

 Turkish Journal of Computer and Mathematics Education Vol.10 No.12 (2019),69-76

69

Research Article

Performance Analysis of Big Data with Data

models using Artificial Intelligence
L.Umarani

1
, Research Scholar, Bharathiar University, umarcl@gmail.com

Dr. A. John Sanjeev Kumar
2
, Assistant Professor, Thiagarajar College of Engineering, ajscse@tce.edu

Abstract - Proliferation of new information sources such as

medical images, financial data, sales data, radio frequency

identification and web tracking data, there is a challenge to

decipher trends and gain sense of data that is orders of

magnitude larger than ever earlier. One of the technologies

most often associated with the era of big data is Hadoop.

Although in that respect is much expert information about

Hadoop, there is not much info around how to effectively

structure data in a Hadoop environment. Though the nature

of parallel processing and the MapReduce system provide an

optimal environment for processing big data quickly, the

structure of the big data itself plays a vital role. This paper

explores doable used for data modeling in a Hadoop

environment. Specifically, the purpose of the experiments

described in this paper was to figure out the best structure

and physical modeling techniques for storing data in a

Hadoop cluster using Hive to enable efficient data access.

Although other software interacts with Hadoop, the

experiments focused on Hive. The Hive infrastructure is

most felicitous for traditional data warehousing-type

applications. The experiment does not focus on HBase. This

paper explores a data partition strategy and investigates the

role indexing, data types, file types, and other data

architecture decisions play in designing data structures in

Hive. To test the different data structures, it focused on

typical queries utilized for analyzing web traffic data. These

test included most referring sites, web analyses such as

counts of visitors, and other typical business questions used

by weblog data. The primary measure for culling the

optimal structure of data in the Hive is predicated on the

performance of web analysis queries. For comparison

purposes, it was quantified the performance in Hive and the

performance in an RDBMS. The reason for this comparison

is to more preponderant understand how the techniques that

we are habituated with utilizing in an RDBMS work in the

Hive environment. It explored techniques such as storing

data as a compressed sequence file in Hive that are

particular to the Hive architecture. Through these

experiments, it endeavored to show that how data is

structured (in effect, data modeling) is just as consequential

in an immensely colossal data environment as it is in the

traditional database world.

Index Terms : Big Data Analysis, Data Modeling,

Database, Hadoop, Hive

I.Introduction

Similar to massively parallel processing (MPP)

databases, the puissance of Hadoop is in the parallel

access to data that can reside on a single node or on

multiple nodes. In general, MapReduce provides the

mechanism that enables access to each of the nodes in

the cluster. Inside the Hadoop framework, Hive

provides the ability to engender and query data on an

astronomically immense scale with a familiar SQL-

predicated language called HiveQL. It is a vital point to

note that in these experiments, Hive within the Hadoop

environment is stringently used. For the experiment, a

typical data warehouse-type workload is simulated

where data is loaded in batch, and the queries are

executed to answer non- operational strategic business

questions.

In general, all data stored in HDFS are broken into

blocks of data. The same blocks of data were replicated

across multiple nodes to provide reliability if a node

failed, and additionally to increment the performance

during MapReduce jobs. By default Hadoop

environment replicates each block of data thrice. The

NameNode in the Hadoop cluster accommodates as the

metadata repository that describes where blocks of data

are located in each file stored in HDFS.

Fig 1: Hadoop Distributed File System Architecture

At a higher caliber, when a table is engendered through

Hive, a directory is engendered in HDFS on each node

that represents the table. Files that contain the data for

the table are engendered on each of the nodes, and the

Hive metadata keeps track of where the files that make

up each table are located. All these files are located in a

directory with the name of the table in HDFS in the

/user01 folder by default. For example, in these tests, a

table named EXPLORER_DIM is created. We can use

an HDFS command to see the new table located in the

/user01/explorer_dim directory. By using the command

hadoop fs -ls, the contents of the browser_dim directory

are listed. In this directory, we find a file named

 Turkish Journal of Computer and Mathematics Education Vol.10 No.12 (2019),69-76

70

Research Article

exp_dim.csv. HDFS commands are similar to standard

Linux commands.

$ hadoop fs –ls /user01/explorer_dim

Found 1 items

-rw-r—r—1 mc1 supergroup 44957179 2014-10-01 12:07 /user01/explorer_

dim/exp_dim.csv

The principal takeaway is to understand at a high

caliber how data is stored in HDFS and managed in the

Hive environment. The physical data modeling

experiments that are performed ultimately affect how

the data is stacked in blocks in HDFS and in the nodes

where the data is located and how the data is accessed.

This is especially true for the tests in which data is

partitioned using the Partition verbal expression to

redistribute the data predicated on the buckets or ranges

defined in the partitions.

The Hadoop Clusters

The Hadoop cluster consist of two areas. 1. HDFS-

stores the data 2. MapReduce - processes all of the

computations on the data.

The Job Tracker is responsible for controlling the

parallel processing of the MapReduce functionality.

The Task Trackers act as instructed by the Job Tracker

to process the MapReduce jobs.

Fig 2 : MapReduce architecture.

Data Input and Load

The data for the experiments was generated to resemble

a company’s technical support website. The company

sells its products worldwide and uses Unicode to

support foreign character sets. There were 25 million

original weblog sessions featuring 90 million clicks

created, and then duplicated it 90 times by adding

unique session identifiers to each row. This bulked-up

flat file was loaded into the RDBMS and Hadoop. For

tests, both a flat file representation of the data and a

typical star schema design of the same data were

generated.

II.Background of the analysis

To test the various data modeling techniques, following

queries were used to simulate the typical types of

questions business users might ask of clickstream data.

1. Most visited top-level directories on the customer

support site for a given week

2. The most visited pages that are referred from a

Google search for any given month

3. The most common search terms used on the

customer support site for a given year

4. Total number of visitors per page using the given

browser

5. Number of visitors spend more than 15 seconds

viewing each page for a given week and year

As part of the criteria, the SQL statements were used to

determine the optimal structure for storing the

clickstream data in Hadoop and in an RDBMS.

Techniques in Hive are investigated to improve the

performance of the queries. The purpose of these

experiments was to investigate how traditional data

modeling techniques apply to the Hadoop and Hive

environment. RDBMS is incorporated only to measure

the effect of tuning techniques within the Hadoop and

Hive environment and to see how comparable

techniques work in an RDBMS.

It is important to note that there was no intent to

compare the performance of the RDBMS to the Hadoop

and Hive environment, and the results were for

particular hardware and software environment only. To

determine the optimal design for data architecture,

following criteria considered:

 There would be no unnecessary duplication of data.

 The data structures would be progressively tuned to

get the best overall performance for the average of

most of the queries, not just for a single query.

The experiments began devoid of indexes, partitions, or

statistics in both schemas and in both environments.

The intent of the first experiment was to determine

whether a star schema or flat table performed better in

Hive or in the RDBMS for the considered queries.

During succeeding rounds of testing, parameters like

compression, indexing and partitions are used to tune

the data

III. Findings

A.Parameter 1: Flat File versus Star Schema

The intent of this first experiment was to determine

whether the star schema or flat table structure

 Turkish Journal of Computer and Mathematics Education Vol.10 No.12 (2019),69-76

71

Research Article

performed better in each environment in a series of use

cases. The first experiment did not have any tuning

applied such as indexing.

As you can see, both the Hive table and the RDBMS

table in the star schema structure performed

significantly faster compared to the flat file. These

results for Hive were surprising, the more efficient

practice in HDFS of storing data in a denormalized

structure to optimize I/O.

A. Hadoop Vs RDBMS Flat File Processing

Table 1 : Flat File execution in Hadoop

Query

Min

(H:MM:SS)

Max

(H:MM:SS)

Average

(H:MM:SS)

1 0:42:00 0:42:13 0:42:07

2 0:39:55 0:40:46 0:40:21

3 0:49:53 0:51:36 0:50:45

4 0:40:37 0:42:37 0:41:37

5 0:39:43 0:40:25 0:40:04

Table 2 :Flat File execution in RDBMS

Query

Min

(H:MM:SS)

Max

(H:MM:SS)

Average

(H:MM:SS)

1 0:54:25 0:57:49 0:56:07

2 0:59:26 0:59:52 0:59:39

3 0:58:14 0:58:53 0:58:34

4 0:56:22 0:57:44 0:57:03

5 0:54:20 0:54:57 0:54:39

B. Hadoop Vs RDBMS Star Schema Processing

Table 3 : Star Schema execution in hadoop

Query

Min

(H:MM:SS)

Max

(H:MM:SS)

Average

(H:MM:SS)

1 0:07:40 0:09:22 0:08:31

2 0:02:08 0:07:57 0:05:02

3 0:45:53 0:50:37 0:48:15

4 0:11:04 0:13:14 0:12:09

5 0:07:57 0:08:32 0:08:14

Table 4 : Star Schema execution in RDBMS

Query

Min

(H:MM:SS)

Max

(H:MM:SS)

Average

(H:MM:SS)

1 0:29:03 0:29:41 0:29:22

2 0:29:19 0:29:35 0:29:27

3 0:29:28 0:30:27 0:29:58

4 0:28:58 0:29:09 0:29:03

5 0:29:00 0:29:56 0:29:28

Table 5 : Performance comparison of flat file and start

schema in Hadoop

Query

Flat File

Average

(H:MM:SS)

Star Schema

Average

(H:MM:SS)

Performance

Difference

(Flat to Star)

1 0:42:07 0:08:31 0:33:36

2 0:40:21 0:05:02 0:35:18

3 0:50:45 0:48:15 0:02:30

4 0:41:37 0:12:09 0:29:28

5 0:40:04 0:08:14 0:31:49

Fig.3 : Performance comparison of flat file and start

schema in Hadoop

C.RDBMS Schema Difference

Table 6: Performance comparison of Flat file and Star

schema in RDBMS

Query

Flat File

Average

(H:MM:SS)

Star Schema

Average

(H:MM:SS)

Difference

(Star to

Flat)

1 0:56:07 0:29:22 0:26:45

2 0:59:39 0:29:27 0:30:12

3 0:58:34 0:29:58 0:28:36

4 0:57:03 0:29:03 0:27:59

 Turkish Journal of Computer and Mathematics Education Vol.10 No.12 (2019),69-76

72

Research Article

5 0:54:39 0:29:28 0:25:11

Fig 4 : Performance comparison of Flat file and Star schema

in RDBMS

Although the star schema was faster in the Hadoop text

file environment, it was decided to complete the

remaining experiments for Hadoop using the flat file

structure because it is the more efficient data structure

for Hadoop and Hive. As we understand through

references, the most important reason to avoid

normalization is to reduce disk seeks, such as those

typically required to steer foreign key relations.

Denormalizing data permit it to be scanned from or

written to large, adjacent sections of disk drives, which

optimize I/O performance. However, we face the

consequence of denormalization, data duplication and

the greater risk of inconsistent data.

B.Parameter 2: Compressed Sequence Files

The second experiment applied only to the Hive

environment. In this experiment, the data in HDFS were

converted from uncompressed text files to compressed

sequence files to determine whether the type of file for

the table in HDFS made a difference in query

performance.

The results of this experiment clearly show that the

compressed sequence file was a much better file format

for the taken queries than the uncompressed text file.

Table 7 : Sequence File execution in hadoop

Query

Min

(H:MM:SS)

Max

(H:MM:SS)

Average

(H:MM:SS)

1 0:05:44 0:05:48 0:05:46

2 0:06:27 0:05:41 0:06:04

3 0:06:51 0:07:04 0:06:57

4 0:06:35 0:06:47 0:06:41

5 0:06:30 0:06:40 0:06:35

Table 8 : Performance comparison of text file and sequence

file in Hadoop

Query

Text File

Average

(H:MM:SS)

Sequence File

Average

(H:MM:SS)

Difference

(Text to

Sequence)

1 0:42:07 0:05:46 0:36:21

2 0:40:21 0:06:04 0:34:16

3 0:50:45 0:06:57 0:43:47

4 0:41:37 0:06:41 0:34:56

5 0:40:04 0:06:35 0:33:29

Fig 5 : Performance comparison of text file and sequence file in
hadoop

C.Parameter 3: Indexes

In this experiment, indexes were applied to the

appropriate columns in the Hive flat table and to the

RDBMS fact table. Statistics were gathered for the

fourth set of tests. In Hive, a B-tree index was added to

each of the columns used in these queries. In the

RDBMS, a bitmap index was included to each foreign

key in referencing table, and a B-tree index was added

to each of the other columns used in the queries that

were not already indexed.

With the prominent exception of the third query in the

Hadoop environment, adding indexes provided a

significant increase in performance across all of the

queries.

Table 9 : Flat File execution in hadoop

Query

Min

(H:MM:SS)

Max

(H:MM:SS)

Average

(H:MM:SS)

1 0:01:17 0:01:28 0:01:23

 Turkish Journal of Computer and Mathematics Education Vol.10 No.12 (2019),69-76

73

Research Article

2 0:01:25 0:01:33 0:01:29

3 0:05:55 0:06:03 0:05:59

4 0:01:32 0:01:37 0:01:34

5 0:04:42 0:04:45 0:04:44

Table 10: Star Schema execution in RDBMS

Query

Min

(H:MM:SS)

Max

(H:MM:SS)

Average

(H:MM:SS)

1 0:00:04 0:00:04 0:00:04

2 0:00:25 0:01:01 0:00:43

3 0:00:25 0:00:43 0:00:34

4 0:00:07 0:00:07 0:00:07

5 0:00:25 0:00:31 0:00:28

Table 11: Performance comparison with respect to Indexed and Non-

Indexed data in hadoop

Query

No Indexes

Average

(H:MM:SS)

Indexed

Average

(H:MM:SS)

Difference

(No Indexes to

Indexed)

1 0:05:46 0:01:23 0:04:24

2 0:06:04 0:01:29 0:04:35

3 0:06:57 0:05:59 (00:02)

4 0:06:41 0:01:34 0:05:06

5 0:06:35 0:04:44 0:01:52

Fig 6 : Performance comparison with respect to Indexed and Non-

Indexed data in hadoop
Table 12 : Performance comparison with respect to Indexed and Non-

Indexed data in RDBMS Schema

Query

Non Indexed

Average

(H:MM:SS)

Indexed

Average

(H:MM:SS)

Difference

(Non Indexes to

Indexed)

1 0:29:03 0:00:04 0:28:59

2 0:29:19 0:00:43 0:28:36

3 0:29:28 0:00:34 0:28:54

4 0:28:58 0:00:07 0:28:51

5 0:29:00 0:00:28 0:28:32

Fig 7 : Performance comparison with respect to Indexed and Non-
Indexed data in RDBMS Schema

D. Parameter 4: Partitioning

In experiment 4, every date value is partitioned in both

the flat table in Hive and in the fact table in the star

schema in the RDBMS.

Partitioning significantly improved all queries except

for the third query, which was slightly slower in Hive

and significantly slower in the RDBMS.

Table 13 : Flat File execution in details hadoop

Query

Min.Time

(H:MM:SS)

Max.Time

(H:MM:SS)

Average

(H:MM:SS)

1 0:00:50 0:01:00 0:00:55

2 0:01:04 0:01:10 0:01:07

3 0:06:42 0:07:41 0:07:11

4 0:01:07 0:01:13 0:01:10

5 0:02:25 0:02:28 0:02:27

Table 14 : Star Schema execution in RDBMS

Query

Min.Time

(H:MM:SS)

Max.Time

(H:MM:SS)

Average

(H:MM:SS)

1 0:00:01 0:00:03 0:00:02

2 0:00:02 0:00:06 0:00:04

3 0:39:33 0:45:40 0:42:37

4 0:00:02 0:00:46 0:00:24

5 0:00:01 0:00:03 0:00:02

Table 15 : Performance comparison with respect to partitioned and
Non-partitioned data in hadoop

 Turkish Journal of Computer and Mathematics Education Vol.10 No.12 (2019),69-76

74

Research Article

Query

Non

Partition

Average

(H:MM:SS)

Partitioned

Average

(H:MM:SS)

Difference

(Non Partitioned to

Partitioned)

1 0:01:22 0:00:55 0:00:27

2 0:01:29 0:01:07 0:00:22

3 0:05:59 0:07:11 (0:01:05)

4 0:01:34 0:01:10 0:00:24

5 0:04:43 0:02:27 0:02:17

Performance comparison with respect to partitioned and Non-

partitioned data in hadoop

Table 16 : Performance comparison with respect to partitioned and
Non-partitioned data in RDBMS

Query

Non

Partition

Average

(H:MM:SS)

Partition

Average

(H:MM:SS)

Difference

(Non Partition

to Partition)

1 0:26:01 0:00:02 0:25:59

2 0:00:39 0:00:04 0:00:35

3 0:00:31 0:45:32 (0:45:01)

4 0:17:28 0:00:17 0:17:11

5 0:00:27 0:00:02 0:00:25

Performance comparison with respect to partitioned and Non-

partitioned data in RDBMS

IV.Interpretation of Results

The results of the first parameter were surprising. At

the start of tests, it was fully expected that the flat file

structure would perform better than the star schema

structure in the Hadoop and Hive environment. In the

next table, information that helps explain the conflicts

in the amounts of time processing the queries is

offered. For instance, the measure of storage required is

significantly higher in the flat table structure for the

query. Moreover, the number of mappers and reducers

needed to run the query was significantly higher in the

flat table structure. Altering TaskTracker heap sizes, a

system setting showed benefits in the denormalized

table structure. Nevertheless, the end of the experiment

was to run with the default system settings in Cloudera

Hadoop and investigate the effects of morphological

changes in the data.

Table 17 : Unique Visitors per Page

Denormalized Normalized DIFF

Virtual

Memory

(GB) 7,317 2,816 4,501

Heap

(GB) 3,777 1,401 2,376

Read (GB) 372 218 154

Table Size

(GB) 867 217 650

Execution

Plan

3483

maps/999

reduce

1123

maps/352

reduce

Time

(minutes) 38 13 25

Our second parameter showed the performance increase

that emerged from transitioning from text files to

sequence files in Hive. This performance improvement

was expected. However, the degree of the improvement

was not. Compared to uncompress text file, on

compressed sequential file the queries ran about ten

times faster. The compressed sequence file optimizes

disk space usage and I/O bandwidth performance by

using binary encoding and split-table compression. This

proved to be the single biggest factor with regard to

data structures in Hive. For this experiment, block

compression is used.

In third parameter, indexes are added to the fact table in

the RDBMS and to the flat table in Hive. As expected,

the indexes generally improved the performance of the

queries, except third query, where adding the indexes

did not show any improvement in Hive. Explain Plan

helps explain why this is happening. In Explain Plan it

was observed that there were no indexes used in the

predicate of the query. Given the distinctiveness of the

 Turkish Journal of Computer and Mathematics Education Vol.10 No.12 (2019),69-76

75

Research Article

data, this makes sense because almost all of the values

of DOMAIN_NM were the support site itself. The

referring domain was primarily www.google.com.

In Parameter Both the fact table and the flat table were

partitioned by date column. Partitioning tables change

how Hive structures the data storage. Added to the

directory for each table, Hive creates subdirectories

reflecting the partitioning structure. When a query is

executed on Hive, it does not need to scan the entire

directory. Rather, partition elimination enables the

query to go directly to the subdirectory or subdirectories

where that data is located to retrieve the results.

Because many of the queries used search column in the

WHERE clause of the query, execution time enhanced.

The same improvement was seen in the RDBMS, which

was able to use partition elimination for most of the

queries. In the third query, the predicate does not

include the column. In this case, having partitions

actually hurt query performance because the query

needed to examine each partition individually to locate

the relevant rows. The decline in performance was

noteworthy in the RDBMS.

V.Conclusions

Through these experiments, it was evident that

structuring data properly in Hive were as important as

in an RDBMS. The decision to store data in a sequence

file format alone accounted for a performance

improvement of more than 1,000%. The wise use of

indexes and partitions resulted in important

performance gains by cutting down the quantity of

information processed.

For information architects working in the Hive setting,

the good information is that many of the same

techniques such as indexing that are applied in a

traditional RDBMS environment are applicable.

The key takeaway is that it is necessitate interpreting

data and the underlying technology in Hadoop to

effectively tune the data structures. Merely creating a

flat table or star schema does not result in optimized

structures. It is important to understand how data is

distributed, and accordingly a data structure has to be

created that work well for the access patterns of the

environment. Being capable to decipher MapReduce

job logs as well as run explains plans are key skills to

effectively model data in Hive.

And as known that tuning for some queries might have

an adverse impact on other queries as observed with

partitioning.

Further experimentation should look into the

performance enhancements offered with another Hive

file format, such as RC File, which organizes

information by column rather than by row. Some other

data modeling test could examine how well collection

data types in Hive work compared to traditional data

types for storing information. As big data technology

continues to make headway, the features that are

available for structuring data will continue to improve,

and further options for improving data structures will

become usable.

VI.References

[1] Zhen Chen, Fuye Han, Junwei Cao, Xin Jiang, and Shuo

Chen, "Cloud Computing-Based Forensic Analysis for

Collaborative Network Security Management System,"

TSINGHUA SCIENCE AND TECHNOLOGY ISSNl l1007-

0214l l05/12l l pp40-50 Volume 18, Number 1, February

2013

[2] Yaxiong Zhao�, Jie Wu, and Cong Liu, "Dache: A Data

Aware Caching for Big-Data Applications Using the

MapReduce Framework" TSINGHUA SCIENCE AND

TECHNOLOGY ISSN l l1007-0214l l05/10l l pp39-50

Volume 19, Number 1, February 2014

[3] T. Sun, C. Shu, F. Li, H. Yu, L. Ma, and Y. Fang, “An

ef_cient hierarchical clustering method for large datasets with

map-reduce,'' in Proc. Int. Conf. Parallel and Distributed

Comput., Appl. Technol., 2009, pp. 494_499.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R.E. Gruber.

“Bigtable: A distributed storage system for structured data,”

in Proc. of OSDI’2006, Berkeley, CA, USA, 2006.

[5] D. Battr’e, S. Ewen, F. Hueske, O. Kao, V. Markl, and D.

Warneke, Nephele/pacts: “A programming model and

execution framework for web-scale analytical processing,” in

Proc. of SOCC’2010, New York, NY, USA, 2010

[6] H. Gonzalez, A. Halevy, C. S. Jensen, A. Langen, J.

Madhavan, R. Shapley, andW. Shen, Google fusion tables:

“Data management, integration and collaboration in the

cloud,” in Proc. of SOCC’2010, New York, NY, USA, 2010

[7] “Configuring the Hive Metastore.” Cloudera, Inc.

Available at http://www.cloudera.com/content/cloudera-

content/cloudera-docs/CDH4/4.2.0/CDH4-Installation-

Guide/cdh4ig_topic_18_4.html. Accessed on June 18, 2013.

[8] Kindy, Diallo Abdoulaye and Pathan, Al-Sakib

Khan (2011) A Survey on SQL injection: vulnerabilities,

attacks, and prevention techniques. In: The 15th IEEE

Symposium on Consumer Electronics (IEEE ISCE2011), June

14-17, 2011, Singapore.

[9] http://www.devshed.com/c/a/MySQL/Database-

Design-Using-KeyValue-Tables/

[10] http://antirez.com/post/Sorting-in-key-value-data-

model.html

http://www.devshed.com/c/a/MySQL/Database-Design-Using-KeyValue-Tables/
http://www.devshed.com/c/a/MySQL/Database-Design-Using-KeyValue-Tables/

 Turkish Journal of Computer and Mathematics Education Vol.10 No.12 (2019),69-76

76

Research Article

[11] RajKumar Buyya, Chee Shin Yeo, Srikumar

Vanugopal, James Broberg, Ivona Brandic, “Cloud

computing and emerging IT platforms: Vision, hype

and reality for delivering computing as the 5
th

 utility”,

Future Generation Computer System,

10.1016/j.future.2008.12.001 Pages 599-616 volume

25, Issues 6, June 2009

[12] Manuel P.D, Thamarai Selvi.S, “Trust

management system for grid and cloud resources”,

Advanced Computing, 2009. ICAC 2009. First

International Conference, ISBN 978-1-4244-4786-2

Pages 176-181 Dec 2009.

