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ABSTRACT.  

We propose a data assimilation algorithm for the  Navier-Stokes equations, based on the Azouani, 

Olson, and Titi (AOT) algorithm, but applied to the  Navier-Stokes-Voigt equations. Adapting the 

AOT algorithm to regularized versions of Navier-Stokes has been done before, but the innovation of 

this work is to drive the assimilation equation with observational data, rather than data from a 

regularized system. We first prove that this new system is globally well-posed. Moreover, we prove 

that for any admissible initial data, the L2 and H1 norms of error are bounded by a constant times a 

power of the Voigt-regularization parameter α > 0, plus a term which decays exponentially fast in 

time. In particular, the large-time error goes to zero algebraically as α goes to zero. Assuming more 

smoothness on the initial data and forcing, we also prove similar results for the H2 norm. 

I INTRODUCTION  

 The finite number of degrees of freedom such as determining modes, determining nodes, 

determining volume elements has been proved by Korn  for some αmodels in fluid mechanics, 

including Navier-Stokes-α, Leray-α and Navier-Stokes-ω equations.  Azouani and Titi proposed a 

new feedback control for controlling general dissipative evolution equations using any of the 

determining systems of parameters (modes, nodes, volume elements, etc...) without requiring the 

presence of separation in spatial scales, i.e. without assuming the existence of an inertial manifold. 

Then it is applied to stabilize the nonlinear reaction-diffusion equations by using finite parameters 

feedback controls; see also a more recent result for damped nonlinear wave equations. The 

computational study of a simple finite dimensional feedback control algorithm for stabilizing 

solutions to some nonlinear dissipative systems was presented. In this paper, following the general 

lines of the approach we propose a simple finite-dimensional feedback control scheme for stabilizing 

stationary solutions of Navier-Stokes-Voigt equations with periodic boundary conditions. Here the 

feedback control scheme only uses finitely many of observables and controllers, such as finite number 

of determining Fourier modes, determining nodes, and determining finite volumes for a unified theory 

of such determining functional. The paper is organized as follows. For convenience of the reader, we 

recall the functional setting of the Navier-Stokes-Voigt equations. we first stabilize an unstable 

stationary solution to the Navier-Stokes-Voigt equations (in both cases of dimension two and 

dimension three) by using finite-dimensional feedback control scheme employing finite volume 

elements or projection onto Fourier modes. Then in the case of two dimensions, we show that an 

unstable stationary solution can be stabilized by using a finite-dimensional feedback control 

employing finitely many nodal values. 

 The NS-Voigt equations were first proposed by Oskolkov model for Kelvin–Voigt fluids, but 

were later viewed as a regularization for the NS equations where also the Euler-Voigt equations were 

first introduced and studied. The Voigt-regularization is related to the wider class of α-models, 

including the NS-α (NS-α) model and the Leray-α model. The Voigt model enjoys two features that 

the other α-models are not known to have in the 3D case. First, it is known to be globally well-posed 

in the inviscid case. Second, in the viscous case, it is well-posed in the physical case of “noslip” 

homogeneous Dirichlet boundary conditions, with no need to impose artificial boundary conditions. 

Although we only work in 2D, we focus on the NS-Voigt model due in part to these attractive 
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features, and also due to its simplicity. The study of the AOT-algorithm applied to other models but 

still driven by observable data, and the errors resulting from the mismatch, will be the subject of a 

forthcoming work. 

 In this paper, following the general lines of the approach introduced, we propose a simple 

finite-dimensional feedback control scheme for stabilizing stationary solutions of Navier-Stokes-

Voigt equations with periodic boundary conditions. Here the feedback control scheme only uses 

finitely many of observables and controllers, such as finite number of determining Fourier modes, 

determining nodes, and determining finite volumes for a unified theory of such determining 

functionals. 

2. MODEL FORMULATION 

We follow the same notation as introduced parametrize the surface S ⊂ R
3
 by the local coordinates θ, 

ϕ, i.e., 

x : R
2
 ⊃ U → R

3
 ; (θ, ϕ) → x (θ, ϕ) . 

Thus, the embedded R
3
 representation of the surface is given by S = x(U). The unit outer normal of 

Sat point x is denoted by ν(x). We denote by (∂θ x, ∂ϕx ) the canonical basis to describe the 

(tangential) velocity v(x) ∈ TxS, i.e., v = v
θ
∂θ x + v 

ϕ
∂ϕx at a point x ∈ S. In a (tubular) neighborhood 

Ωδ of S, defined a signed-distance function are defined by 

 

respectively, for   ∈ Ωδ and x the corresponding coordinate projection. To embed the R3 vector space 

structure to the tangential bundle of the surface, we use the pointwise defined normal projection 

  

However, the rotS rotS v term leads to a heavy workload in terms of implementation and assembly 

time, as 36 second order operators, 72 first order operators, and 36 zero order operators have to be 

considered. This effort can drastically be reduced by rotating the velocity field in the tangent plane. 

Instead ofDv we consider w = ν ×v as unknown. Applying ν×  

 

2.1 ENERGY BUDGET FOR THE NSV MODEL 

The global regularity result for solutions of the Navier-Stokes-Voigt equations established in [30] 

implies that the following energy equality holds for every t ∈ [0, ∞): 

 
Similarly, the global regularity results established in [2] imply that the solutions of the NSV equations 

in the inviscid (i.e. Euler-Voigt model, ν = 0) and unforced setting, f = 0, satisfy for every t ∈ R: 
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Therefore, the conserved quantity in the inviscid and unforced setting of the NSV (i.e. Euler-Voigt) 

model is 

Then, we can write the projected Navier-Stokes-Voigt equations on the shell [κ ′ , κ′′) 

 
 

2.2 Two-phase Navier-Stokes equations with Boussinesq-Scriven interface stresses 

The two Navier-Stokes equations in Ωi , i = 1, 2, in (2.1) together with the interfacial conditions can 

be reformulated in one Navier-Stokes equation on the whole domain Ω with a surface tension force 

term localized at the interface. Combining this with the level set method leads to the following model 

for the two-phase problem in Ω × [0, T], with unknowns u(x, t), p(x, t) and the level set function φ(x, 

t) 

  

We now specify the domain, boundary and initial conditions that are used in the numerical 

experiments in section 4. For Ω we take a rectangular box with lengths Lx, Ly, Lz in the three 

coordinate directions. The interface Γ(0) is defined as a sphere at the centreline of the box with radius 

r. The subdomain Ω1(0) is the interior of this sphere. The boundary conditions for u are as follows. On 

the z-boundaries (z = ±Lz) we use periodic boundary conditions. On the y-boundaries we take 

Dirichlet no slip conditions (u = 0). On the x-inflow boundary we prescribe a Poiseuille profile that is 

constant in z-direction and has the form 

 

3. RESULTS AND DISCUTION  

 A general form of a level-set function for a n-torus can be written as L(x) = Qn i=1 T(x − mi) − 

(n − 1) δ with a constant δ > 0 and the midpoints of the tori mi ∈ R 3 for i = 1, . . ., n. In the following 

examples, we consider the fully discrete scheme for Problem 2 and use Re = 10, τ = 0.1, α = 3000, R 

= 1, and r = 0.5. For the Gaussian curvature κ, we use the analytic formula. The initial condition is 

considered to be v0 = rotS ψ0 = ν × gradS ψ0 with ψ0 = 1 2 (x + y + z) which ensures the 

incompressibility constraint. Figure 4 (Multimedia view) (top) shows the time evolution on the 1-

torus with m1 = 0. The initial state has four defects, two vortices with Indxv = +1, indicated as red 

dots, and two saddles with Indxv = 1, indicated as blue dots (one vortex and one saddle are not 

visible). These defects annihilate during the evolution. The final state is again a Killing vector field 

without any defects. For n > 1, the rotational symmetry is broken and Killing vector fields are no 

longer possible. We thus expect dissipation of the kinetic energy and convergence to v = 0 for any 
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initial condition. Figure 4 (Multimedia view) (middle) shows the time evolution on a 2-torus where 

we have used the midpoints m1 = (1.2, 0, 0) and m2 = m1 as well as δ = 1. The initial state has two 

vortices and four saddles and thus P x∈v −1 (0) Indxv = −2. Two vortex-saddle pairs annihilate each 

other and the final defect configuration consists of two saddles located at the center of the 2-torus (one 

is not visible). The velocity field decays towards v = 0. Figure 4 (Multimedia view) (bottom) shows 

the time evolution on a 3-torus with midpoints m1 = (1.2,0.75, 0), m2 = (1.2, 0.75, 0), and m3 = (0, 

1.33, 0) as well as δ = 10. Initially we have three vortices and seven saddles and thus P x∈v −1 (0) 

Indxv = −4, which is also fulfilled for the final defect configuration with two vortices and six saddles 

at the center of the 3-torus (one vortex and three saddles are not visible). Again the velocity field 

decays towards v = 0. To show the differences in the evolution on the n-tori before and after the final 

defect configuration is reached, we consider the H 1 semi-norm of the rescaled velocity field v¯ = 

Dv/kDvkL 2 . If the defects do not move, this quantity is constant. Figure 5 shows the evolution over 

time together with the decay of the kinetic energy E = 1 2 ∫S kDvk 2 dS. These results clearly show 

the strong interplay between topology, geometric properties, and defect positions.  

4. CONCLUSIONS  

 We have proposed a discretization approach for the incompressible surface Navier-Stokes 

equation on general surfaces independent of the genus g(S). The approach only requires standard 

ingredients which most finite element implementations can offer. It is based on a reformulation of the 

equation in Cartesian coordinates of the embedding R 3 , penalization of the normal component, a 

Chorin projection method, and discretization in space by globally continuous, piecewise linear 

Lagrange surface finite elements for each component. A further rotation of the velocity field leads to a 

drastic reduction of the complexity of the equation and the required computing time. The fully 

discrete scheme is described in detail and its accuracy is validated against a DEC solution on a 1-

torus. The interesting interplay between the topology of the surface, its geometric properties, and 

defects in the flow field are shown on n-tori for n = 1, 2, 3. Even if the formulation of the 

incompressible surface Navier-Stokes equation is relatively old,15,22,34 numerical treatments on 

general surfaces are very rare. We are only 012107-6 S. Reuther and A. Voigt Phys. Fluids 30, 

012107 (2018) and therefore expect the proposed approach to initiate a broader use and advances in 

the mentioned applications in Sec. I. We further expect it to be the basis for further developments, 

e.g., coupling of the surface flow with bulk flow in two-phase flow problems, as, e.g., using a 

vorticity-stream function approach or in  4 within an alternative formulation based on the bulk 

velocity and projection operators. Another extension considers evolving surfaces. With a prescribed 

normal velocity, this has already been again using a vorticity-stream function approach. The 

corresponding equations are using a global variational approach as a thin-film limit. A mathematical 

derivation of the evolution equation for the normal component is still controversial. The derivation is 

based on local conservation of mass and linear momentum in tangential and normal directions, while 

the derivation is based on local conservation of mass and total linear momentum. The resulting 

equations differ. However, in the special case of a stationary surface, all these models coincide with 

the incompressible surface Navier-Stokes equation In all considered examples, the Gaussian curvature 

was analytically given. However, this is not necessary. For appropriate algorithms to compute κ from 

a given surface triangulation 
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