dss₂ of Strong 2-Vertex Duplication Self Switching of Some Special Graphs

¹K.S Shruthi ²G.Sumathy

¹Research Scholar, Reg No: 20123182092004,Sree Ayyappa College For Women, Nagercoil-629003, India
² Department of Mathematics, Sree Ayyappa College For Women, Nagercoil-629003, India.
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012 email: ¹shruthiksnair@gmail.com,²sumathy.sac@gmail.com

Abstract

Let *G* be a graph and let $\sigma \subseteq V$ be a non-empty subset of $V - \sigma$ is said to be a self switching if $G \cong G^{\sigma}$ where G^{σ} is obtained from *G* by removing all edges between σ and $V - \sigma$ and adding edges between all non-adjacent vertices of σ and $V - \sigma$. A vertex v' is the duplication of v if all the vertices which are adjacent to v in *G* are also adjacent to v' in (vG), which is the duplication graph of *G*. A vertex v is called a duplication self vertex switching of a graph G if the resultant graph obtained after duplication v has v as a self vertex switching.

Keywords: Switching, 2-vertex self switching, $SS_2(G)$, $ss_2(G)$, $dSS_2(G)$, $dss_2(G)$.

1.Introduction

For a finite undirected simple graph G(V, E) with |V(G)| = p and a non-empty set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E')$ which is obtained from G by removing all edges between σ and its complement, $V - \sigma$ and adding as edges all non-edges between σ and $V - \sigma$. Switching has been defined by Seidel [1,6] and is also referred to as Seidel switching. When $\sigma = \{v\} \subset V$, the corresponding switching $\{v\}$ is called a *vertex switching* and is denoted by G^{v} . A non-empty set $\sigma \subseteq V$ is said to be self switching if $G \cong G^{\sigma}$. We also call it as $|\sigma|$ -vertex self switching. The set of all k -vertex self switchings of G each with cardinality k is denoted by $SS_k(G)$ and its cardinality by $ss_k(G)$. If k = 1, then we call the corresponding self switching as self vertex switching ... When $|\sigma| = 2$, we call it as 2 -vertex self switching. The set of all 2 -vertex self switching sets of a graph G is denoted by $SS_2(G)$ and its cardinality by $ss_2(G)$. The number $ss_2(G)$ for the graph G, when G is a Path P_n , a cycle C_n , and a complete bipartite graph $K_{m,n}$ has been found

C. Jayasekaran and G. Sumathy [2] has done a survey on self-vertex switching of graphs. The existence of self vertex switching like trees, path, complete graph unicycle, two cyclic, bicyclic but not a two cyclic graph with given number of vertices are analyzed.

A vertex v' is said to be a duplication of v if all the vertices which are adjacent to v in G are also adjacent to v' in G'. The concept of duplication self vertex switching was introduced by C. Jayasekaran and Prabhavathy [3,4] A vertex v is called a duplication self vertex switching of a graph G if the resultant graph obtained after duplication of v has v as a self vertex switching. The set of duplication self vertex switching is denoted $dSS_1(G)$. The number of duplication self vertexswitching is denoted $dss_1(G)$. Let $\sigma = \{x, y\} \subseteq V(G)$ is called a **2** -vertex duplication self switching of a graph G if $D((u, v)G) \cong D((u, v)G)^{\sigma}$. If $\sigma = \{u, v\}$, then σ is called the strong **2** - vertex duplication self switching of G. Already we discussed about some results of strong 2-vertex duplication self switching of graphs [8]. In this paper, we deals about the wheel graph, cycle graph of G and \overline{G} and helm graph.

2.Strong 2-vertex duplication self switching graphs

In this paper, we are analyzing only the non-adjacency vertices of *G* to find $ss_2(G)$. **Theorem 2.1:**If $\sigma = \{u, v\} \subseteq V$ is a strong 2-vertex duplication self switching of a graph *G*, then $d_G(u) + d_G(v) = p$ if $uv \notin E(G)$.

Proof:

Let $\sigma = \{u, v\} \subseteq V$ be a strong 2 -vertex duplication self switching of a graph G. By the definition, $D((u,v)G) = D((u,v)G)^{\sigma}$ and hence $|E(D(u,v)G)| = |E(D(u,v)G)^{\sigma}|$. That implies, $q + d_G(u) + d(v) = q + d_G(u) + d_G(v) + [p + 2 - 1 - d_{D((u,v)G)}(u)] - d_{D((u,v)G)}(u) + [p + 2 - 1 - d_{D((u,v)G)}(v)] - d_{D((u,v)G)}(v) + 2$. $0 = p + 1 - [d_G(u) + 1] - (d_G(u) + 1) + p + 1 - [d_G(v) + 1] - (d_G(v) + 1) + 2$. $0 = 2p + 2 - 2d_G(u) - 2 - 2d_G(v) - 2 + 2$.

$$0=2p-2d_G(u)-2d_G(v)$$

$$d_G(u)+d_G(v)=p$$

Note 2.2: The converse of the above theorem need not be true. For example, let us consider the graph G with 4 vertices given in figure 2.1. In this graph the vertices *a* and *b* are non- adjacent with $d_G(a) + d_G(b) = 4 = p$. Therefore the graph D((a, b)G) and $D((a, b)G)^{\{a,b\}}$ is given in the figure 2.2 and figure 2.3. Thus $D((a, b)G) \ncong D((a, b)G)^{\{a,b\}}$

Definition 2.3: The Wheel graph W_p for each $p \ge 4$ is obtained by connecting an isolated vertex to all other vertices in a cycle C_{p-1} . That is, $W_p = K_1 + C_{p-1}$, $\forall i = 1, 2, ..., p - 1$.

Theorem2.4: For $p \ge 4$, $dss_2(W_p) = 0$.

Proof:

Let $G = W_p$, Here $W_p = K_1 + C_{p-1}$. where K_1 be the vertex w and C_{p-1} be the cycle $v_1v_2 \dots v_{p-1}v_1$. Then $V(W_p) = \{w, v_1, v_2, \dots, v_{p-1}\}$ and $E(W_p) = \{wv_i, wv_{p-1}, v_iv_{i+1}, v_1v_{p-1}/1 \le i \le p-2\}$. In W_p , the central vertex w is of degree p - 1 and $d(v_i) = 3$, $\forall 1 \le i \le p - 1$.

Let $G = W_p$. If $\sigma = \{u, v/u = v_i, v = v_{i+2}\}$, for some $1 \le i \le p - 1\}$, let us consider the case $uv \notin E(G)$ then $d_G(u) + d_G(v) \ne p$ and hence by theorem 2.1 σ is not a strong 2-vertex duplication self switching of G.

Therefore, $D((u, v)G) \cong ((u, v)G)^{\sigma}$. Hence $dss_2(W_p) = 0$.

Theorem2.5:For
$$p \ge 3$$
, $dss_2(C_p) = \begin{cases} 2, if p = 4 \\ 0, otherwise \end{cases}$

Proof:

Let $G = C_p$. Here $V(C_p) = \{v_1, v_2, ..., v_n, v_1\}$ be the vertices of the cycle and $E(C_p) = \{e_1, e_2, ..., e_n\}$ be the vertices of cycle C_p . If $u_i u_{i+2} \notin E(G)$

Case 1:If *p*=4

Let $\sigma = \{u_1, u_3\} \& \sigma = \{u_2, u_4\}$ For any two non- adjacent vertices u and v in $C_{p, d_G}(u_1) + d_G(u_3) = 4 = p$. Clearly $D((u_1, u_3)G) \cong D((u_1, u_3)G)^{\{u_1, u_3\}}$.

Similarly, $D((u_2, u_4)G) \cong D((u_2, u_4)G)^{\{u_2, u_4\}}$.

Hence by the theorem 2.1, σ is a strong 2-vertex duplication self switching of C_p .

Case 2: If $p \neq 4$

For any two non-adjacent vertices u and v in C_p , $d_G(u) + d_G(v) = 4 \neq p$. By the theorem 2.1, σ is not a strong 2-vertex duplication self switching of C_p .

Therefore, $dss_2(C_p)=0$.

Result 2.6: For any graph G, if $uv \notin E(G)$, then $dss_2(G) \neq dss_2(\overline{G})$

Note 2.7: Consider the graph $G = C_4$ and $dss_2(G) = 2$. Now $\overline{G} = 2K_2$ is given in the figure 2.4.Clearly G is disconnected. Therefore $G \ncong \overline{G}$ and $dss_2(\overline{C_p}) = 0$. Thus, $dss_2(C_p) \neq dss_2(\overline{C_p})$ **Example 2.8**:

Fig. 2.4. $\bar{G} = 2K_2$

Result 2.9:For any connected graph G, all the strong 2-vertex duplication self switchings are in one component.

Definition 2.10: The Helm graph H_p is obtained from the wheel graph $W_p = K_1 + C_{p-1}$, by adding a pendant vertex to the other vertices in the cycle C_{p-1} .

Theorem2.11:For $p \ge 4$, $dss_2(H_p) = 0$. **Proof:**

The Helm graph H_p is the graph obtained from a n-wheel graph by joining a pendant edge at each vertex of the cycle. Thus, the graph H_p has p=2n - 1 vertices and q = 3(n - 1) edges. Let w be the central vertex of H_p . Let $v_1, v_2, ..., v_{n-1}$ be the pendant vertices of H_p and $u_1, u_2, ..., u_{n-1}$ be the vertices of degree 4.

Let $G = H_p$. Now let us consider the case $uv \notin E(G)$

Let $\sigma = \{w, v_i\}$ for all $i = 1 \le i \le n - 1$, then $d_G(w) + d_G(v_i) \ne p$ and hence by theorem 2.1 σ is not a strong 2 -vertex duplication self switching of G.

Also if $\sigma = \{v_i, v_{i+1}\}$ for all $i = 1 \le i \le n - 1$, then $d_G(v_i) + d_G(v_{i+1}) \ne p$ and hence by theorem 2.1 σ is not a strong 2 –vertex duplication self switching of G.

If $\sigma = \{u_i, u_{i+2}\}$ for all $i = 1 \le i \le n - 1$, then $d_G(u_i) + d_G(u_{i+2}) \ne p$ and hence by theorem 2.1 σ is not a strong 2 -vertex duplication self switching of G. Thus $dss_2(H_p) = 0$.

Conclusion:

We have found the number of 2 -vertex duplication self switchings of wheel, cycle and Helm graphs in this paper. Further, we are analyzing some more results of 2 -vertex duplication self switching graphs.

References:

- [1] Colbourn.C and Corneil.D, "On deciding switching equivalence of graphs", Discrete Appl. Math.,vol.2,pp.181-184,1980.
- [2] C. Jayasekaran, and G. Sumathy, Self vertex switchings of connected two-cyclic graphs, accepted for publication in *Journal of Discrete Mathematical Sciences and Cryptograph*
- [3] C. Jayasekaran & V. Prabavathy, "Some results on Duplication self vertex switchings", International Journal of Pure and Applied Mathematics, vol. 116, No. 2,427 – 435.
- [4] C. Jayasekaran & V. Prabavathy, "A characterization of duplication self vertex switching in graphs", International Journal of Pure and Applied Mathematics, vol. 118, No.2.
- [5] C. Jayasekaran, J. Christabel Sudha & M.Ashwin Shijo, 2 vertex self switchings of some special graphs", International Journal of Scientific Research and Review, vol.7, Issue 12,2018. ISSN No:2279 – 543X
- [6] C. Jayasekaran, J. Christabel Sudha, Some results on 2 –vertex self switching in joints, "Italian Journal of Pure and Applied Mathematics", communicated.
- [7] G.Sumathy, Self vertex switching of two-cyclic and bicyclic graphs, Manonmaniam Sundaranar University, Tirunelveli, India, 2014.
- [8] G.Sumathy and K.S Shruthi, "Some results on strong 2-vertex duplication self switching ofsome connected graphs", Malaya journal of Mathematik, Vol.8, No.4,ISSN No.2319-3786,2020
- [9] J.J Seidal, A survey of two graphs, Proceedings of the international Coll.Theorie Combinatorie (Rome1973). Tomo I, Acca, Naz. Lincei pp. 481-511,1976.
- [10] Selvam Avadayppan and M. Bhuvaneshwari, More results on self vertex switching, International journal of Modern sciences and Engineering Technology, Volume 1Issue 3, 2014, pp.10-17.