Positive Solution of Random Differential Equation in Banach Spaces

P.G. Swami ${ }^{\text {a }}$, D.S. Palimkar ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics,VES College of Arts,Science and Commerce,Chembur,Mumbai [MS] India
Email: prashantswami999@gmail.com
${ }^{\mathrm{b}}$ Department of Mathematics, Vasantrao Naik College, Nanded[MS] India Email:dspalimkar@rediffmail.com

$$
\begin{aligned}
& \text { Abstract: Here, we investigate two point boundary value problem for the second order } \\
& \text { functional random differential equation } \\
& \qquad \begin{array}{c}
p^{\prime \prime}(t, \omega)+\lambda p^{\prime}(t, \omega)+u\left(t, p\left(h_{1}(t, \omega)\right), p\left(h_{2}(t, \omega), p\left(h_{3}(t, \omega)\right), \omega\right)=0,\right. \\
\\
a p(-1, \omega)-b p^{\prime}(-1, \omega)=0, \\
c p(1, \omega)+d p^{\prime}(1, \omega)=0
\end{array}
\end{aligned}
$$

where the function u takes values in a cone K of a Banach space E. For $h_{1}(t, \omega)=(t, \omega)$ and $h_{2}(t, \omega)=(-t, \omega)$ and $h_{3}(t, \omega)=(t, \omega), \omega \in \Omega$ we obtain the boundary value problem with reflection of the argument. we prove the existence of positive solution in the space $C([-1,1], E, \Omega)$ using random fixed point theorem.

Keywords: Random differential equation, Boundary value problem, Banach space, positive solution, fixed point theorem.

1991 Mathematics Subject Classification: 34G20, 34F05,47H40.

1.Introduction

Let K be a cone in a real Banach space E. We will assume that the norm $\|\cdot\|_{E}$ in E is monotonic with respect to K, that is, if $\theta<u<v$ then $\|u\|_{E} \leq\|v\|_{E}$, where $<$ denotes the partial ordering defined by K and θ stands for the zero element of E. Further, denote by $C(I, E, \Omega)$ the space of all continuous functions defined on the interval $[-1,1]$ and taking values in E, equipped with the norm

$$
\|u\|=\max _{\substack{t \in I \\ \omega \in \Omega}}\|u(t, \omega)\|_{E} .
$$

Clearly, $C(I, E, \Omega)$ is a Banach space.

Let $Q(\omega)=\{x \in C(I, E, \Omega): \theta<x(t, \omega)$ for $t \in I, \omega \in \Omega\}$

It is easy to prove that Q is a cone in $C(I, E, \Omega)$.
we will study two point boundary value problem for the second order functional random differential equation

$$
\begin{gather*}
p "^{\prime \prime}(t, \omega)+\lambda p^{\prime}(t, \omega)+u\left(t, p\left(h_{1}(t, \omega)\right), p\left(h_{2}(t, \omega), p\left(h_{3}(t, \omega)\right), \omega\right)=0,\right. \\
\quad a p(-1, \omega)-b p^{\prime}(-1, \omega)=0, \\
c p(1, \omega)+d p^{\prime}(1, \omega)=0 \tag{1.1}
\end{gather*}
$$

Where $t \in I, k \in R, a, b, c, d \geq 0$ and $a d+b c+a c>0, \omega \in \Omega$.
we will assume that

1. $u: I \times K \times K \times K \times \Omega \rightarrow K$ is a continuous function.
2. $h_{1}, h_{2}, h_{3}: I \times \Omega \rightarrow I$ are continuous functions mapping the interval I onto itself.

Notice that for $h_{1}(t, \omega)=(t, \omega)$ and $h_{2}(t, \omega)=(-t, \omega)$ and $h_{3}(t, \omega)=(t, \omega)$ we obtain the boundary value problem involving reflection of the argument

$$
\begin{gathered}
p^{\prime \prime}(t, \omega)+\lambda p^{\prime}(t, \omega)+u\left(t, p\left(h_{1}(t, \omega)\right), p\left(h_{2}(t, \omega), p\left(h_{3}(t, \omega)\right), \omega\right)=0,\right. \\
\quad a p(-1, \omega)-b p^{\prime}(-1, \omega)=0, \\
c p(1, \omega)+d p^{\prime}(1, \omega)=0
\end{gathered}
$$

Such problems have been considered in[5,9] for $\lambda=0$ and $u: I \times K \times K \times K \times \Omega \rightarrow K$ and for f taking values in a real Hilbert space.

Our purpose is to discuss the existence of positive solution of (1.1). We will use the following fixed point theorem from [7] which is a modification of well-known Krasnoselskii theorem on operators compressing and expanding a cone.

Proposition1.1.Let P be a cone of a real Banach space X, and let the norm $\|\|$ in X be monotonic with respect to P.Let $\left.B_{r}=\{p \in X:\|p\|<r\}, B_{R}=\{p \in X:\|p\|<R\},\right)<r<R$.

Suppose that $F: P \cap \bar{B}_{R} \rightarrow P$ is a strict set-contraction which satisfies one of the following conditions:
(i). $p \in P \bigcap \partial B_{r} \Rightarrow\|F p\| \leq\|p\|$ and $p \in P \bigcap \partial B_{R} \Rightarrow\|F p\| \geq\|p\|$ or
(ii). $p \in P \cap \partial B_{R} \Rightarrow\|F p\| \leq\|p\|$ and $p \in P \cap \partial B_{r} \Rightarrow\|F p\| \geq\|p\|$.

Then F has a fixed point in $P \cap\left(\overline{B_{R}} \backslash B_{r}\right)$.

Recall that $F: D \rightarrow X, D \subset X$, is said to be a strict set-contraction if F is continuous and bounded and there exists $0 \leq L<1$ such that $\alpha(F(S)) \leq L \alpha(S)$ for all bounded subsets S of D, where α denotes the Kuratowski measure of noncompactness

2.Auxialary Results

First we will study some properties of the functions

$$
G(t, s)= \begin{cases}\frac{1}{\rho} e^{-k t}\left[e^{k(s-1)} \mu_{1}+c\right]\left[e^{k(t+1)} \mu_{2}-a\right], & -1 \leq t \leq s \leq 1 \tag{2.1}\\ \frac{1}{\rho} e^{-k t}\left[e^{k(s+1)} \mu_{2}-a\right]\left[e^{k(t-1)} \mu_{1}+c\right], & -1 \leq s \leq t \leq 1\end{cases}
$$

where

$$
k \neq 0, \mu_{1}=d k-c, \mu_{2}=b k+a \text { and } \rho=\frac{1}{k}\left[a e^{-k} \mu_{1}+c e^{k} \mu_{2}\right]
$$

and

$$
G^{*}(t, s)= \begin{cases}\frac{1}{\rho^{*}}(c+d-c s)(a+b+a t), & -1 \leq t \leq s \leq 1 \tag{2.2}\\ \frac{1}{\rho^{*}}(a+b+a s)(c+d-c t), & -1 \leq s \leq t \leq 1\end{cases}
$$

where $\rho^{*}=2 a c+b c+a d$. It is easy to show that the function (2.1) fulfils the following inequalities:

$$
\begin{equation*}
\hat{t, s \in I} G(t, s) \geq 0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{\wedge}{t, s \in I}, G(t, s) \leq G(s, s) \tag{2.4}
\end{equation*}
$$

Moreover, for any $-1 \leq \gamma<\delta \leq 1$ and $t \in[\gamma, \delta]$ we have

$$
\begin{equation*}
G(t, s) \geq m G(s, s) \tag{2.5}
\end{equation*}
$$

where $s \in I$ and

$$
\begin{equation*}
m=\min \left\{\frac{e^{k} \mu_{2}-a e^{-k \gamma}}{e^{k} \mu_{2}-a e^{-k}}, \frac{e^{-k} \mu_{1}+c e^{-k \delta}}{e^{-k} \mu_{1}+c e^{k}}\right\} \tag{2.6}
\end{equation*}
$$

It is easily seen that $m<1$. The function G^{*} also satisfies the inequalities (2.3), (2.4) and (2.5) with m replaced by

$$
\begin{equation*}
m^{*}=\min \left\{\frac{a+b+a \gamma}{2 a+b}, \frac{c+d-c \delta}{2 c+d}\right\} \tag{2.7}
\end{equation*}
$$

Clearly, $m^{*}<1$.

Next, consider the integral-functional operator

$$
\begin{equation*}
(F p)(t, \omega)=\int_{-1}^{1} G(t, s) u\left(s, p\left(h_{1}(s, \omega)\right), p\left(h_{2}(s, \omega), \omega\right),\right) p\left(h_{3}(s, \omega), \omega\right) d s \tag{2.8}
\end{equation*}
$$

Where $t \in I, p \in Q$, the function G is defined by (2.1) and u, h_{1}, h_{2} and h_{3} satisfy 1 and 2 .

Let

$$
\begin{aligned}
& M=\max _{t, s \in I} G(t, s) \\
& \overline{T_{r}}=\left\{p \in E:\|p\|_{E} \leq r\right\},
\end{aligned}
$$

and

$$
\overline{B_{r}}=\{p \in C(I, E, \Omega):\|p\| \leq r\}
$$

Lemma 2.1[6]. Assume that for any $r>0$:
(3) the function f is uniformly continuous on $I \times\left(K \cap \bar{T}_{r}\right) \times\left(K \cap \overline{T_{r}}\right)$
(4) there exists a non-negative constant L_{r}, such that $4 M L_{r}<1$

$$
\begin{equation*}
\alpha(f(t, \Phi, \Phi)) \leq L_{r} \alpha(\Phi) \tag{2.9}
\end{equation*}
$$

for all $t \in I$ and $\Phi \subset K \cap \bar{T}_{r}$.

Then, for any $r>0$ the operator (9) is a strict set-contraction on $\Phi \cap \overline{B_{r}}$.

3.Main Result

Now we state and prove our results on positive solutions of (1.1). Consider the case $k \neq 0$.
Theorem1.Let G be given by (2.1) and let $-1 \leq \gamma<\delta<\omega \leq 1$ be such that $h_{i}:[\gamma, \delta, \omega] \rightarrow[\gamma, \delta, \omega], i=1,2,3$. Suppose that the assumptions 1-4 are satisfied and (5) there exists $k \in K, k \neq \theta$, such that

$$
u(t, p, q, \omega)<\left[\int_{-1}^{1} G(s, s) d s\right]^{-1} k
$$

$$
\text { for all } t \in I \text { and } p, q \in K, \omega \in \Omega \text { such that }\|p\|_{E},\|q\|_{E} \in\left[0,\|k\|_{E}\right] \text {, }
$$

(6) . there exist $\eta \in K, \eta \neq \theta,\|\eta\|_{E} \neq\|k\|_{E}$ and $t_{0} \in I$ such that

$$
\left[\int_{\gamma}^{\delta} G\left(t_{0}, s\right) d s\right]^{-1} \eta<u(t, p, q, \omega)
$$

for all $t \in I$ and $p, q \in K$ such that $\|p\|_{E},\|q\|_{E} \in\left[m\|\eta\|_{E},\|\eta\|_{E}\right]$, where m is given by (2.6). Then the problem (1.1) has at least one positive solution.

Proof. Notice that each positive solution of the problem (1.1) (with $\neq 0$) is a fixed point of the integral-functional operator (2.8), that is
$(F p)(t, \omega)=\int_{-1}^{1} G(t, s) u\left(s, p\left(h_{1}(s, \omega)\right), p\left(h_{2}(s, \omega), \omega\right), p\left(h_{3}(s, \omega), \omega\right)\right) d s$

Where $t \in I, p \in C(I, E, \Omega)$ and the function G is given by (2.1). On the other hand, if u belonging to Q is a fixed point of F, then p is a solution of (1.1). Thus, to prove our theorem it is enough to show that F has a fixed point in Q. In the space $C(I, E, \Omega)$ consider the set

$$
P=\{p \in C(I, E, \Omega): \theta<p(t, \omega) \text { on } I \text { and } \underset{t \in[\gamma, \delta] \mid s \in I}{\wedge} m p(s, \omega)<p(t, \omega)\} .
$$

Clearly, P is a cone in $C(I, E, \Omega)$ and the norm $\|\cdot\|$ in $C(I, E, \Omega)$ is monotonic with respect to P. Consider the operator (2.8) for $t \in I$ and $p \in P$. We will show that F satisfies the assumptions of Proposition 1.1. First, we will prove that $F(P) \subset P$. To this end observe that by 1 and (4) $\theta<(F p)(t, \omega)$
for every $t \in I$ and $p \in P$. Moreover, it follows from (2.5) that for any $t \in[\gamma, \delta]$ and $s \in I$

$$
\begin{aligned}
m(F p)(s, \omega) & =m \int_{-1}^{1} G(s, s) u\left(s, p\left(h_{1}(s, \omega)\right), p\left(h_{2}(s, \omega), p\left(h_{3}(s, \omega)\right), \omega\right) d s\right. \\
& <\int_{-1}^{1} G(t, s) u\left(s, p\left(h_{1}(s, \omega)\right), p\left(h_{2}(s, \omega), p\left(h_{3}(s, \omega)\right), \omega\right) d s\right. \\
& =(F p)(t, \omega)
\end{aligned}
$$

Combining it with (3.1) we conclude that $F(P) \subset P$. Without loss of generality we may assume that $\|k\|_{E}<\|\eta\|_{E}$. Fix $r=\|k\|_{E}$ and $R=\|\eta\|_{E}$.

By Lemma 2.1, F is a strict set-contraction on $P \cap \overline{B_{R}}$. Moreover, for $p \in P \cap \partial B_{r}$ we have $\theta<p\left(h_{1}(t, \omega)\right)$ on I and $\|p\|=\|k\|_{E}$, hence

$$
\hat{t \in I} \mid
$$

Analogously

$$
\hat{t \in I} \mid \overrightarrow{ }\left\|p\left(h_{2}(t, \omega)\right)\right\|_{E} \leq\|k\|_{E}, \hat{t \in I} \text { }\left\|p\left(h_{3}(t, \omega)\right)\right\|_{E} \leq\|k\|_{E}
$$

Thus, by 5 , for any $t \in I$ we obtain

$$
\begin{aligned}
(F p)(t, \omega) & <\int_{-1}^{1} G(s, s) u\left(s, p\left(h_{1}(s, \omega)\right), p\left(h_{2}(s, \omega)\right), p\left(h_{2}(s, \omega)\right), \omega\right) d s \\
& <\int_{-1}^{1} G(s, s)\left(\int_{-1}^{1} G(\tau, \tau)\right)^{-1} k d s=k
\end{aligned}
$$

Hence, in view of monotonicity of $\|\cdot\|_{E}$ we get

$$
\hat{t \in I}\|((F p)(t, \omega))\|_{E} \leq\|k\|_{E}
$$

and in consequence $\|F p\| \leq\|p\|$ on $P \cap \partial B_{r}$. Furthermore, for $p \in P \cap \partial B_{r}$ we have

$$
\hat{t} \mid\{\gamma, \delta], s \in I_{\wedge} \theta<m p\left(h_{1}(s, \omega)\right)<p\left(h_{1}(t, \omega)\right)
$$

Since the norm $\|\cdot\|_{E}$ is monotonic we obtain

$$
\widehat{t \in\{\gamma, \delta] \mid s \in I} \widehat{\wedge}\left\|p\left(h_{1}(s, \omega)\right)\right\|_{E} \leq\left\|p\left(h_{1}(t, \omega)\right)\right\|_{E}
$$

which gives

$$
\underset{t \in[\gamma, \delta]}{\wedge} m \max _{s \in I}\left\|p\left(h_{1}(s, \omega)\right)\right\|_{E} \leq\left\|p\left(h_{1}(t, \omega)\right)\right\|_{E}
$$

But h_{1} maps I onto itself, hence for $\|p\|=\|\eta\|_{E}$

$$
\underset{t \in\{\gamma, \delta]}{\wedge} m\|\eta\|_{E} \leq\left\|p\left(h_{1}(t, \omega)\right)\right\|_{E} \leq\|\eta\|_{E}
$$

In the same manner we get

$$
\underset{t \in[\gamma, \delta]}{\wedge} m\|\eta\|_{E} \leq\left\|p\left(h_{2}(t, \omega)\right)\right\|_{E} \leq\|\eta\|_{E}, \underset{t \in\{\gamma, \delta]}{\wedge} m\|\eta\|_{E} \leq\left\|p\left(h_{3}(t, \omega)\right)\right\|_{E} \leq\|\eta\|_{E}
$$

Thus in view of 6

$$
\begin{aligned}
& \eta= \int_{\gamma}^{\delta} G\left(t_{0}, s\right)\left(\int_{\gamma}^{\delta} G\left(t_{0}, \tau\right) d \tau\right)^{-1} \eta d s \\
& \prec \int_{\gamma}^{\delta} G\left(t_{0}, s\right) u\left(s, p\left(h_{1}(s, \omega)\right), p\left(h_{2}(s, \omega)\right), p\left(h_{3}(s, \omega)\right), \omega\right) d s \text { so } \\
& \prec \int_{-1}^{1} G\left(t_{0}, s\right) f\left(s, x\left(h_{1}(s, \omega)\right), x\left(h_{2}(s, \omega)\right), p\left(h_{3}(s, \omega)\right), \omega\right) d s \\
&=(F p)\left(t_{0}\right) \\
&\left\|(F p)\left(t_{0}\right)\right\|_{E} \geq\|\eta\|_{E}
\end{aligned}
$$

which implies $\|F p\| \geq\|p\|$ on $P \cap \partial B_{r}$. By Proposition 1.1 the operator F has a fixed point in the set $P \cap\left(\bar{B}_{R} \backslash B_{r}\right)$.This means that the problem (1.1) has at least one positive solution $p \in P$ such that

$$
\|\lambda\|_{E} \leq\|p\| \leq\|\eta\|_{E} . \text { This ends the proof of Theorem (1.1). }
$$

References

[1]. J. Banasand , K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York, Basel, 1980.
[2]. N.G. Các, J.A. Gatica, Fixed point theorems for mappings in ordered Banach spaces, J. Math. Anal.Appl.71(1971), 547-557.
[3].D. Guo,V. Lakshmikantham, Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces, J. Math. Anal. Appl. 129(1988),211-222.
[4].D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[5].C.P. Gupta, Existence and uniqueness theorems for boundary value problems involving reflection of the argument, Nonlinear Anal.11(1987),1075-1083.
[6].M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[7].G. Li, A new fixed point theorem on demi-compact 1 -set-contraction mappings, Proc.Amer. Math. Soc. 97(1986), 277-280.
[8].R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976.
[9].J. Wiener, A.R. Aftabizadeh, Boundary value problems for differential equations with reflection of the argument, Internat. J. Math. Math. Sci. 8(1985), 151-163.

