dss $_{2}$ of Strong 2-Vertex Duplication Self Switching of Some Special Graphs

${ }^{1}$ K.S Shruthi ${ }^{2}$ G.Sumathy
${ }^{1}$ Research Scholar, Reg No: 20123182092004 ,Sree Ayyappa College For Women, Nagercoil-629003, India
${ }^{2}$ Department of Mathematics, Sree Ayyappa College For Women, Nagercoil-629003, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012 email: ${ }^{1}$ shruthiksnair@gmail.com, ${ }^{2}$ sumathy.sac @ gmail.com

Abstract

Let G be a graph and let $\sigma \subseteq V$ be a non-empty subset of $V-\sigma$ is said to be a self switching if $G \cong G^{\sigma}$ where G^{σ} is obtained from G by removing all edges between σ and $V-\sigma$ and adding edges between all non-adjacent vertices of σ and $V-\sigma$. A vertex v^{\prime} is the duplication of v if all the vertices which are adjacent to v in G are also adjacent to v^{\prime} in $(v G)$, which is the duplication graph of G. A vertex v is called a duplication self vertex switching of a graph G if the resultant graph obtained after duplication v has v as a self vertex switching.

Keywords: Switching, 2-vertex self switching, $S S_{2}(G), s s_{2}(G), d S S_{2}(G), d s s_{2}(G)$.

1.Introduction

For a finite undirected simple graph $G(V, E)$ with $|V(G)|=p$ and a non-empty set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}\left(V, E^{\prime}\right)$ which is obtained from G by removing all edges between σ and its complement, $V-\sigma$ and adding as edges all non-edges between σ and $V-\sigma$. Switching has been defined by Seidel $[1,6]$ and is also referred to as Seidel switching. When $\sigma=\{v\} \subset V$, the corresponding switching $\{v\}$ is called a vertex switching and is denoted by G^{v}. A non-empty set $\sigma \subseteq V$ is said to be self switching if $G \cong G^{\sigma}$. We also call it as $|\sigma|$-vertex self switching. The set of all k-vertex self switchings of G each with cardinality k is denoted by $S S_{k}(G)$ and its cardinality bys $_{k}(G)$. If $k=1$, then we call the corresponding self switching as self vertex switching .. When $|\sigma|=2$, we call it as $2-$ vertex self switching. The set of all $2-$ vertex self switchings sets of a graph G is denoted by $S S_{2}(G)$ and its cardinality by $s s_{2}(G)$.The number $s s_{2}(G)$ for the graph G, when G is a Path P_{n}, a cycle C_{n}, and a complete bipartite graph $K_{m, n}$ has been found
C. Jayasekaran and G. Sumathy [2] has done a survey on self-vertex switching of graphs. The existence of self vertex switching like trees, path, complete graph unicycle, two cyclic, bicyclic but not a two cyclic graph with given number of vertices are analyzed.

A vertex v^{\prime} is said to be a duplication of v if all the vertices which are adjacent to v in G are also adjacent to v^{\prime} in G^{\prime}. The concept of duplication self vertex switching was introduced by C . Jayasekaran and Prabhavathy [3,4] A vertex v is called a duplication self vertex switching of a graph G if the resultant graph obtained after duplication of v has v as a self vertex switching. The set of duplication self vertex switching is denoted $d S S_{1}(G)$.The number of duplication self vertexswitching is denoted $d s s_{1}(G)$.Let $\sigma=\{x, y\} \subseteq V(G)$ is called a 2 -vertex duplication self switching of a graph G if $D((u, v) G) \cong D((u, v) G)^{\sigma}$. If $\sigma=\{u, v\}$, then σ is called the strong 2 - vertex duplication self switching of G. Already we discussed about some results of strong 2 -vertex duplication self switching of graphs [8].In this paper, we deals about the wheel graph, cycle graph of G and \bar{G} and helm graph.

2.Strong 2-vertex duplication self switching graphs

In this paper, we are analyzing only the non-adjacency vertices of G to find $s s_{2}(G)$.
Theorem 2.1:If $\sigma=\{u, v\} \subseteq V$ is a strong 2 -vertex duplication self switching of a graph G,then $d_{G}(u)+d_{G}(v)=p$ if $u v \notin E(G)$.

Proof:

Let $\sigma=\{u, v\} \subseteq V$ be a strong 2 -vertex duplication self switching of a graph G. By the definition, $D((u, v) G)=D((u, v) G)^{\sigma}$ and hence $|E(D(u, v) G)|=\left|E(D(u, v) G)^{\sigma}\right|$.
That implies, $q+d_{G}(u)+d(v)=q+d_{G}(u)+d_{G}(v)+\left[p+2-1-d_{D((u, v) G)}(u)\right]-$

$$
\begin{aligned}
& \quad d_{D((u, v) G)}(u)+\left[p+2-1-d_{D((u, v) G)}(v)\right]-d_{D((u, v) G)}(v)+2 . \\
& 0=p+1-\left[d_{G}(u)+1\right]-\left(d_{G}(u)+1\right)+p+1-\left[d_{G}(v)+1\right]-\left(d_{G}(v)+1\right)+2 . \\
& 0=2 p+2-2 d_{G}(u)-2-2 d_{G}(v)-2+2 . \\
& 0=2 p-2 d_{G}(u)-2 d_{G}(v) \\
& d_{\mathrm{G}}(u)+d_{G}(v)=p
\end{aligned}
$$

Note 2.2: The converse of the above theorem need not be true. For example, let us consider the graph G with 4 vertices given in figure 2.1. In this graph the vertices a and b are non- adjacent with $d_{G}(a)+d_{G}(b)=4=p$.Therefore the graph $D((a, b) G)$ and $D((a, b) G)^{\{a, b\}}$ is given in the figure 2.2 and figure 2.3. Thus $D((a, b) G) \not \equiv D((a, b) G)^{\{a, b\}}$

Fig. 2.1. G

Fig. 2.2. $D((a, b) G)$

Fig. 2.3. $D((a, b) G)^{\{a b\}}$

Definition 2.3: The Wheel graph W_{p} for each $p \geq 4$ is obtained by connecting an isolated vertex to all other vertices in a cycle C_{p-1}. That is, $W_{p}=K_{1}+C_{p-1}, \forall i=1,2, \ldots, p-1$.

Theorem2.4: For $p \geq 4, d s s_{2}\left(W_{p}\right)=0$.

Proof:

Let $\mathrm{G}=W_{p}$, Here $W_{p}=K_{1}+C_{p-1}$. where K_{1} be the vertex w and C_{p-1} be the cycle $v_{1} v_{2} \ldots v_{p-1} v_{1}$. Then $V\left(W_{p}\right)=\left\{w, v_{1}, v_{2}, \ldots, v_{p-1}\right\}$ and $E\left(W_{p}\right)=\left\{w v_{i}, w v_{p-1}, v_{i} v_{i+1}, v_{1} v_{p-1} / 1 \leq i \leq p-2\right\}$.

In W_{p}, the central vertex w is of degree $p-1$ and $d\left(v_{i}\right)=3, \forall 1 \leq i \leq p-1$.
Let $G=W_{p}$. If $\sigma=\left\{u, v / u=v_{i}, v=v_{i+2}\right.$, for some $\left.1 \leq i \leq p-1\right\}$, let us consider the case $u v \notin$ $E(G)$ then $d_{G}(u)+d_{G}(v) \neq p$ and hence by theorem 2.1σ is not a strong 2 -vertexduplication self switching of G.
Therefore, $D((u, v) G) \nexists((u, v) G)^{\sigma}$.Hence $d s s_{2}\left(W_{p}\right)=0$.
Theorem2.5: For $p \geq 3, d s s_{2}\left(C_{p}\right)=\left\{\begin{array}{l}2, \text { ifp }=4 \\ 0, \text { otherwise }\end{array}\right.$

Proof:

Let $G=C_{p}$. Here $V\left(C_{p}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right\}$ be the vertices of the cycle and $E\left(C_{p}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the vertices of cycle C_{p}.
If $u_{i} u_{i+2} \notin E(G)$
Case 1:If $p=4$
Let $\sigma=\left\{u_{1}, u_{3}\right\} \& \sigma=\left\{u_{2}, u_{4}\right\}$
For any two non- adjacent vertices u and v in $C_{p,} d_{G}\left(u_{1}\right)+d_{G}\left(u_{3}\right)=4=p$. Clearly
$D\left(\left(u_{1}, u_{3}\right) G\right) \cong D\left(\left(u_{1}, u_{3}\right) G\right)^{\left\{u_{1}, u_{3}\right\}}$.
Similarly, $D\left(\left(u_{2}, u_{4}\right) G\right) \cong D\left(\left(u_{2}, u_{4}\right) G\right)^{\left\{u_{2}, u_{4}\right\}}$.
Hence by the theorem $2.1, \sigma$ is a strong 2 -vertex duplication self switching of C_{p}.
Case 2: If $p \neq 4$
For any two non-adjacent vertices u and v in $C_{p,} d_{G}(u)+d_{G}(v)=4 \neq p$. By the theorem 2.1, σ is not a strong 2 -vertex duplication self switching of C_{p}.
Therefore, $d s s_{2}\left(C_{p}\right)=0$.
Result 2.6: For any graph G, if $u v \notin \mathrm{E}(\mathrm{G})$, then $d s s_{2}(G) \neq d s s_{2}(\bar{G})$
Note 2.7: Consider the graph $G=C_{4}$ and $d s s_{2}(G)=2$.
Now $\bar{G}=2 K_{2}$ is given in the figure 2.4.Clearly G is disconnected.
Therefore $G \not \equiv \bar{G}$ and $d s s_{2}\left(\overline{C_{p}}\right)=0$.
Thus, $d s s_{2}\left(C_{p}\right) \neq d s s_{2}\left(\overline{C_{p}}\right)$

Example 2.8:

Fig. 2.4. $\bar{G}=2 K_{2}$
Result 2.9:For any connected graph G, all the strong 2-vertex duplication self switchings are in one component.
Definition 2.10: The Helm graph H_{p} is obtained from the wheel graph $W_{p}=K_{1}+C_{p-1}$, by adding a pendant vertex to the other vertices in the cycle C_{p-1}.

Theorem2.11:For $p \geq 4, d s s_{2}\left(H_{p}\right)=0$.

Proof:

The Helm graph H_{p} is the graph obtained from a n-wheel graph by joining a pendant edge at each vertex of the cycle. Thus, the graph H_{p} has $p=2 n-1$ vertices and $q=3(n-1)$ edges. Let w be the central vertex of H_{p}. Let $v_{1}, v_{2}, \ldots, v_{n-1}$ be the pendant vertices of H_{p} and $u_{1}, u_{2}, \ldots, u_{n-1}$ be the vertices of degree 4.
Let $G=H_{p}$. Now let us consider the case $u v \notin \mathrm{E}(\mathrm{G})$
Let $\sigma=\left\{w, v_{i}\right\}$ for all $i=1 \leq i \leq n-1$,then $d_{G}(w)+d_{G}\left(v_{i}\right) \neq p$ and hence by theorem 2.1σ is not a strong 2 -vertex duplication self switching of G.
Also if $\sigma=\left\{v_{i}, v_{i+1}\right\}$ for all $i=1 \leq i \leq n-1$,then $d_{G}\left(v_{i}\right)+d_{G}\left(v_{i+1}\right) \neq p$ and hence by theorem 2.1 σ is not a strong 2 -vertex duplication self switching of G .
If $\sigma=\left\{u_{i}, u_{i+2}\right\}$ for all $i=1 \leq i \leq n-1$,then $d_{G}\left(u_{i}\right)+d_{G}\left(u_{i+2}\right) \neq p$ and hence by theorem 2.1σ is not a strong 2 -vertex duplication self switching of G. Thus $d s s_{2}\left(H_{p}\right)=0$.

Conclusion:

We have found the number of 2 -vertex duplication self switchings of wheel, cycle and Helm graphs in this paper. Further, we are analyzing some more results of 2 -vertex duplication self switching graphs.

References:

[1] Colbourn.C and Corneil.D, „On deciding switching equivalence of graphs", Discrete Appl. Math.,vol.2,pp.181-184,1980.
[2] C. Jayasekaran, and G. Sumathy, Self vertex switchings of connected two-cyclic graphs, accepted for publication in Journal of Discrete Mathematical Sciences and Cryptograph
[3] C. Jayasekaran \& V. Prabavathy, „Some results on Duplication self vertex switchings"e, International Journal of Pure and Applied Mathematics, vol. 116, No. 2,427-435.
[4] C. Jayasekaran \& V. Prabavathy, „A characterization of duplication self vertex switching in graphs", International Journal of Pure and Applied Mathematics, vol. 118, No. 2.
[5] C. Jayasekaran, J. Christabel Sudha \& M.Ashwin Shijo,,, 2 - vertex self switchings of some special graphs", International Journal of Scientific Research and Review, vol.7, Issue 12,2018. ISSN No:2279-543X
[6] C. Jayasekaran, J. Christabel Sudha, Some results on 2 -vertex self switching in joints, "Italian Journal of Pure and Applied Mathematics", communicated.
[7] G.Sumathy, Self vertex switching of two-cyclic and bicyclic graphs, Manonmaniam Sundaranar University, Tirunelveli, India, 2014.
[8] G.Sumathy and K.S Shruthi , "Some results on strong 2-vertex duplication self switching ofsome connected graphs", Malaya journal of Mathematik, Vol.8, No.4,ISSN No.2319-3786,2020
[9] J.J Seidal, A survey of two graphs, Proceedings of the international Coll.Theorie Combinatorie (Rome1973). Tomo I, Acca, Naz. Lincei pp. 481-511,1976.
[10] Selvam Avadayppan and M. Bhuvaneshwari, More results on self vertex switching, International journal of Modern sciences and Engineering Technology, Volume 1Issue 3, 2014, pp.10-17.

