Local Primary Hollow Modules and its Relation with Some Other Modules

Nada Khalid Abdullah
Department of Mathematics, Collage of Education for Pure Sciences, Tikrit University, Iraq

Abstract

To consider R is an abelian ring with an identical member and $M d$ is non-zero unitary left module over a ring R. Md is said to be a Hollow Module (HM) if each proper sub-mod (sub-mod) of $M d$ is small. A local primary hollow module (LPHM) is defined as a generalization of HM. A module is said to be a LPHM if Md has one primary sub-mod with each small sub-mods. Our paper studies the type of such modules and it introduces some essential concepts that elaborate this issue.

Keywords: Hollow module, Local primary hollow module, Amply supplemented, Indecomposable module, Lifting Module.

1. Introduction

According to the fact that R is represented an abelian identical ring, every module are left unity and a proper sub-mod A of a module $M d$ is said to be small when $A+B \neq M d$ for any proper sub-mod B of $M d$ [1]. A nonzero module $M d$ is called hollow module (HM) if any proper sub-mod of $M d$ is small [2]. A proper sub-mod N of $M d$ is called a primary if an integer number $n>0$ such that if k, $l \in M d$ satisfy $k l \in N$ then $k n M d \subseteq N[3] . M d$ is called a local if $M d$ has only one maximum sub\bmod with all the proper sub-mods of $M d$ [4]. In our paper, a generalization of HM will be introduced. The new generalization will be called a Local Primary Hollow Module (LPHM) and it will be defined as a module with a unique primary sub-mod that includes every small sub-mod of $M d$. The procedure of this work will be done in three sections. In the 1st section, the definition of LPHM's as generalization of HM's will be investigated in terms of the main properties of such types of modules. While in the 2nd section, some conditions under that LPHM's with L-hollow modules (L_HM) and LSP-hollow module (LSP-HM) are equivalent. Then in the 3rd part, the relationship between the LPHM's beside some modules such as indecomposable, lifting and the amply supplemented modules has been introduced.

2. The basic properties of LPHM .

A concepts and some related definitions of LPHM will be introduced in this part then a study for the basic properties of such type of module will be introduced as mention below.
Definition(1): Any R-module $M d$ is called LPHM if $M d$ has only one primary sub-mod which includes every small sub-mod.

3. Examples and Remarks

1- Z_{9} is LPH Z-module, while Z_{36} is not LPH Z-module.
2- Every LPHM is Hollow, while the converse is generally does not correct, for example $\mathrm{Z}_{\mathrm{p}}^{\infty}$ is HM , but it is not LPHM.
3- Every LPH is not is necessary being simple module, for instant \quad z-module Z_{25} is LPHM while it isn't a simple module.
4- A sub-mod of a LPHM is not necessary being LPHM. for instant the Z-module Z is a sub-mod of LPHM (Q) but Z itself is not LPHM.
5- if any \mathcal{R}-module $M d$ is finite generating then each LP-H is L-HM.
Proposition(1): If $f: M 1 \rightarrow M 2$ is an epimorphic image of LPHM so that $M 1$ is LPHM of $M 2$.
Proof: Suppose that the unique primary sub-mod of M_{2} is N with $N+K=M_{2}$ such that K is a proper sub-mod of $M_{2} . f^{-1}(N)$ has only one primary sub-mod of M_{1} otherwise $f^{-1}(N)=M_{1}$ and hence $f\left(f^{-1}(N)\right)=f\left(M_{1}\right)=M_{2}$ implies that $N=M_{2}$ but this will be a C ! because N is unique primary sub-mod of M_{2}, so $f^{-1}(N)$ is a unique primary sub-mod of M_{1}. Now, since M_{1} is LPHM then $f^{-1}(N)$ will contain every small sub-mod of M_{1} and because $f\left(f^{-1}(N)\right)$ is a small sub-mod of $f\left(\mathrm{M}_{1}\right)$. So that M_{2} is LPHM.
Proposition(2): Let $M d$ be a module and let $\frac{M d}{K}$ be a LPHM then $M d$ is LPHM, such that K is a small sub-mod of $M d$.
Proof: Since $\frac{M d}{K}$ is LPHM where K is a small sub-mod of $M d$, so it has an only one primary sub$\bmod \frac{N}{K}$ of $\frac{M d}{K}$ and $A+L=M d, L$ is a sub-mod of $M d$ so, $\frac{A+L}{K}=\frac{M d}{K}$ which results that $\frac{A+K}{K}+\frac{L+K}{K}=$ $\frac{M d}{K}$ since $\frac{A+K}{K}$ is a proper sub-mod of $\frac{N}{K}$ and $\frac{M d}{K}$ is LPHM, therefore $\frac{A+K}{K}$ is a small sub-mod of $\frac{M d}{K}$. Thus $\frac{L+K}{K}=\frac{M d}{K}$, so $L+K=M d$, becuase K is a small sub-mod of Md, then $L=M d$. So Md is LPHM .
Corollary (1): If $M d$ is a LPHM with a proper sub-mod N, then $\frac{M d}{N}$ is LPHM.
Proof : $\pi \cdot M d \rightarrow \frac{M d}{N}$ be a natural function which is an epimorphism then $\frac{M}{N}$ is LPHM .
Remark (1): Generally, the converse of corollary(1) is not true, for instant $\frac{Z_{12}}{<2>} \cong Z_{2}$ is LPHM. But Z_{12} is not LPHM .
Recall an projective cover (P, f) of a module $M d$ where P is a project module and $f: P \rightarrow$ $M d$ where f is an epimorphism and kerf is a small sub-mod of P (i.e. P is a project cover of $M d$) [4].
Proposition(3): If $f: M_{1} \rightarrow M_{2}$ be a project cover of M_{2} and M_{2} is LPHM. So M_{1} is LPHM .
Proof: Since $f: M_{1} \rightarrow M_{2}$ is an epimorphism so $\frac{M_{1}}{\operatorname{ker} f}$ is an isomorphism to M_{2} and then it is LPHM, also kerf is a small submodule of M_{1}. That means M_{1} is LPHM .
Proposition(4): $M d$ is LPHM and $f . g$ module iff $M d$ is a cyclic and has an only one primary submod.

Proof: suppose that $M d$ is a $f . g$ module and LPHM, therefore $M d=R_{x_{1}}+R_{x_{2}}+\cdots+R_{x_{n}}$. When $M d \neq R_{x_{1}}$ so, $R_{x_{1}}$ is a proper sub module of $M d$ that give $R_{x_{1}}$ is a small sub-mod of $M d$. Since $M d=R_{x_{2}}+R_{x_{3}}+\cdots+R_{x_{n}}$. So, the summand will be canceled one by one till getting $M d=$ $R_{x_{i}}$ for given i. Thus $M d$ can be a cyclic module, so $M d$ has an only one primary sub-mod .
Conversely, Consider $M d$ is a cyclic module having an only one primary sub- $\bmod N$, so $M d$ is $f . g$. Let L is a proper sub-mod of $M d$ with $L+K=M d$ such that K is a sub-mod of $M d$. Then if L is not small sub-mod of $M d$ gives $K \neq M d$. therefore K is a proper sub-mod of $M d$ and K is sub module of N and since $M d$ is $f . g$, thus K involved in a primary sub-mod. While, $M d$ contains only one primary sub-mod N (by assumption). Thus L is contained in N. So, $L+N=N=M \mathrm{C}$. Hence $K=$ $M d, \mathrm{~L}$ is a small sub-mod of $M d$ and it is sub-mod of N. Hence $M d$ is LPHM.
Proposition(5): Let $M d$ be LPHM and N be a primary submodule. If $\frac{M d}{N}$ is $f . g$, then $M d$ is $f . g$
Proof: Let $\frac{M d}{N}=R\left(x_{1}+N\right)+R\left(x_{2}+N\right)+\cdots+R\left(x_{n}+N\right)$ such that $x_{i} \in M d \forall i=1,2, \cdots, n$. the statement $M d=R x_{1}+R x_{2}+\cdots+R x_{n}$ will be claimed. Let $m \in M d$, so $m+N \in$ $\frac{M d}{N}$, implies that $m+N=r_{1}\left(x_{1}+N\right)+r_{2}\left(x_{2}+N\right) \quad+\cdots+r_{n}\left(x_{n}+N\right)=r_{1} x_{1}+r_{2} x_{2}+\cdots+$ $r_{n} x_{n}+N$. Then $m=r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}+n$ for some $n \in N$. So that, $M d=r_{1} x_{1}+r_{2} x_{2}+$ $\cdots+r_{n} x_{n}+N$ and since $M d$ is LPHM, then N is an only one prime contains each small sub-mod of $M d$ which implies that $M d=r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}$. Thus $M d$ is $f . g$.
Recall An R-module $M d$ is called a LHM if it has an only one maximum sub-mods that contains each small sub-mods of $M d$ [5].
Corollary(2): Let N be a primary sub-mod of $M d$. If $M d$ is LPHM and $\frac{M d}{N}$ is $f . g$ then $M d$ is LHM .
Proof: Let $\frac{M d}{N}=R\left(x_{1}+N\right)+R\left(x_{2}+N\right)+\cdots+R\left(x_{n}+N\right)$ with $x_{i} \in M d \forall i=1,2, \cdots, n$ we claim that $M d=R x_{1}+R x_{2}+\cdots+R x_{n}$. Let $m \in M d$ then $m+N \in \frac{M d}{N}$ gives $m+N=r_{1}\left(x_{1}+\right.$ $N)+r_{2}\left(x_{2}+N\right)+\cdots+r_{n}\left(x_{n}+N\right)=r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}+N$. Implies $m=r_{1} x_{1}+r_{2} x_{2}+$ $\cdots+r_{n} x_{n}+n$ for some $n \in N$. Thus $M d=r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}+N$ and since $M d$ is LPHM, then N is a unique prime contains all small sub-mod of $M d$, implies $M d=r_{1} x_{1}+r_{2} x_{2}+$ $\cdots+r_{n} x_{n}$. By remark(1)Md is $f . g$ and it is a LHM .

4. LPHM with LHM and LSPHM :

we shall study in this part of our paper a few conditions when LPHM can be LHM and survey the relation between LPHM and LSPHM .
Proposition(6): $M d$ is a LHM iff $M d$ is a LPHM and cyclic module.
Proof: N is an only one maximum sub-mod that involes all small sub-mod of $M d$. Suppose $x \in M d$ and $\quad x \notin N$ so R_{x} will become sub-mod of $M d$. As similar as $R_{x}=M d$. If $R_{x} \neq M d$ so R_{x} is a small sub-mod of $M d$ hence R_{x} is a sub-mod of N implies $x \in N \mathrm{C}$. Thus $R_{x}=M d$ then $M d$ is a cyclic module. And since $M d$ is LHM then $M d$ is a LPHM .
Conversely, since $M d$ is cyclic and LPHM then it is a $f . g$ module. N is a max. sub module because it is a primary contains all small sub-mod. Given a proper small sub-mod L of $M d$. If L never containd in N that gives $L+N=M d$, but $M d$ is LPHM so, $N=M d$ and that is a C!. therefore, we conclude that every proper small sub-mod of $M d$ contained by N and so, $M d$ will be LHM .
Proposition(7): $M d$ is LHM iff $M d$ is LPHM has an only one primary sub-mod.

Proof: $M d$ has an only one max. sub-mod, hence $M d$ has an only one primary sub-mod.
Conversely, to prove that $M d$ is a cyclic module, suppose that $x \in M d$ with $x \notin N$, so that $R_{x}+$ $N=M d$ and because $M d$ is LPHM then N is a unique primary contains all small sub module of M and hence $M d=R_{x}$.Therefore $M d$ is a cyclic module. Thus $M d$ is LHM .
Proposition(8): $M d$ is LHM iff $\operatorname{Rad} M d \neq M$ and $M d$ is LPHM .
Proof: It is clear from the previous propositions .
Conversely, let $M d$ is LPHM and $\operatorname{Rad} M d \neq M$, then $\operatorname{Rad} M d$ is a small sub-mod of $M d$. Also by [4] Rad Md has an only one max sub-mod of $M d$ so it is a primary sub-mod, and hence $\frac{M d}{\text { Rad Md }}$ is a simple cyclic module. So $\frac{M d}{\operatorname{Rad} M d}=<m+\operatorname{Rad} M d>$ for a given $m \in M d$. We obtain $M d=R m$. Suppose that $w \in M d$ so $w+\operatorname{RadMd} \in \frac{M d}{\operatorname{Rad} M d}$. There exists $r \in R$ such that $w+\operatorname{RadMd}=$ $r(m+$ RadMd $)=r m+$ RadMd, implies $w-r m \in \operatorname{RadMd}$ so $w-r m=y$ for some $y \in$ RadMd. Thus $w=r m+y \in R m+\operatorname{RadMd}$, hence $M d=R m+\operatorname{RadMd}$. But RadMd is a small sub-mod of $M d$ implies $M d=R m$. Thus $M d$ is a cyclic module. By (proposition 6) $M d$ is LHM.
Recall a sub-mod N of $M d$ is said to be a semi-prime sub-mod if $N \neq M d$ and whenever $r \in$ $R, x \in M d$ such that $r^{\wedge} n x \in N$ for some $\mathrm{n} \in \mathrm{Z}^{+}$, then $\mathrm{rx} \in \mathrm{N}[6]$.
Recall an R-module $M d$ is called LSPHM if $M d$ has an only one semiprime sub-mod contains all small sub-mod of $M d[5] . \mathrm{Z}_{9}$ is LSPH Z-module , while Z_{6} is not LSP-hollow Z-module .
Remark (2): Generally, each LPHM is LSPHM, but the converse is not true. Consider the following example. Let Z_{6} is a LSPH Z-module, but Z_{6} is not LPH Z-module.
Proposition (9): Md is LPHM iff $M d$ is cyclic and LSPHM .
Proof: Suppose $M d$ is LPHM so it has an only one primary sub-mod N that contains all small sub\bmod of $M d$. Let $x \in M d$ with $x \notin N$ then R_{x} is a sub- \bmod of $M d$. We find that $R_{x}=M d$. If $R_{x} \neq$ $M d$ then R_{x} is a proper small sub-mod of $M d$ and hence R_{x} is a sub-mod of N, implies $x \in N \mathrm{C}$!. Thus $R_{x}=M d$ then $M d$ is a cyclic module. Now, since $M d$ is a LPHM, then $M d$ is LSPHM.
Conversely; Let $M d$ be LSPHM and cyclic module then it is $f . g$ module and hence $M d$ has an only one max. so it is primary sub-mod called N contains all proper sub-mod in M. Let L be a proper small sub-mod of $M d$. If L is not contained in N then $L+N=M d$, but $M d$ is LSPHM thus $N=$ $M d \mathrm{C}$! . Implies every proper small sub- mod of $M d$ is containing in N, thus $M d$ is LPHM .
Corollary(3): Suppose $M d$ is a module, then $M d$ is LPHM iff $M d$ is LSPH and $f . g$.
Proof: Let $M d$ is LPHM, then $M d$ is LSPHM and cyclic module, and since $M d$ is cyclic module, thus $M d$ is $f . g$.
Conversely, Let $M d$ be $f . g$ and LSPHM then $M d=R_{x_{1}}+R_{x_{2}}+\cdots+R_{x_{n}}$. If $M d \neq R_{x_{1}}$ then $R_{x_{1}}$ is a proper sub-mod of $M d$. thus $\mathrm{R}_{\mathrm{x}_{1}}$ is a small sub-mod of $M d$. therefore $M d=R_{x_{2}}+R_{x_{3}}+\cdots+$ $R_{x_{n}}$. Then the summand will be canceled one by one till getting $M d=R_{x_{i}}$ for given i. Thus $M d$ is cyclic module. Therefore $M d$ is LPHM .
Proposition(10): $M d$ is LPHM iff $M d$ is a LSPHM and has an only one semi-prime sub-mod.
Proof: Suppose that $M d$ is LPHM, so $M d$ is LSPHM, then $M d$ has an only one semi-prime submod.
Conversely; Let $M d$ be LSPHM has an only one semi-prime sub-mod, say N, now to prove $M d$ is cyclic module. Let $x \in M d$ such that $x \notin N$, so $R_{x}+N=M d$ and because $M d$ is LPHM that gives N is a small sub-mod of $M d$ and $M d=R_{x}$ Thus $M d$ is cyclic and it is LPHM .

Proposition(11): Let $M d$ be a module, $M d$ is LPHM iff $M \mathrm{~d}$ is $R a d M d \neq M d$ and LSPHM .
Proof: Let $M d$ be LPHM, then $M d$ is LSPH and cyclic module, then $M d$ is $f . g$ and Rad $M d \neq M d$. In contrast, let $M d$ is LSPHM, then Rad Md is a small sub-mod of Md. Also by [proposition 4]. $R a d M d$ is the only one semi-primary sub-mod of $M d$ and thus $\frac{M d}{\operatorname{Rad} M d}$ is simple so it is cyclic. Implies that $\frac{M d}{\operatorname{Rad} M d}=<m+\operatorname{Rad} M d>$ for some $m \in M d$. We claim that $M d=R m$. Let $w \in$ $M d$ then $w+\operatorname{Rad} M d \in \frac{M d}{\operatorname{Rad} M d}$. There exists $\mathrm{r} \in \mathrm{R}$ such that $w+\operatorname{Rad} M d=r(m+\operatorname{Rad} M d)=$ $r m=\operatorname{Rad} M d$. Implies that $w-r m \in \operatorname{Rad} M d$ which implies that $w-r m=y$ for some $\mathrm{y} \in$ $\operatorname{Rad}(\mathrm{M})$. Thus $w=r m+y \in R m+\operatorname{Rad} M d$, hence $M d=R m+\operatorname{RadMd}$. But $\operatorname{Rad} M d$ is a small sub-mod of $M d$ implies $M d=R m$. Therefore $M d$ is a cyclic module .Therefore, $M d$ is LPHM .

5. LPHM with some other Modules.

In this section we shall study the relation among LPHM and some other modules such as an amply supplemented, lifting and indecomposable .
Definition(2): A module $M d$ is known as an amply supplemented if for each pair of sub-mods U, V of $M d$ such that $M d=U+V$, ت a supplement V_{1} of U in $M d$, where $V_{1} \leq V$ [7]. As Z_{4} is amply supplemented Z-module. But Z_{12} is not amply supplemented Z-module .
Proposition(12): Each LPHM is an amply supplement.
Proof: Let $M d$ be LPHM and U be a unique primary sub-mod of $M d$. Since $M d$ is LPHM, then $U+$ $M d=M d$ and $U \cap M d=U$ is a small sub-mod. Thus $M d$ is amply supplemented.
Remark (3): Generally, the opposite of proposition 12 cannot necessary be applied, for instant Z_{6} is amply supplemented Z-module, but it is not LPHM.
Definition(3):[1] Any R-module $M d$ is indecomposable if $M d \neq 0$ and the unique direct summands of $M d$ are $\langle\overline{0}>$ and $M d$. Results that $M d$ has not a direct sum of a couple of nonzero sub-mod.
Proposition(13): Each LPHM is indecomposable .
Proof: Let $M d$ be LPHM, there exists an only one primary sub-mod N involves all small sub-mod of $M d$, assume that $M d$ is decomposable, so that H proper sub-mods K and L where K and L are submods of N and $M d=K \oplus L$. But $M d$ is LPHM, so L is a small sub-mod of $M d$ where L is sub-mod of N that gives $K=M d$ or K is small sub-mod of $M d$ with K is sub-mod of N that gives $L=M d$ which is C ! . Then $M d$ is indecomposable.
Proposition (14):Let $M d$ be a cyclic and LPHM iff each nonzero factor module of $M d$ is indecomposable.
Proof: Let $\frac{M d}{A}$ be a non-zero factor module of $M d$. Since $M d$ is LPHM, then $\frac{M d}{A}$ is LPHM by (corollary 2). By (proposition13) $\frac{M d}{A}$ is indecomposable.
In contrast, let N be a primary sub-mod of $M d$ and let L be a sub-mod of N. Suppose that $M d=L+$ K, where K is a sub-mod of $M d$ we get $\frac{M d}{L \cap K} \cong \frac{M d}{L \oplus M d / K}$ [4]. But $\frac{M d}{L \cap K}$ is indecomposable then either $\frac{M d}{L}=0$ or $\frac{\mathrm{Md}}{K}$. Since L is a sub-mod of N, and N is a sub-mod of $M d$. Hence L is a proper sub-mod of $M d$. Then $\frac{M}{L} \neq 0$ implies that $\frac{\mathrm{Md}}{K}=0$ and hence $M d=K$. Then L is a small sub-mod of $M d . M d$ is hollow module and since $M d$ is cyclic module. By (proposition 11) $M d$ is LPHM .

Definition(4):[6] Suppose $M d$ is a module, $M d$ is known a lifting module if for each sub-mod N of $M d$ there are sub-mods K and L of $M d$ where $M d=K \oplus L, K$ is a sub-mod of N and $N \cap K$ is a small sub-mod of K.
$\operatorname{Remark}(4):$ Generally, each lifting module is LPHM, but the converse cannot be necessary correct. We can see this in the following example.
Example (1): Consider Q is LPHM, while it is not lifting module [8].
Proposition(15): Each $f . g$ and LPHM is lifting module.
Proof: Let $M d$ be a Z -module and Z_{6} is a lifting module. But, Z -module Z_{12} is not LPHM. There exists a unique primary N of $M d$ has all small sub module, then $M d=M d \bigoplus\{0\}$ where $\{0\}$ is a sub\bmod of $N, N \cap M=N$ and since $M d$ is LPHM, then $N \cap M=N$ is a small sub-mod of $M d$. Therefore $M d$ is lifting module.
Remark(5): The opposite of proposition 15 cannot necessary be applied in general, for instant, the Z-module $M d=Z_{3} \oplus Z_{4}$ is lifting module [8], while it is not LPHM .Since there exists a primary sub- $\bmod N=Z_{3} \oplus(0)$ of $M d$ which not contains every small sub-mods.
Proposition(16): If $M d$ is cyclic indecomposable module and $M d$ is lifting module, then $M d$ is LPHM .
Proof: Suppose N is a proper sub-mod of $M d$. Now $M d$ is a lifting module then $M d=A+B$, such that A is a sub-mod and $N \cap A$ is small sub-mod of A . In contrast, $M d$ is an indecomposable module, therefore $B=0$ and hence $A=M d$. that implies that $N \cap M=N$, hence N is a small sub-mod of $M d$. Hence $M d$ is hollow module and since $M d$ is cyclic module. Then $M d$ is LHM, so it is LPHM .

Conclusion:

The main goal of our study is to represent a new generalized of hollow module that is LPHM, that each LPHM is hollow module, we get that the epimorphic image of LPHM M_{1} is LPHM M_{2}. If $M d$ is LPHM, then $\frac{M d}{N}$ is LPHM for each proper sub-mod N of $M d$. the convers is true when N is small. Furthermore the relation between LPHM with some other modules as Md is LHM iff Md is a LPHM and cyclic it has an only one primary, $\operatorname{Rad} M d \neq M d, \ldots$ etc . And each LPHM is amply supplemented and indecomposable .

Future Studies :

We study and development of concepts generalization locally hollow module over noncommutative rings, locally semi primary lifting modules, locally strong primary hollow modules, some generalization of locally hollow modules, locally primary lifting modules and locally semi primary lifting modules.

References:

[1]. Abbas M. S. and Manhal F. M., 2018 , d-Small submodules and d-Small Projective Modules , Int. J. of Algebra, Vol. 12, No. 1, 25-30.
[2]. Mohammed M. and Ahmed A. G., 2013 , On Some Properties of hollow and hollow dimension modules, Pure and Applied Math. J. Vol. 2, No. 5, PP. 156-161.
[3]. Ali S. A. , Omar A. A. and Haibat K. M., 2020, Approximaitly Quasi-Primary Submodules, Ibn Al-Haithem Jour. For Pure and Appl. Sci. 33(4) .P.92-101.
[4]. Ali K. M., 2005, Hollow Modules and Semihollow modules, Thesis College of science , University of Baghdad.
[5].Thaer Z. K., 2019, Some Generalizations Of L-Hollow Modules, Thesis College of Education for pure sciences, University of Tikrit .
[6]. S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London math. Soc. LNS 147 Cambridge Univ. press, Cambridge, 1990.
[7]. Wisbauer R., 1991 , Foundations of Module and Ring theory, Gordon and Brtach Reading. Vol.(3). P. 351.
[8]. Al. Saad A. and S. Nedal Q., FI-Hollow-Lifting Modules, Al-Mustansiriyah J. Sci., 24 (5) (2013), PP. 293-306.
[9]. Y. S. Mahmood and H. W. Khalid., 2012, Pure-Supplemented Modules, Journal of Science. Vol 53. No 4, PP 882-886.
[10]. Jeathoom R. M. , 2017, Some Generalizations of Hollow-lifting Modules, Thesis College of Sci. Mus. University.

