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1. Introduction

The theory of impulsive differential equations is a very active area of research see for instance [9] and [13].
Differential equations involving impulsive effects are found in many applications such as mathematical biology,
population dynamics, optimal control and so on (see [6],[10], [11], [22] and [28]). There have been many works
on the previous mentioned topics and among of them are interested by the study of the existence of solutions for
second order impulsive boundary value problems ([1], [14] — [16],[18],[26], [27], [29]). However, research into
bifurcation theory of impulsive differential equations has been modest (see [2] —[5],[12] and [19]). Some
papers [17],[18],[21] and [25] introduced Rabinowitz global bifurcation theorems ([23],[24]) to describe the
global structure of solutions of second order impulsive boundary value problems.

In this work, we consider the following impulsive boundary value problem (IBVP)

v'(t) =gt v(),v(t),a), te(0,1), t+ty, (1.2)
Av(ti) = n(v(t), v'(t), @), k=1,...r1, (1.2)
AV'(ty) = Ge(v(tw), v' (), @), (1.3)
v(0) = v(1) = 0. (1.4)

Where Av(ty) = v(tf) —v(ty), AV () =v' () —v(ty), 0=t <t; <t <<t <ty =1, reN* =
N —{0}and a € R.

Let I''=1— {tx }_;. We assume that g:I' x R®* — R is smooth enough, ny, € C*(R3,R) and g € C}(R3, R),
satisfying some assumptions to be specified later.

In [3], we considered the following impulsive boundary value problem

v'(t) = af(t,v(t),v' (D), t€(0,1), t#t,
(I) AV(tk) = T]k(V(tk),V,(tk), (X), k= 1, e, I,
Av (t) = Ge(v(ty), v (), ),
v(0) =v(1) =0.
We studied the existence of multiple solutions for the relative nonlinear second order impulsive differential

equations by the mean of Krasnosel’ski bifurcation theory (see [7],[8] and [20]). The key assumption in this
theorem is the oddness of the algebraic multiplicity of the eigenvalues of the linearized problem .
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The problem (IBVP) were studied in [4], we investigated the existence of solutions using the implicit function
theorem and we analyzed the existence of multiple branches of solutions by the mean of Krasnosel’ski theorems
where the impulsive effects are any functions depending implicitly on the real parameter a. But whose resolution
of this problem we had to assume that the impulses n, and g, must defend explicitly from real o to apply this
theorem.

In this work, we examine the existence of multiple branches of solutions for each case where the functions g, ny
and ¢, depending implicitly on the real parameter a and are written in the form

h (t, vP (1), (v)9(t), @) + afi(t, v(t),v'(t)) with p>2 and q=>2, p,q€N for i=1,3. h; and f; are given
functions satisfying certain conditions.

Our paper is organized as follows, in section 2, we give some definitions and preliminary results that will be used
throughout. Our main results are given in the section 3, which is composed of 3 parts, each one of them contains
applications.

2. Preliminaries
Forall i > 0, let

PCi(D):={v e C(I",R)/vY) is left continuous at t,, and v (t7) exist for all k,j; 0 <k <
r,0<j<i}

(PCE(D), Il 1I;) is a Banach space with the norm,
Il v ll;= max(l v lig, 1 v llg, ..., 1 v ll),
where || v [lo= sup{|w(¢t)|,t € I} for w € PC°(I).

Let 2(PCY(I)) be the Banach space of bounded linear operators on PC!(I) and the standard norm in £(PCi(I)),
with

Ixll<1
where x € PC'(I) and L € 8(PCL(I)).
Definition 2.1 A pair (v, ) € PC?(I) X R is called a solution of (IBVP) if it satisfies (1.1) — (1.4).

Lemma 2.2 A pair (v,a) € PC3(I) X R is a solution of (IBVP) if and only if (v,a) € PC*(I) x R and it
satisfies the following equation

v(t) = J, H(t9)g(sv(s),v'(5), @)ds + Doctpar M (@(t) V' (6), @) + Ge(w(ti), v’ (8), @) (¢ = i)}

—t Xk=1 (), v' (), @) + §e(w (), v' (), )1 — )}, VEED
where H is the Green’s function of the linear problem without impulses

{s(t—l) if 0<s<t<1,

H(t s) ts—1) if 0<t<s<1,

ts —min(t,s), (t,s) € [0,1]>

Let L: D(L) € PC%(I) —» PC?(I) be defined by
(Lu)(t) =u"(t), t €
where D(L): = {u € PC?(I); u(0) = u(1) = 0}.
Proposition 2.3 The operator L is invertible, and L™t: PC°(I) —» PC?(I) is given by
(LW = [, H(t,s)u(s)ds.

Let G be the Nemitskii operator corresponding to g, then
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G:PC (1) xR > PCO(D),
G,a)t) = gtv),v' ) .
Let y: PC2(I) X R — PC?(I) be defined by
Y@, = Xocepee M(W(tr), V' (), @) + G (v(te), v (), @) (t — ti)}

=t Xi=1 MW (&), v' (), @) + G (i), v' (), @) (1 — t) )
Consider the map F: PC%(I) x R — PC?(I) such that
F(v,a):=L'G/(v,@) + Y (v, a),
where J is the compact imbedding defined by J: PC?(I) Xx R — PC*(I) x R with J(v,a) = (v, ).

Then we have

LUGU@,a)](®) = [ H(t,$)g(s,v(s),v'(s), a)ds
Lemma 2.4 The operators 1 and F are compact.

Lemma 2.5 (v,a) € PC2(I) x R is a solution of (IBVP) if and only if F(v,a) = v.
For fixed a € R, we have 2 (., a): PC?(1) > 2(PC(1)) and

oF _ (L6 Y
S W0 ==—=Wa).¢+-(v,a).9,

for @ € PC?(D).
In the following, we give some theorems to be used in the study of (IBVP).
Let X be a Banach space and consider the following equation
M,(v,a):=v — aM,v + Ny(v,a) = 0, (2.1)

where v € X, My: X — X is a linear compact operator with s = 1,3, and Ny: X x R — X is a continuous mapping
satisfying

(H1) Ny(v,a) =e (Il v llx).

Remark 2.6 It is clear that (v, @) = (0, ) is a trivial solution of (2.1). The bifurcation problem of (2.1) is to
seek a nontrivial solution (v,, ) # (0, a*) of (2.1) from some point (0, a*) such that

v,—>0 as a-a

Theorem 2.7 [24,Krasnosel'ski Theorem] Under the condition (H1), if A€ R*=R—{0} is a real
eigenvalue of M with odd algebraic multiplicity, then (0, 2~1) is a bifurcation point of (2.1).

Theorem 2.8 [24,Theorem 1.11] If 1 € R* is a simple eigenvalue of M, then the equation (2.1) bifurcates
from (0,A71) to exactly two branches I; and I5.

3 Bifurcation of branches of solutions for (IBV P)

In this section, we investigate the existence of bifurcated solutions for IBVP, we have
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N,(v,):= aMv — F (v, ), s=13.
So
Proposition 3.1 If
*g(t,00,0) =0, VtelandVa € R,
*1¢(0,0,0) =0,Va € R
*(,(0,0,0) =0,Va eR
Then, for s = 1,3, we have

N,(0,a) = 0.

3.1 Casewhereg =[1; +ag,
In this section, we investigate the existence of bifurcated solutions where

gt,v(t),v' (t),a) = hi(t,vP(t), W)I(t), @) + ag.(t,v(t),v'(t)) withp = 2and q = 2,p,q € N.
We have

WD (a).p = [} H(ts) L (sv(s) v (), a). gds
= Jy HES)[vP ™ (5) 22 (5,07 (5), (0)(s), @))- ¢ (5)
RUCOLRORIC v*’(s) @)(s), @) ¢'(s)
+a (2 (5,v(),v' () () + 22 (5,v(5),V'(5)). 9 (s))]ds
and
oY g ’ ong ’ ’
P09 = o ([GEEE,V (0 0.0t + 52 @6,V (t), .0 (t)]
52 (0(t), V' (8, ). 9 () + T2 (0(6), V' (t), @). 9" (E)] (¢ = )]
—t Toctper (5% (6, V' (6, ). 9(6) + FE (0(6), V' (), ). 9' (8]
52 (0(t), V' (5, ). 9 () + T2 (0(60, V' (8, @)’ (8] (1 = ti) ]
Then
X0 = 2D0,a).0+20,a).0

= af) HE9CE(5,00).005) + 22 (5,0,0). ¢'(5))ds

+ Zoctee {[32(0,0,@). 0 (t) + 5% (0,0,@).9' (6]
FI52(0,0,@). 9(6) +52(0,0,@). ¢’ (BI](E = £}
~t Toctyet {[520,0,@). 9 (t) + 5% (0,0, @). ¢’ (6]

]
FI5E(0,0,@). 9(6) + 52 (0,0,@). 9/ (6] - )}
We put additional hypotheses as follow

-2 (0,0,) = a’”‘(00 @) =0, Va €R,
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o 9% — 9% -
P (0,0,a) = 3y (0,0,a) =0, Va € R.
If (DuNy (0, @) (8): = aMyp(t) — 5= (0, )¢ (t) = 0, and from (HS) — (H6), we have

— d d ,
Mip(t) = [, H(t, $)(Z2(5,0,0). ¢(s) + aiyl(s, 0,0). ¢'(s))ds.
Proposition 3.2 If the conditions (H2) — (H6) are satisfied, then
N, (v, @) =o (Il v II).

From [3], we deduce the following results.

Theorem 3.3 If (H2) — (H6) are satisfied and A € R* is a real eigenvalue of M;, with odd algebraic
multiplicity, then (v, a) = (0,A71) is a bifurcation point of M, (v, a) = 0, and (IBVP) has a bifurcation branch
of solutions.

Theorem 3.4 If (H2) — (H6) are satisfied and A € R* is a real simple eigenvalue of M, then (IBVP) hasexactly
two bifurcated branches of solutions I3 and I from (0,A7%).

In the past theorem we assume that the multiplicity of A is simple, to study the multiplicity of A4,

leta(s): = %(s, 0,0) and p(s): = %(s, 0,0), then we have

(My)(t) = f G(t,5)(0(s)-9(s) + p(). 9" ())ds, ¢ € PC*(D).
0

Lemma 3.5 A(# 0) is a real eigenvalue of M, if and only if there exists ¢ € PC2(I) — {0} such that A satisfies
the boundary value problem (BVP)

{(p”(t) —%(p’(t) —?([)(t) =0 Vt € I’,
@(0) = ¢(1) = 0.

Corollary 3.6 If (H2) — (H6) are satisfied and A € R* is a real eigenvalue of the boundary value problem
(BVP), with odd algebraic multiplicity, then (IBVP) has a bifurcated branches of solutions from (0,171) .

Corollary 3.7 If (H2) — (H6) are satisfied and A € R* is a simple eigenvalue of the boundary value problem
(BVP), then (IBVP) has exactly two bifurcated branches of solutions I and I, from (0,171).

Application

Consider the following boundary value problem

Av(ty) = n(u(ty), u'(ty), @), k=1,..,r, (3.1)
AV () = G (u(ty), u'(ty), @), k=1,..,r, )
v(0) =v(1) =0.

where a and b are constant.

{v”(t) =1In(1 + a?v*(t) + (v)2(t)) + asin(av(t) + bv'(t)), t € (0,1), t+ ty,
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The function g(t,v,w,a) =In(1 + a?v*(t) + w2(t)) + asin(av(t) + bw(t)) is well defined on the
neighborhood of (0,0) and it satisfies (H2).

The functions 7, and ¢, satisfy the conditions (H3) — (H6).

For g,(t, v,w) = sin(av(t) + bw(t)), we have (t,0,0) = aand ﬂ(t 0,0) = b. Then

Myp(t) = [, H(t,s)(ap(s) + bg'(s))ds.
We suppose that A is the eigenvalue of M,. Then, if 1 < _4—[;2 anda # +bnm, n=>1,

—a-+va?-b2n2n2 2 —a+va?-b2n2n2
=—————and Ay = —————

1
we have A, P "= 5

are the real simple eigenvalues of M.

Corollary 3.7 implies that if @ = A% or & = A2 for n € N*, then the problem (3.1) has exactly two branches l"lj
and T bifurcating from (0, (2},)™") with j = 1,2 (see [3] for more details).

3.2 Case wheren, = [0, + a&y,
In this section, we investigate the existence of bifurcated solutions where

MW (), v' (&), @) = hy (WP (&), (0" (tk), @) + aé (v(ty), v' (&) withp = 2and g = 2, p,q € N.
We have

a(L 1, a/)

wa)e = f H(t, S) (S v(s),v'(s), @). () +—(S v(s),v'(s), @). 9" (s)]ds

and

So<ee<t {[(pvp-l(tk)%(vp(tk) (@) (t), @) 9 (t)
+(q @) S (P (5, (V) (8, @) 9 (8]
+a[ 2k (v(ty), v (tk)).w(tk) + 25 (0(60, V' (t)- 9’ (6]
+ 2 (), V' (), @). () + 2k “" L (0(t), V' (t), @). @' (E] (¢ — )]

oY
2 w,a).0

—t Toctpc {[(pvp 1) 22 (WP (), (V) (8, @))- 9(t)
+<q(v )17 (6) 22 (v”(m @)(t), ))- ¢’ (6]
+a[ZE (v(ty), v (tk» P(t) + 52 (), V' (1) ' (6]

+ 52 (80, V' (t), (t) + 55 (0(80,v' (), ). 9" (6] = )

Then

a(L 1 G])

0,a).¢ +—(0 a). ¢
= f H(t S)(—(s 0,0,a). ¢(s) +—~"(s 0,0,a).¢'(s))
+ Vocece [€2E(0,0). () + - f’f" £(0,0).¢' ()

oF
5, (0a).¢

+GE(0,0,@). 9 (1) + 5(0,0,@). ¢ () (t =~ )]

—t Doctyer [ (52 (0,0)-9(6) + 5 (0,0). ' (¢4)

+GE(0,0,@). 9 (t) + 5(0,0,@). 0" () (1 — )]

We put additional hypotheses as follow
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“22(£,0,0,) = Z—j(t, 0,0,a) =0, Va € R,
. %%k _ 9% _
P (0,0,) = 3y (0,0,a) =0, Va € R.

If (DN, (0, @))@(t): = aM,.p(t) — a—F(O, a).(t) =0, and from (H7) and (H8), we have

&k 43"

M29(t) = To<r<t (5 (0,0). 9(ty) + (0 0). 9" (tr)) — t Xo<e,<1 (5 (0,0). 9 (tk) + (0 0). 9" (tx))-
Proposition 3.8 If the conditions (H2) — (H4), (H7) and (H8) are satisfied, then
Ny(w, @) =o (Il v II).

Then, from theorem 2.7 we have

Theorem 3.9 If the hypotheses (H2) — (H4), (H7) and (H8) are satisfied and A € R* is a real eigenvalue of M,,
with odd algebraic multiplicity, then (v, a) = (0,471) is a bifurcation point of M,(v,a) = 0 and (1.1) — (1.4)
has a bifurcated branches of solutions.

And from theorem 2.8 we have

Theorem 3.10 If the hypotheses (H2) — (H4) and (H7) — (H8) are satisfied and 2 € R* is a simple eigenvalue
of M,, then (1.1) — (1.4) has exactly two bifurcated branches of solutions from (0,A71).

In the following we study the multiplicity of the eigenvalues of M, to determine the number of branches of
solutions.

To do that let b,: = af" S£(0,0), ¢: = ag" (0 0) and put Ay: = byty, + cy.
Let £, (t) = hy(t).t with

_ (1 if tE]ty tisal,
hie(8) = { otherwise ,

k=012,...,7r

Proposition 3.11 For s = 2,3.

Let E:= {p € PC*(1)/@(t) = Ek=o Vicfi(t) + Bhi(t), t # ti}.

Then E be a Banach space with dimE = 2r + 2, moreover Vo € PC2(I), Ms¢ € E.

Remark 3.12 For s = 2,3. Let 1 be an eigenvalue of M and ¢, an eigenvector of M, associated to A. Then

0 if t=0,

oaE) = { St V@) + Bel@)he(t)  if  t#* b,
g Yie1 (@)t + Be1(92) if t=t,
0 if t=1.

We denote y (¢3): = vk and By (92): = Br.

Proposition 3.13 Let 1 € R*. Then 1 is an eigenvalue of M, if and only if there exist ¥, ..., ¥, Bo,..., Br € R
such that A satisfies the following system with (2r + 2) equations
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A+ A)DYo + Xizz AYi1 + Xiz1 bifi1 =0,

ABO = 0,

Aryo + (A + A)Dys + Xizs AiVio1 + Xizq bifi—1 =0,
‘_A1Y0 —bifo+ 4B, =0,

an ! YK LAY+ A+ A )Yk + Ziekrz AYiog + Xiey bifio1 =0,
o —AYio + X5 —biPioa + AP =0,

Yzt Avica +¥roa(A+A) + X0, BB =0,
ot = Ao + X128 = biBioa + ABrsy =0,
Yiz1 AiVica + Ay, + X1 bifio1 =0,
=1 — AiYie1 — Xi=1 bifio1 + A6 = 0.

withk=1,...,7r — 1.
Moreover the eigenvector associated to A is given by

©2(t) = Xk=1 Yife(©) + Bihy(t)
Yi=1 @) Vit + Br), t # t, t €[0,1].

Proof. If t €]0,t,[, M,@(t) = Ap(t) is equivalent to

Do<tp<t (b (ti) + c@' (6)) — t Xk=1 (b (i) + k' (&) = A(¥ot + Bo)-

Then,
—t Xie=1 (i@ (tx) + @' (tx)) = A(¥ot + Bo), Vt €]0,t4][.
We obtain
t[Avo + b1 (Vot1 + Bo) + c1¥o + Xizz bi(Vi-1ti + Bi—1) + ¢i¥i—1] + Ao = 0, Vt €]0,t4].

Then,

{Aﬁo = 0,

Yo(A+A) + X1y AiYioa + Xizy bifi—1 = 0.
and

=AY+ X5 —biPiia + AR =0,
Y1 AiYicr + A+ Ake)Vie + Dicksz Ai¥ior + Xiey biBioy = 0.

Fort €]t,, 1[, M,e(t) = Ag(t) is equivalent to
Mt +6) = D heo() + ' (6) £ ) bt + e’ ()
k=1 k=1
Then,

{— Yiz1 AiYie1 — Xizq biBioa + 4B =0,
Yic1 AiYior + Aa, + X1 bifi—, = 0.

Lemma 3.14 Let 2 € R*. Then 1 is an eigenvalue of M, if and only if there exist ¥, ..., ¥ Bo,--.» B € R such
that

67



Zokha BELATTAR, Abdelkader LAKMECHE and Mohamed HELAL

Yo
i
Fo
ain Loyl =0
2 Bo ’
B
Br
where T, (1) is the (2r + 2) square matrix such that
=" F)
where A isa (2r + 2) X (r + 1) matrix and B isa (2r + 2) x (r + 1) matrix satisfying
. A = (al‘]’) W|th

agpj =A+4; with i=1r for j=i,

gy =4 with i=27+1 for 1<j<i,

Qe =4; with i=1r—-1 and j=2,r for j>I,

a(2i+1)]’ = _A] with i = 1,7" fOT 1 S] < i,

Aaisy; =0 with i=0,r and j=1Lr+1 for j>i

Then,
0 0 0 0 0 0
L+A4, A As . A, A, 0
-4, 0 0 .0 0 0
Ay A+4, A, . A, A, 0
A=|_4, -4, -4, —A,_, -4, 0
Ay A, As . A, A+A4, O
-4, A, —A —A,_, —4A, 0
Ay A, As A, A, pl

* E = (ai]-) Wlth

Aaivnj =4 with i=0r for j—(r+2)=i

a(2i+1)]' = — j—(r+1) with i = H fOT 1 S]_ (7‘ + 1) <i,

Agivy; =0 with i=0,r—=1 and j=r+32r+2 for j—(r+2)>i

Then,

a(zl’)]' = bj—(‘r+1)' a(zi)(2T+2) =0 with i= 1,T +1 and ] =r+ 2,27' +1 fOT ] — (T + 1) > 1,
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A0 0 0 0 0
b, by, bs .. by, b 0
b, A 0 .0 0 0
b, b, b b, b 0
B=1_p —b, —b, b A0
b, b, b b, b, 0
b, —b, —bs by, —b, A
b, b, b b, b 0

Proof. From the proposition 3.13, the system (II) is equivalent to (I11).

Put P,(1) = detT,(1) with s = 2,3, then 1 € R* is an eigenvalue of M if and only if T,(1) is not invertible, i.e.
P;(4) = 0.

Remark 3.15 Let A be a real eigenvalue of M, with s = 2,3. If A satisfies
(H9)  P,(A) =P/(A) =P'(A) =...= P2(1) = 0 and PZ**1(1) # 0, k € N,
then it is an eigenvalue with odd algebraic multiplicity 2x + 1.
If 1 is a simple eigenvalue of Mg, i.e k = 0, then

(H10) P(A) =0 and P/(A) # 0.
From theorem 2.7, we have

Corollary 3.16 If (H2) — (H4) and (H7) — (H9) are satisfied with 4 € R, then (1.1) — (1.4) has a bifurcated
branches of solutions from (0,A™1).

From theorem 2.8, we have

Corollary 3.17 If (H2) — (H4), (H7) — (H8) and (H10) are satisfied with 2 € R*, then (1.1) — (1.4) has
exactly two bifurcated branches of solutions I; and I, from (0,171).

Application
Casel: For r = 1, we obtain
0 0 A 0
A+A4;, 0 by O
T,(A) = .
XM =1a " 1 b o0
_A1 0 _bl A

Then P,(1) = A3(1 + A4,), moreover the eigenvalues of M, are 0 and —A,. We suppose that t, # —;—1, then
1

(=byt; — ¢;) is a simple eigenvalue of M,. So, from corollary 3.17 the problem (IBVP) has exactly two branches
of solutions T; and T, bifurcating from (0, (—b;t; — ¢;)™%).

Case2: For r = 2, we obtain

0 0 0 2 0 0

/ A+4A, A, 0 b, b, o\

| A A+A4, 0 b, b, O
LA=|_4, o 0 —b, A 0
Al Az A b1 bz 0

_Al _Az 0 _b1 _bz /1

Then, P, (1) = A*[A2 + (A, + Ay)A + A;bs].

We suppose that b; # 0 and b, # 0.If t; = —Z—ithen P,(A) = 2°[1 + (4; + A,)]. So the eigenvalues of M, are 0
1
and _(Al + Az).

biti+(c1+cz)

We suppose that t, # , then —(b,t; + byt, + (c; + ¢,)) is a simple eigenvalue of M,. So, from

2
corollary 3.17 the problem (IBV P) has exactly two branches of solutions I; and I, bifurcating from
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(0, (=byty — byt — (1 + ¢2))7H).
Ift; # —Z—land (baty + €1)? 4+ 2(byty + c1)(baty + ¢3) + (byty + ¢3)* > 4by(bity + ¢;)
1

then the characteristic equation A2 + (4, + A,)A + A;b, = 0 admits two solutions

/‘{1 = _%[bltl + bztz + Cl + CZ + \/(bltl + bztz + Cl + C2)2 - 4b2(b1t1 + Cl)] and

1
2.2 = _E[bltl + bztz + Cl + Cz - \/(bltl + bztz + Cl + C2)2 - 4b2(b1t1 + Cl)]'

Moreover, the eigenvalues of M, are 0 and the simple eigenvalues A, and A,.

Theorem 3.10 implies that if either &« = A, or a = A,, then the problem (IBVP) has exactly two branches of
solutions I/ and I bifurcating from (0, (;,)™*), with j = 1,2.

Remarks 3.18

—(byt1+c1)(bp+1)—cp—-1
b,

1 Ift, = , then the eigenvalues of

P,(A) =0are A, = 1and A, = (byt; + c;)b,. From Theorem 3.10, if either « = 1 or @ = (b, t; + ¢;)b,, then the

problem (IBVP) has exactly two branches of solutions I} and I} bifurcating from (0,1) and two branches of

solutions I'Z and T2 bifurcating from (0, ((b1t; + ¢1)by)™Y).

(b1t1+cl)(b2 1)—cy+1
by

A, = —(byt; + ¢;)b,. From Theorem 3.10, if either ¢« = —1 or @ = —(b,t; + ¢;)b,, then the problem (IBVP)
has exactly two branches of solutions T} and T} bifurcating from (0, —1) and two branches of solutions I'? and I'?
bifurcating from (0, (—(b,t; + ¢;)by)™ ).

Cf e,

, then the eigenvalues of P,(1) = 0 are 1; = —1 and

Remark 3.19 Let 4, = 0 for k = 1,...,7. We have P,(1) = A*"*1(—b,)), moreover the eigenvalues of M, is only
0.

3.3 Case where {} = 3 + agy
In this section, we investigate the existence of bifurcated solutions where

Ge( (), V' (8), @) = hs (WP (8), (V)1 (t), @) + G, (v(t), v' () With p = 2 and g > 2, p,q € N,
We have
P09 = Tocteee [PVl 52 @P (8D, () (6, @))- @ (t)
g ()7 B T2 (P (6, @) (), ). 0 (6] (£ = )

tal75- o = (0(t), V' (8)- ¢ (tk) + (U(tk) v'(t). @' ()] (E = ti)
+[ LW (), V' (8, @)- 9 (t) + (v(tk) v'(te), @) ¢ (tk)]}
—t Yo<t<1 {[(Pv” 1(tk) (v”(tk) W) (ti), @))- @(tr)
+q)T” 1(tk) (U”(tk) ' )q(tk) ). @' ()] (1 = ti)
+06[— ), v (tk)) ¢ (tk) + (U(tk) v () " (6] = t)

IS (60, V' (6, @) 9(6) + 5 (0(80, V' (6, @)- ¢’ (8]}

Then,
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a(L °G])

0, ). <P+—(0 a).¢
= f H(t s)(— (5,0,0,a). ¢(s) +—g(s 0,0, @).¢'(s))
+ Zo<tpee [0GE (0,00 9(t) + 22 (0,0). 9" (6)) (¢ — )

oF
55 029

+(ZE(0,0,0). 9(t) + 52 (0,0,@).9' (¢)]
—t Docrer [@GE(0,0). 0 (t) + 52 (0,0). ' (5 (1 ~ &)

+(ZE(0,0,0). 9 () + 5 (0,0,@).9' (6)]

We put additional hypotheses as follow

o 9 — Ik -
o 0,0,a) = 3y (00,0) =0, Va € R.
If (DuN3(0, @))@(t): = aMs. p(t) — a—F(O, a).p(t) = 0,and From (H7) and (H11), we have

Myp(t) = Tocreer (o2 (0,0). p(ti) + 2k (oow(tk))(t—tk)
—t Tocrper (G2 (0,00 0(t) + 2% (0,0). 9" (5))(1 — ).

Proposition 3.20 If the conditions (H2) — (H4), (H7) and (H11) are satisfied, then
N3 (v, a) =o (Il v II).

Then, from theorem 2.7, we have

Theorem 3.21 If the hypotheses (H2) — (H4), (H7) and (H11) are satisfied and A € R* is a real eigenvalue of
M, with odd algebraic multiplicity, then (v,a) = (0,A471) is a bifurcation point of M;(v,a) = 0 and (1.1) —
(1.4) has a bifurcated branches of solutions.

And from theorem 2.8, we have

Theorem 3.22 If the hypotheses (H2) — (H4), (H7) and (H11) are satisfied and 4 € R* is a simple eigenvalue
of M5, then (1.1) — (1.4) has exactly two bifurcated branches of solutions from (0,171).

In the following we study the multiplicity of the eigenvalues of M; to determine the number of branches of
solutions.

2 2
To do that let dj: = %(0,0,0), ey = % (0,0,0) and put By: = dyty,

Ck: = (1 - tk)dk' Dk: = (1 - tk)(dktk + ek) and Ek: = tk(dktk + ek).

Proposition 3.23 Let 1 € R*. Then A is an eigenvalue of M; if and only if there exist yo,..., ¥ Bor ..., Br € R
such that A satisfies the following system with (2r + 2) equations
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A+ D)yo + Xizz Divieq + Xi=1 CiBioy =0,
ABy =0,
—E1vo + (A + Dy)ys + Xiz3 Divie1 — B1Bo + Xi=2 Cifi—1 =0,
Fﬂ/o + BBy + 1B, =0,
21 = EVica + (A+ D ))Vie + Xicksz Divica + Xiey — BiBica + Xicksr CiBi-1 = 0,
Y EiVior + 2 BiBia + APk = 0,

r=_11 - Eiyi—l + ()' + Dr)]/r—l + er:_f - Biﬁi—l + Crﬁr—l = 0!
Yot Eivica + X128 Bifia + A1 =0,

te1 —EiVioa + Ay, + Xy —Bifio1 =0,

=1 EiVi-1 + Xi=q1 Bifi—1 + A8, = 0.
withk=1,...,r— 1.

(V)4

Moreover the eigenvector associated to A is given by

©2(t) = Xk=1 Yife(©) + Bihy(t)
Yi=1 @) Vit + Br), t # t, t €[0,1].

Proof. If t €]0,t,[, M3@(t) = Ap(t) is equivalent to

D @t + e ENE =) £ ) (dep(t) + e’ €)1 = t) = Aot + o)
k=1

0<tp<t

Then,
—tz (dip(ti) + e’ ()1 — ) = Ayot + Bo),  VEE]O, 1],
k=1

We obtain,

t[Avo + di(Yot:1 + Bo)(1 — t1) + e1¥o(1 — t1) + Xizp di(Vioati + Bic)(X — ) + eyioi (1 — )] + Ao = 0,
vt €10, .

Then,

{/150 =0,
Yo(A+ D) + Xi; Divio1 + Xiz1 Cifiq = 0.

Similarly, for t €]ty, t,,[, we obtain the following result

{Zi’cﬂ Eyiq+ Zi'(=1 Bifi_y + ABx =0,
1 —EVica + A+ D )Vie + Xicksz Divica + 2iey — BiBicy + Xicks1 CiBi-1 = 0.

Fort €]t,, 1[, M3;@(t) = Ag(t) is equivalent to

At +By) = Z (drp(t) +e@' () —t) — ¢t (dro(ty) +exp'(6))(1 — ty)

T
k=1 k=1
Then,

{Zir=1 Eyi—1 + Xiz1 Bifioa + AB =0,
t=1 —EiYia + Ay + X2y — Bifi-1 = 0.
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Lemma 3.24 Let 2 € R*. Then 4 is an eigenvalue of M; if and only if there exist ¥, ..., ¥ Bo,--.» B € R such
that

I
A

) n| g

.
\_—

where T5(4) is the (2r + 2) square matrix given by
A, B,
T;(A)=|C, D,

where A, isa (r + 1) x (r + 1) matrix, B, isa (r + 1) x (r + 1) matrix, C, isa (r + 1) X (r + 1) matrix and D,
isa (r +1) X (r + 1) matrix such that:

.AZ = (aij) W|th
aj=A+D; with i=1r for j=i

a;j=D; with i=1r—-1 and j=ﬂ for j=i,

ajj=—E with i=2,r+1 for 1=<j<i,

AGrsy =0 for i=1r and agineen = A

Then,
A+D, D, D, D, ... D, 0
—-E; A+ D, D, D, D, 0
—E; —E, A+D; D, D, 0
A, = : :
—E, —E, —E; —E, A+D, 0
—-E; -E, —E, —E, -E, 2

. EZ = (aij) with
aij = Ci_(r41), With i= 1,r and j=r+22r+1 for j—(r+1)=i,
ai]- = _Bj—(r+1) with i = Z,T +1 fOT 1 S] - (7" + 1) < i,

lai(2r+2) =0 Wlth i = 1,7" + 1.

Then,
(o C, (0 eer Crq C. 0
-B;, C, (0 . G4 C. 0 \
-B;, —-B, (3 . Gy C, 0
Ez = : : : :
-B;, —-B, -B; -B._, C, 0
—-B;, —B, —B; -B._, —-B, 0

. C~2 = (aij) with
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a;;j=0, with i=r+22r+2 and j=1r+1 for jz=zi—(r+1),

aij=E with i=r+32r+2 for 1<j<i-—(r+1).

Then,
o 0 0 ... o0 0 O
E, 0 0 0 0 0
E, E, 0 0 0 0
C, = :
E, E, E; Er.y 0 0
E, E, E; E,_, E. 0

* 52 = (ai]') W|th

(ai,-=l, with i=r+22r+2 for i=j,
1aij=Bj_(r+1) with i=r+32r+2 for r+2<j<i,

\izrszy =0 with i=7+22r+1 and j=r+32r+2 for j>i

Then,
A 0 0 O 0 0 0
/ B, 4 0 0 0 0 0 \
| By B, 4 0 0 0 0 |
B, B, B; B, B._, 2 0
B, B, B; B, B._, B, 1

From theorem 3.21, we have

Corollary 3.25 If (H2) — (H4), (H7),(H9) and (H11) are satisfied with 1 € R*, then (1.1) — (1.4) has a
bifurcated branches of solutions from (0,A171).

From theorem 3.22, we have

Corollary 3.26 If (H2) — (H4), (H7) and (H10) — (H11) are satisfied with 1 € R*, then (1.1) — (1.4) has
exactly two bifurcated branches of solutions I; and I, from (0,17 1).

Application
Casel: For r = 1, we obtain
A+D, 0 C 0
_ _E1 /1 _Bl 0
() = 0 0 A (I
E; 0 B A

Then P;(1) = 23(1 + D,), moreover the eigenvalues of M; are 0 and —D,. We suppose that d; # 0,e; # 0 and

t, # —%, then (t, — 1)(d,t, + e;) is a simple eigenvalue of M;. So, from corollary 3.26, the problem (IBVP)
1

has exactly two branches of solutions I; and T, bifurcating from (0, ((¢; — 1)(d;t; + €;))™1).
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Case2: For r = 2, we obtain

A+D;, D, 0 ¢ C, 0

(_El /1 + D2 0 _Bl CZ 0

_ _El _EZ /‘1 _Bl _BZ 0
LM =1 0 o2 o of
\El 0 0B A 0 /

E; E, 0 B B, A

Then P3(A) = 14[2.2 + (Dl + Dz)). + D1D2 + EI(DZ - Cz)].

We suppose that d, # 0, d, # 0 and e, # 0. If either ¢, = —;—1 ort, = dzt;ﬁ, then P;(1) = A°[A + (D, + D,)].
1 2

The eigenvalues of M, are 0 and —(D; + D,).

a simple eigenvalue of M5. So, from corollary 3.26, the problem (IBVP) has exactly two branches of solutions T

and T, bifurcating from (0, ((t; — 1)(dit; +e;) + (t, — 1)(dyt, + €)™ D).

e dyta+ey

If 6% -2t and b #2 for A= (1-1t)%(dity + ) + (1= 1)°(daty + €2)° = 2(1 = ) (1 =
1 2

ty)(dq ity + e)(dyt, +e;) — 4t (1 —t,)(dt; +e1)(dyt, + e, —dy) >0, then the characteristic equation
A2+ (D; + D)1+ DD, + E; (D, — C,) = 0 admits two solutions

A = [(t = D(dity + €1) + (t2 — D (dat, + €;) — VA] and

By =31t~ ety + e0) + (&2 = ety + ) + VA

Corollary 3.26 implies that if either « = A, or @ = 4,, then the problem (/BVP) has exactly two branches of
solutions I/ and I bifurcating from (0, (1;)™*) with j = 1,2.

Remarks 3.27

l. If 1 + (1 - tl)(dltl + el) + (1 - tz)(dztz + ez) + (1 - tl)(l - tZ)(dltl + el)(dztz + 92) + tl(l -
t,)(d ty + e)(d,t, + e, — d,) = 0, then the eigenvalues of P;(1) = 0are 4, =1

and 1, = =1 — (1 — t;)(d1t; + ;) — (1 — t,)(d,t, + e,). From corollary 3.26 if either ¢ = 1 or

a=-1—-1-t)(dt; +e) — (1 —t,)(d,t, + e,), then the problem (IBVP) has exactly two branches of
solutions I and I bifurcating from (0,1) and two branches of solutions I'Z and ' bifurcating from

(0,(=1 = (1 = t)(d1t; + &) = (1 = t5)(dot; + €3))71).

2. If 1 + (1 - tl)(l - tZ)(dltl + el)(dztz + ez) + tl(l - t2)(d1t1 + el)(dztz + ez - dz) = (1 -
t1)(dity +e1) + (1 —ty)(dyt, + e,), then the eigenvalues of P;(4) = 0are 4, = —1and

A, =1—(1—-t)(dit; +e) — (1 —t,)(d,t, + ey). From corollary 3.26, if either « = —1 or

a=1—-(1—-t)(dt;y +e;) — (1 —t,)(dyt, + e,), then the problem (IBVP) has exactly two branches of
solutions I and I bifurcating from (0, —1) and two branches of solutions I'Z? and ' bifurcating from

(0,(1 = (1 = ty)(dyty + €1) — (1 — ) (dyty + €))7 ).

Remark 3.28 Lett, = _d—e" fork =1,...,7. We have E,, = 0 and D,, = 0, then P;(1) = A2"*2, So the eigenvalues
k
of M5 is only 0.

4 Concluding remarks

In this work, we have studied the existence of multiple branches of solutions of second order impulsive
differential equation with real parameter a. We have obtained many results according to the hypothesis on the
nonlinearity functions and the functions in the impulsive part of the problem (IBVP). It will be very interesting to
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consider the case with both nonlinear term and impulse functions depending implicitly on the real parameter.
That’s why we’re going to find some form of functions that ensures this approach using Krasnosel’ski bifurcation
theorem. However, the two approachs used in [3] and [4] examined only the case with explicit dependence on the
parameter in the differential equation and impulse equations.
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