations, and can

also be easier to implement since there is no need to calculate Jacobian matrices [10]. For details

on the implementation of the UKF, see [13] or [14].

4. CONCLUSION

This work provided a tutorial for Kalman filtering that is geared toward undergraduate students

with little or no experience on this topic. Detailed descriptions and an example problem were

offered in order to help aid in the basic understanding of this complex topic.

ACKNOWLEDGEMENTS

This work was partially supported by the Lafayette College EXCEL Scholar Program for

undergraduate research and the Rodney A. Erickson Discovery Grant Program for undergraduate

research.

REFERENCES

Simon, D., Optimal State Estimation, Wiley, New York, 2006.

Anderson, B. D. O., and Moore, J. B., Optimal Filtering, Prentice-Hall, NJ, 1979.

Welch, G., and Bishop, G, “An introduction to the Kalman filter,” Technical Report TR 95-041,

University of North Carolina, Department of Computer Science, 1995.

Kalman, R. E., “A New Approach to Linear Filtering and Prediction Problems,” Trans. of the ASME

– Journal of Basic Engineering, March 1960, pp. 35-45.

Kreyszig, E., Advanced Engineering Mathematics, 9th Ed., Wiley, NY, 2006.

Reif, K., Günther, S., Yaz, E., and Unbehauen, R., “Stochastic Stability of the Discrete-Time

Extended Kalman Filter,” IEEE Trans. on Automatic Control, Vol. 44, No. 4, April, 1999.

Jazwinski, A. H., Stochastic Processes and Filtering Theory, Academic, New York, 1970.

Hargrave, P., “A tutorial introduction to Kalman filtering,” IEEE Colloquium on Kalman Filters:

Introduction, Applications and Future Developments, Feb. 1989.

Julier, S. and Uhlmann, J., “A New Extension of the Kalman Filter to Nonlinear Systems.” SPIE

Proceedings Series, 1997, Vol. 3068, pp. 182-193.

Rhudy, M., and Gu, Y., “Understanding Nonlinear Kalman Filters, Part I: Selection between EKF and

UKF,” Interactive Robotics Letters, West Virginia University, June 2013. Link:

http://www2.statler.wvu.edu/~irl/page13.html.

Rhudy, M., Gu, Y., Gross, J., Gururajan, S., and Napolitano, M., “Sensitivity Analysis of Extended and

Unscented Kalman Filters for Attitude Estimation,” AIAA Journal of Aerospace Information Systems,

Vol. 10, No. 3, March 2013, pp. 131-143. doi: 10.2514/1.54899.

Gross, J., Gu, Y., Rhudy, M., Gururajan, S., and Napolitano, M., “Flight Test Evaluation of GPS/INS

Sensor Fusion Algorithms for Attitude Estimation,” IEEE Transactions on Aerospace Electronic

Systems, Vol. 48, No. 3, July 2012, pp. 2128-2139.

Rhudy, M., and Gu, Y., “Understanding Nonlinear Kalman Filters, Part II: An Implementation Guide,”

Interactive Robotics Letters, West Virginia University, June 2013. Link:

http://www2.statler.wvu.edu/~irl/page13.html.

Wan, E., and van der Merwe, R., “The Unscented Kalman Filter,” Chap. 7 in Kalman Filtering and

Neural Networks, Wiley, New York, March 2002, pp. 221–282.

http://www2.statler.wvu.edu/~irl/page13.html
http://www2.statler.wvu.edu/~irl/page13.html

