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Abstract: In this work, we investigate the existence of solutions for a class of second order impulsive differential 
equations with real parameter using bifurcation techniques by the mean of Krasnosel’ski theorems. Our results generalize 
some recent works. 
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1. Introduction  

The theory of impulsive differential equations is a very active area of research see for instance     and     . 
Differential equations involving impulsive effects are found in many applications such as mathematical biology, 

population dynamics, optimal control and so on  see                    and      . There have been many works 

on the previous mentioned topics and among of them are interested by the study of the existence of solutions for 

second order impulsive boundary value problems                                    . However, research into 

bifurcation theory of impulsive differential equations has been modest  see              and      . Some 

papers                and      introduced Rabinowitz global bifurcation theorems             to describe the 

global structure of solutions of second order impulsive boundary value problems. 

In this work, we consider the following impulsive boundary value problem         

                                                (1.1) 

                  
                      (1.2) 

                   
          (1.3) 

              (1.4) 

Where            
                       

                                        
      and    . 

Let              
   We assume that           is smooth enough,             and            , 

satisfying some assumptions to be specified later. 

In    , we considered the following impulsive boundary value problem  

      

                                             

                 
                     

                  
         

            

 

We studied the existence of multiple solutions for the relative nonlinear second order impulsive differential 

equations by the mean of Krasnosel’ski bifurcation theory  see         and      . The key assumption in this 

theorem is the oddness of the algebraic multiplicity of the eigenvalues of the linearized problem . 
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The problem (IBVP) were studied in    , we investigated the existence of solutions using the implicit function 

theorem and we analyzed the existence of multiple branches of solutions by the mean of Krasnosel’ski theorems 

where the impulsive effects are any functions depending implicitly on the real parameter  . But whose resolution 

of this problem we had to assume that the impulses    and    must defend explicitly from real   to apply this 

theorem. 

In this work, we examine the existence of multiple branches of solutions for each case where the functions       

and    depending implicitly on the real parameter   and are written in the form  

      
                             

      with     and    ,       for      .    and    are given 

functions satisfying certain conditions.  

Our paper is organized as follows, in section 2, we give some definitions and preliminary results that will be used 

throughout. Our main results are given in the section 3, which is composed of 3 parts, each one of them contains 

applications.  

 

2. Preliminaries  

For all    , let  

                                                                          
                                 

          

              is a Banach space with the norm,  

                                   

where                      for           

Let           be the Banach space of bounded linear operators on        and the standard norm in          , 

with  

                 
     

       

where          and               

Definition 2.1  A pair                is called a solution of        if it satisfies            .  

  

Lemma 2.2  A pair                is a solution of        if and only if                and it 

satisfies the following equation  

 

     ∫  
 

 
                          ∑                   

                   
               

  ∑   
              

                   
                             

 

where   is the Green’s function of the linear problem without impulses  

 

       {
                
                

                              

 

 

  Let                      be defined by  

                     

where                             .  

Proposition 2.3  The operator   is invertible, and                   is given by  

            ∫  
 

 
              

Let G be the Nemitskii operator corresponding to  , then  
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Let                   be defined by  

 

          ∑                   
                   

               

  ∑   
              

                   
                

 

Consider the map                   such that  

                            

where   is the compact imbedding defined by                     with               

Then we have 

 

                   ∫  
 

 
                          

 

Lemma 2.4  The operators   and   are compact.  

  

Lemma 2.5                 is a solution of        if and only if         .  

For fixed    , we have 
  

  
                       and  

 
  

  
        

         

  
        

  

  
         

for         . 

In the following, we give some theorems to be used in the study of       . 

Let   be a Banach space and consider the following equation  

                            (2.1) 

where    ,        is a linear compact operator with      , and          is a continuous mapping 

satisfying  

                         

 

Remark 2.6 It is clear that             is a trivial solution of      . The bifurcation problem of       is to 

seek a nontrivial solution               of       from some point        such that  

                     

 

  

Theorem 2.7                             Under the condition     , if            is a real 

eigenvalue of    with odd algebraic multiplicity, then         is a bifurcation point of      .  

  

Theorem 2.8                     If      is a simple eigenvalue of   , then the equation       bifurcates 

from         to exactly two branches    and      

  

3  Bifurcation of branches of solutions for        

In this section, we investigate the existence of bifurcated solutions for IBVP, we have  
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So  

Proposition 3.1 If   

    •                       and        

    •                   

    •                   

Then, for      , we have  

            

  

3.1   Case where          

In this section, we investigate the existence of bifurcated solutions where  

                        
                                   with     and          . 

We have 

 

 

         

  
        ∫  

 

 
      

  

  
                    

 ∫  
 

 
                

   

  
                          

             
   

  
                           

   
   

  
                    

   

  
                        

 

and  

 

  

  
        ∑        { 

   

  
        

               
   

  
        

                

  
   

  
        

               
   

  
        

                      }

  ∑        { 
   

  
        

               
   

  
        

                

  
   

  
        

               
   

  
        

                      }  

 

Then  

 

  

  
        

         

  
        

  

  
       

  ∫  
 

 
       

   

  
             

   

  
                

 ∑        { 
   

  
              

   

  
               

  
   

  
              

   

  
                     }

  ∑        { 
   

  
              

   

  
               

  
   

  
              

   

  
                     }  

 

We put additional hypotheses as follow   

    • 
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    • 
   

  
        

   

  
                 

 If                          
  

  
           , and from          , we have  

        ∫  
 

 
       

   

  
             

   

  
                  

 

Proposition 3.2 If the conditions           are satisfied, then  

                  

 

From    , we deduce the following results.  

 

Theorem 3.3  If           are satisfied and      is a real eigenvalue of   , with odd algebraic 

multiplicity, then               is a bifurcation point of          , and        has a bifurcation branch 

of solutions. 

  

Theorem 3.4  If           are satisfied and      is a real simple eigenvalue of   , then        hasexactly 

two bifurcated branches of solutions    and    from        .  

In the past theorem we assume that the multiplicity of   is simple, to study the multiplicity of  , 

let       
   

  
        and       

   

  
         then we have  

         ∫  

 

 

                                                   

 

Lemma 3.5       is a real eigenvalue of   , if and only if there exists              such that   satisfies 

the boundary value problem        

 {
       

    

 
      

    

 
                        

            
 

 

  

Corollary 3.6 If           are satisfied and      is a real eigenvalue of the boundary value problem 

     , with odd algebraic multiplicity, then        has a bifurcated branches of solutions from         . 

  

Corollary 3.7  If           are satisfied and      is a simple eigenvalue of the boundary value problem 

     , then        has exactly two bifurcated branches of solutions    and    from        .  

 

Application 

Consider the following boundary value problem 

 

 

{
 

 
                                                                      

                 
                     

                  
                     

            

 (3.1) 

where   and   are constant. 
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The function                                                  is well defined on the 

neighborhood of       and it satisfies     . 

The functions    and    satisfy the conditions          . 

For                           , we have 
   

  
          and 

   

  
           Then  

        ∫  
 

 
                        

We suppose that   is the eigenvalue of   . Then, if   
   

  
 and                 

we have   
  

   √         

      and   
  

   √         

      are the real simple eigenvalues of   . 

Corollary     implies that if     
  or     

  for     , then the problem       has exactly two branches   
 
 

and   
 
 bifurcating from       

 
     with       (see     for more details).  

3.2  Case where            

 In this section, we investigate the existence of bifurcated solutions where  

          
             

        
                      

       with     and    ,       . 

We have  

 
         

  
        ∫  

 

 
       

  

  
                      

  

  
                          

and  

 

  

  
        ∑        {           

   

  
          

                 

              
   

  
          

                   

   
   

  
        

             
   

  
        

        
      

  
   

  
        

               
   

  
        

                      }

  ∑        {           
   

  
          

                 

              
   

  
          

                   

   
   

  
        

             
   

  
        

        
      

  
   

  
        

              
   

  
        

                      }  

 

 

Then  

 

  

  
        

         

  
        

  

  
       

 ∫  
 

 
       

  

  
               

  

  
                

 ∑           
   

  
            

   

  
             

  
   

  
              

   

  
                      

  ∑           
   

  
            

   

  
             

  
   

  
              

   

  
                      

 

We put additional hypotheses as follow   
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    • 
  

  
          

  

  
                   

    • 
   

  
        

   

  
                 

If                           
  

  
            , and from      and     , we have 

       ∑         
   

  
            

   

  
               ∑         

   

  
            

   

  
                

Proposition 3.8 If the conditions                and      are satisfied, then  

                  

 

Then, from theorem     we have  

Theorem 3.9 If the hypotheses                and      are satisfied and      is a real eigenvalue of   , 

with odd algebraic multiplicity, then               is a bifurcation point of           and             

has a bifurcated branches of solutions. 

And from theorem     we have  

Theorem 3.10  If the hypotheses           and           are satisfied and      is a simple eigenvalue 

of   , then             has exactly two bifurcated branches of solutions from        .  

In the following we study the multiplicity of the eigenvalues of    to determine the number of branches of 

solutions. 

To do that let     
   

  
     ,     

   

  
      and put            . 

Let                with  

       {
                   

             
 

              .  

Proposition 3.11  For      . 

Let                   ∑   
                        .  

Then   be a Banach space with          , moreover          ,         

  

Remark 3.12  For      . Let   be an eigenvalue of    and    an eigenvector of    associated to  . Then  

       

{
 

 
         

∑   
                                   

                            

         

 

  

We denote            and           .  

Proposition 3.13 Let     . Then   is an eigenvalue of    if and only if there exist                       

such that   satisfies the following system with        equations 
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{
 
 
 
 
 
 

 
 
 
 
 
 
         ∑   

          ∑   
            

      

              ∑   
          ∑   

            

                 
 
∑   

                     ∑   
            ∑   

            

∑   
           ∑   

                 
 
∑     

                     ∑   
            

∑     
           ∑     

                   

∑   
              ∑   

            

∑   
           ∑   

                

 

 with              

Moreover the eigenvector associated to   is given by  

 
      ∑   

                  

 ∑   
                              

 

 

  

Proof. If         ,              is equivalent to  

 

 ∑                    
        ∑   

               
                  

Then,  

 

   ∑   
               

                            

We obtain  

                        ∑   
                                            

Then,  

 {
      

         ∑   
          ∑   

            
 

and  

 {

∑   
           ∑   

                 

∑   
                     ∑   

            ∑   
             

  For         ,               is equivalent to 

          ∑  

 

   

           
       ∑  

 

   

           
      

Then, 

 {
 ∑   

          ∑   
                

∑   
              ∑   

            
 

  

  

Lemma 3.14  Let     . Then   is an eigenvalue of    if and only if there exist                       such 

that  
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(

 
 
 
 
 

  

  

 
  

  

  

 
  )

 
 
 
 
 

    

where       is the        square matrix such that  

       ( ̃  ̃ ) 

where  ̃ is a              matrix and  ̃ is a              matrix satisfying   

    •  ̃        with  

 

{
 
 
 
 
 

 
 
 
 
                                            

                                             

                                                             

                                              

                                                                

 

Then,  

  ̃  

(

 
 
 
 
 
 
 

         
                  
           
                  
         
                     
                  
                     
                

)

 
 
 
 
 
 
 

  

 

    •  ̃        with  

 

{
 
 
 
 

 
 
 
                                                                                               

                                                      

                                                          

                                                                       

 

Then,  
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  ̃  

(

 
 
 
 
 
 
 

         
                
           
                
         
                   
                
                     
                

)

 
 
 
 
 
 
 

  

  

Proof. From the proposition     , the system      is equivalent to      .  

Put                with      , then      is an eigenvalue of    if and only if       is not invertible, i.e. 

       .  

Remark 3.15  Let   be a real eigenvalue of    with      . If   satisfies 

                    
       

            
                

             , 

then it is an eigenvalue with odd algebraic multiplicity     .  

If   is a simple eigenvalue of   , i.e    , then 

                             
        

From theorem    , we have  

Corollary 3.16  If           and           are satisfied with     , then             has a bifurcated 

branches of solutions from        . 

From theorem    , we have  

Corollary 3.17  If                      and       are satisfied with     , then             has 

exactly two bifurcated branches of solutions    and    from        .  

 Application 

Case1: For    , we obtain  

       (

    
        
      
        

)  

Then               , moreover the eigenvalues of    are   and    . We suppose that     
  

  
, then 

           is a simple eigenvalue of   . So, from corollary 3.17 the problem        has exactly two branches 

of solutions    and    bifurcating from              
   . 

Case2: For    , we obtain  

       

(

 
 
 

      
            
            
          
          
              )

 
 
 

  

Then,                             

We suppose that      and       If     
  

  
 then                    . So the eigenvalues of    are   

and         . 

We suppose that     
            

  
, then                      is a simple eigenvalue of   . So, from 

corollary 3.17 the problem        has exactly two branches of solutions    and    bifurcating from 



Zokha BELATTAR,  Abdelkader LAKMECHE and Mohamed HELAL 

 

 

70  

                       
     

If     
  

  
 and          

                               
               

then the characteristic equation                    admits two solutions 

    
 

 
                 √                 

                and  

    
 

 
                 √                 

                 

Moreover, the eigenvalues of    are   and the simple eigenvalues    and   . 

Theorem 3.10 implies that if either      or     , then the problem        has exactly two branches of 

solutions   
 
 and   

 
 bifurcating from        

   , with      .  

 

Remarks 3.18   

    1.  If    
                     

  
, then the eigenvalues of  

        are      and               . From Theorem 3.10, if either     or              , then the 

problem        has exactly two branches of solutions   
  and   

  bifurcating from       and two branches of 

solutions   
  and   

  bifurcating from                 
   .  

    2.  If    
                    

  
, then the eigenvalues of         are       and  

                 From Theorem 3.10, if either      or               , then the problem        

has exactly two branches of solutions   
  and   

  bifurcating from        and two branches of solutions   
  and   

  

bifurcating from                  
   .  

 

Remark 3.19 Let      for          . We have                 , moreover the eigenvalues of    is only 

 .  

 

3.3  Case where           

 In this section, we investigate the existence of bifurcated solutions where  

          
             

        
                      

       with     and    ,      . 

We have  

 

  

  
        ∑        {           

   

  
          

                 

   (          
   

  
(         

          )       ]       

   
   

  
        

             
   

  
        

        
            

  
   

  
        

               
   

  
        

                }

  ∑        {           
   

  
          

                 

              
   

  
          

                         

   
   

  
        

             
   

  
        

        
            

  
   

  
        

               
   

  
        

                }  

 

Then,  
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 ∫  
 

 
       

  

  
               

  

  
                

 ∑           
   

  
            

   

  
                   

  
   

  
              

   

  
                

  ∑           
   

  
            

   

  
                   

  
   

  
              

   

  
                

 

We put additional hypotheses as follow   

    • 
   

  
        

   

  
                 

 If                           
  

  
            , and From      and      , we have  

 
       ∑         

   

  
            

   

  
                   

  ∑         
   

  
            

   

  
                    

 

 

Proposition 3.20 If the conditions                and       are satisfied, then  

                  

 

 Then, from theorem    , we have  

 

Theorem 3.21 If the hypotheses                and       are satisfied and      is a real eigenvalue of 

  , with odd algebraic multiplicity, then               is a bifurcation point of           and       
      has a bifurcated branches of solutions. 

And from theorem    , we have  

 

Theorem 3.22  If the hypotheses                and       are satisfied and      is a simple eigenvalue 

of   , then             has exactly two bifurcated branches of solutions from        .  

In the following we study the multiplicity of the eigenvalues of    to determine the number of branches of 

solutions. 

To do that let     
    

    
       ,     

    

    
        and put           

                                  and                   

 

Proposition 3.23 Let     . Then   is an eigenvalue of    if and only if there exist                       

such that   satisfies the following system with        equations 
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{
 
 
 
 
 
 

 
 
 
 
 
 
         ∑   

          ∑   
            

      

               ∑   
               ∑   

            

                
 
∑   

                      ∑   
            ∑   

           ∑   
              

∑   
          ∑   

                
 
∑     

                      ∑     
                    

∑     
          ∑     

                  

∑   
               ∑   

             

∑   
          ∑   

                

 

with              

Moreover the eigenvector associated to   is given by  

 
      ∑   

                  

 ∑   
                              

 

 

  

Proof. If         ,              is equivalent to  

∑  

      

            
              ∑  

 

   

            
                        

Then,  

  ∑  

 

   

            
                                  

We obtain,  

                                    ∑   
                                             

           

Then,  

 {
      

         ∑   
          ∑   

            
 

 Similarly, for              we obtain the following result 

 

 {
∑   

          ∑   
                

∑   
                      ∑   

            ∑   
           ∑   

              
 

  For         ,               is equivalent to 

          ∑  

 

   

            
              ∑  

 

   

            
             

Then, 

 {
∑   

          ∑   
                

∑   
               ∑   
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Lemma 3.24  Let     . Then   is an eigenvalue of    if and only if there exist                       such 

that  

                                                             

(

 
 
 
 
 

  

  

 
  

  

  

 
  )

 
 
 
 
 

    

where       is the        square matrix given by  

       (
 ̃  ̃ 

 ̃  ̃ 
) 

where  ̃  is a             matrix,  ̃  is a             matrix,  ̃  is a             matrix and  ̃  

is a             matrix such that:   

    •  ̃        with  

 

{
 
 
 
 

 
 
 
                                         

                                                          

                                           

                                                      

 

 Then,  

  ̃  

(

 
 
 
 

                
                 
                  

        
                    
                   

)

 
 
 
 

  

 

    •  ̃        with  

 

{
 
 

 
                                                                         

                                                             

                              

 

 Then,  

  ̃  

(

 
 
 
 

                
                 
                  

        
                    
                     

)

 
 
 
 

  

 

    •  ̃        with  
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 {

                                                                   

                                                         

 

 Then,  

  ̃  

(

 
 
 
 

         
          
           

        
               
                

)

 
 
 
 

  

 

    •  ̃        with  

 

{
 
 

 
                                              

                                                           

                                                                          

 

 Then,  

  ̃  

(

 
 
 
 

          
           
            

        
                 
                  

)

 
 
 
 

  

 

  

From theorem     , we have  

 

Corollary 3.25  If                      and       are satisfied with     , then             has a 

bifurcated branches of solutions from        . 

From theorem     , we have  

 

Corollary 3.26  If                 and             are satisfied with     , then             has 

exactly two bifurcated branches of solutions    and    from        .  

 

Application 

Case1: For    , we obtain  

       (

        
        
    
      

)  

Then               , moreover the eigenvalues of    are   and    . We suppose that           and 

    
  

  
, then                 is a simple eigenvalue of   . So, from corollary     , the problem        

has exactly two branches of solutions    and    bifurcating from                     
   . 
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Case2: For    , we obtain  

       

(

 
 
 

            
              
              
      
        
          )

 
 
 

  

Then                                       

We suppose that            and     . If either     
  

  
 or    

       

  
, then                      

The eigenvalues of    are   and         . 

We suppose                                  , then                                 is 

a simple eigenvalue of   . So, from corollary     , the problem        has exactly two branches of solutions    

and    bifurcating from                                     
   . 

If     
  

  
 and    

       

  
, for          

          
        

          
            

                                                      , then the characteristic equation 

                             admits two solutions 

   
 

 
                                 √   and 

   
 

 
                                 √    

Corollary      implies that if either      or     , then the problem        has exactly two branches of 

solutions   
 
 and   

 
 bifurcating from        

    with      .  

 

Remarks 3.27   

    1.  If                                                                       
                          , then the eigenvalues of         are       

and                                      . From corollary      if either     or  

                                    , then the problem        has exactly two branches of 

solutions   
  and   

  bifurcating from       and two branches of solutions   
  and   

  bifurcating from 

                                       
   .  

    2.  If                                                                   
                            , then the eigenvalues of         are       and  

                                      From corollary     , if either      or  

                                   , then the problem        has exactly two branches of 

solutions   
  and   

  bifurcating from        and two branches of solutions   
  and   

  bifurcating from 

                                      
   .  

 

  

Remark 3.28  Let    
   

  
 for          . We have      and     , then            . So the eigenvalues 

of    is only  .  

 

4  Concluding remarks 

In this work, we have studied the existence of multiple branches of solutions of second order impulsive 

differential equation with real parameter  . We have obtained many results according to the hypothesis on the 

nonlinearity functions and the functions in the impulsive part of the problem       . It will be very interesting to 
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consider the case with both nonlinear term and impulse functions depending implicitly on the real parameter. 

That’s why we’re going to find some form of functions that ensures this approach using Krasnosel’ski bifurcation 

theorem. However, the two approachs used in     and     examined only the case with explicit dependence on the 

parameter in the differential equation and impulse equations.  
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