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_____________________________________________________________________________________________________ 

 
Abstract: The most well-known use of service-oriented architectures has given rise to several challenging research issues. One 

of these is the ability to recursively create a composite service as a process of other already available services, which are 
created by various companies and offer a variety of functionalities. Due to the ever-growing number of functionally identical 
services supplied on the web, it is crucial to identify them using well defined non-functional criteria. This needs an efficient 
method of selecting such services to compose. In this paper, adopting a service process and directed acyclic graph, we present 
an efficient and scalable approach to address the issue. Services are chosen for their composition based on both positive and 
negative QoS qualities, aiming to optimize user satisfaction. Experimental results show that our proposal scales very well 

regarding the huge amount of candidate services. It is less complex, and it depends linearly on the services implied in the 
composition. 

Keywords: Service, Selection, Composition, QoS, Global Optimization. 

____________________________________________________________________________ 
 

1. Introduction 

Distributed applications like e-business and enterprise systems are increasingly using the Service 

Oriented Architecture (SOA) as a major software foundation. Distributed applications can be dynamically and 

flexibly assembled by combining new and existing component services that have been independently integrated 

to create complex business processes and interactions. As long as the functional interface specification of each 

component service is correctly specified in WSDL and corresponds to a service request, it can be executed on 

any platform. Thus, with the widespread proliferation of web services, Quality of Service (QoS) is becoming 

increasingly crucial in determining the success of service providers. QoS refers to a number of non-functional 

characteristics including response time, throughput, availability, and reliability. Different levels of QoS can be 

used to provide services with comparable and compatible operation, so that one of the value-added services can 

be created; which requires making good decisions. In this research area, authors make every effort to improve 

QoS when using the service composition technique to construct a new composite service or to enhance an 

already existing compositions. In this paper, we suggest a brand-new, efficient method to optimize performance 

time of service composition and selection. The proposed solution enables also a flexible-behavioral selection, 

integration and interleaving of web services [44, 45]. The behavioral selection, integration and interleaving of 

web services are not addressed here in this current paper. The suggested algorithm's complexity is independent to 

the number of web services, which is always increasing. Hence, this approach is scalable and less complex, 

particularly for dynamic service compositions. The experimental results, using tow real world datasets with huge 

amount of candidate services show this advantage as well. A related works are reviewed in Section 2. Section 3 

the problem is defined. The     approch is detailed and formalised in Section 4, followed by the candidate 

services selection algorithm in Sub-Section 4.2. The algorithm is then introduced and with large datasets is 

exprementally evaluated in Section 5. Finally, We come to conclusion and outline our future directions in 

Section 6. 

 

2. Related Works 

 In the services composition topic, the QoS-based selection of Web services is an important study area. 

These research can be categorised in two main classes: 

 

a) Exact algorithms class: This class transform optimizing the     aware service composition 

(     ) problem to a known model with the intention of using already available tools: 
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Zeng et al in [1] present an extensible     model based on integer programming. Ardagna and 

Pernici in [2] extend linear programming to support the local constraints. In order to adapt to 

distributed systems, Alrifai et al. in [3] address the issue by local and global optimization 

methods hybridization. For each abstract service, local selection is used to locate the best 

services that satisfy these local requirements after using mixed integer programming (MIP) to 

find the best global QoS constraints decomposition into local ones. When the problem is 

small, such linear programming techniques work quite well. A QoS broker-based process 

model for web service composition was proposed by the authors in [4]. The concept ensures 

for consumers the quality of delivered service and also addresses issues like up to date 

services and publishing only QoS in the registry. In [5], Zou et al. suggeste a planning-based 

strategy to transform a composition problem with QoS supports to a planning one with 

temporal and numerical characteristics. In [6] a systematic approach is proposed to calculate 

    for composite services, taking into consideration probability of the execution paths. A 

selection procedure for user preference satisfaction is proposed by Haddad et al. in [7], 

expressed as weights over QoS criteria to describe transactional requirements semantically. 

Although the research in [8] also present the transactional QoS-driven approach, in which the 

QoS-driven service selection is local optimized and placed after the transactional service 

selection. 

 

However, such  optimization techniques and methods are impractical for real-time and dynamic 

applications because of thier exponential algorithmic complexity. 

b) Approximate algorithms class: In this class, extensive studies on QoS-aware service 

composition has been proposed, and various heuristic and metaheuristic techniques for the 

problem are suggested in order to find a near to optimal solution [9-13] . The genetic 

algorithms are also broadly used and improved by many other authors  for QoS-aware service 

composition [14-22]. Such algorithms ignore possible assignments of several tasks in 

combination to decrease the time complexity. In [9] a heuristic algorithm is sugested to find a 

sub-optimal solution. In order to manage services in grid systems with adaptive management 

and QoS support, an adaptive method is suggested [10]. In [15], a dynamic and penalized 

fitness function is adopted, and an integer array is used to represent the genomic structure of a 

genetic algorithm. Where,  each entry in the array refers to a web service,  and a two-point 

crossover operator  based mutation enabals to substitutes the associated web service with a 

different one from the pool of available services. Mardukhi et al. in [21] propose a top-down 

approach based genetic algorithm for global constraints decomposition  into local ones. Then,  

for each abstract service, an optimal one is selected. The genetic-based algorithms are also 

reported in [17, 23, 24] which mainly made variations on the coding scheme, QoS model, 

fitness function, or handling techniques of population diversity. In [25], Wu and Zhu introduce 

the transactional characteristics of services and focus on how to compose and select 

component services transactionally. The problem is transformed into a constrained directed 

acyclic graph based on the search for the best path satisfying the global constraints, then a sub-

optimal solution is provided using the ant colony optimization algorithm [26]. In [27, 28] a 

multi-objective and bee colony algorithms are suggested to obtain the best QoS value of a sub-

optimal solution. Wada et al in [19-31] propose an optimization framework to address the O-

QSC problem by leveraging a multi-objective algorithms. Swarm and Memetic optimization 

algorithms are also adopted [32-34] for Services scheduling, and also for the Internet of 

Things Applications composition. Eagle strategies are investigated in [35, 36] for QoS-aware 

cloud service composition. The O-QSC is also addressed in [37-42]. Ma et al In [43] have 

proposed the CDP "compositional decision making process" approach for searching of Pareto-

optimal composition solutions in QSCRS "QoS-driven service composition with 

reconfigurable services".  

 

However, the drawback of those approaches is that either don’t scale well regarding the huge amount of 

offered services or either don’t find the beste optimale solution effeciently. Our proposal raise the efficiency and 

utility of services selection for this bouth aspects. On the other hand it enables a flexible-behavioral selection, 

integration and interleaving of composite web services [44, 45]. The behavioral selection, integration and 

interleaving of web services are not addressed here in the present paper. 

3.       Statement 

On the basis of a prespecified business process, service composition aims to select and connect services 

provided by various service providers. A workflow for web services, which specifies potential data dependencies 
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between tasks, can be used to represent the business process of the composite service. The most commonly-used 

control structures for service orchestration include: sequence, choice, parallel and loop. For example, Fig. 1 

illustrates a workflow representing a Make a Trip composite service. In this composite service, a Plan Air Flight 

or a Plan Railway Trip service is performed. After that, services Book Tickets, Make Payment, Reserve Hotel and 

Make Payment are performed sequentially one after the other. 

 

Fig. 1 Make a Trip Composite service example 

 

 

 

Moreover, QoS is an essential aspect that describe the reliability and utility  of a web service, and it is a 

primary key for the composition and the dynamic scheduling of provided services.  Due to the ever-growing 

availability of functionally identical services on the web, it is necessary to be able to identify them using a set of 

precise QoS attributs. The quality model in this study is based on a collection of QoS that can be divided into 

negative and positive attributes. The values of negative properties require to be minimized (e.g. Price and 

response time etc.). Whereas, availability, throughput, and other positive attributes are to be maximized. Our 

solution for the       problem is formulated based on the following definitions. 

 

Definition 1 (Atomic service)     is a component service of a composite one associated with a set of 

    parametres.  

Definition 2 (Service Class)       encompass all atomic services collection that have the same 

functionality with nonfunctional properties (   ), and are candidate for being associated to task   .  

Definition 3 (Quality array) Q is a three dimensional array,          where        , in which 

the entry      defines the quality-property   value (such as price) for service   which is associated to task  ,   is 

the tasks number (service classes),   is the quality-properties number,  and    is size of the service classe  .  

Definition 4 (Weight matrix)   is a matrix       in which the entry     defines weight of quality-

property   regarding user’s desires for the task  .  

Lemma 1 (quality-property weight) If     is the weight of quality-property   regarding user’s 

preferences for the task   , then ∑   
      .  

Definition 5 (utility Function) Each candidate service has a utility function F that is which is defined 

by a set of QoS attributes such as response time, availability, reliability, etc.  

Definition 6 (Abstract WorkFlow)       represents the service structure that shows how several 

tasks are combined to provide that composite service.  

Definition 7 (Service Candidate Graph)       is a directed acyclic graph built from     and    to 

represent all paths for all combinations of candidate services that can be used to fulfull the required task.  

 

4. GSS Optimization 

Given the workflow AWF of composite service CS, quality array Q and weights of quality attributes W, 

the O-QSC problem is the best combination of services which subject to all local and global QoS constraints on 

one hand, and optimizes the objective value of the composite service CS  on the other hand. We can distinguish 

tow approaches for web service selection: local selection approach and global selection approach. Although very 
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efficient, local selection is a linear,     , but it can’t handle global     requirements. On the other hand, global 

optimization, while it can support global constraints regards, is impractical for real-time and 

dynamic applications due to its poor performance. Nevertheless, based on global approach, the       is 

known as NP-hard problem [1, 15, 19]. Here, based on directed acyclic graph and abstract service, we propose 

our solution to tackle this problem. 

 

4.1     model 
 

Given a workflow that has   tasks. we  refer by    (     )  to the set of candidate services that can 

fulfill the     task functionality in the workflow. Furthermore,     (      ) is used to represent the     candidate 

service in    . The directed acyclic graph G(C,E) describe the service composition problem, where C represent 

the starting and sink nodes, plus of course the availabals candidate services.  E is the set of edges that connect 

candidate services from two adjacent sets    and     . The problem then becomes the best path search from the 

starting node to the sink node that satisfies all global requirements. 

 

Fig. 2     of the full Workflow 

 

 

 

However, with respect to the considerable number of task to be realized and the huge amount of 

available candidate services associated to these tasks the O-QSC problem is becoming much more difficult. This 

problem is known as MMKP (multi dimensional multi objective knapsack) problem  that has been proved to be 

NP-complete [9, 49]. To tackle this problem several approaches have been proposed (such as linear 

programming, heuristic, evolutionary algorithms, etc). In our solution, we adopt a locale approach for web 

services selection. Furthermore, to overcome the drawback of local strategy selection, we consider an abstratcs 

services in the workflow    , then, we propose our GSS algorithm below (see algorithm shown in Fig. 3). 

Then, candidate services for each task in an     are modeled as an acyclic directed graph (see Fig. 4). After 

that, the problem of finding the best path then is relaxed as best component service selection for each class  .  
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Fig. 3 Global Services Selection 

 

 

Fig. 4 Selected services graph 
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4.2 Candidate services selection 
 

 Algorithms for selecting services aim pick componet services that achives to QoS requirements and 

also offer the best value for the user-defined objective function. A weighted average of the positive and negative 

QoS attributes enabals to define the utility function. Suppose a user has   quality of service attributes in a service 

request,      (                    ). In our solution, the utility function   is defined as follows: 

 

definition 8 A utility function    . Suppose there are a set of (positive and negative)     attributes. the 

positive ones to be maximized and the negatives ones to be minimized. The utility function for service     is 

defined as      , where :  
  

     ∑            (1) 

 

and     are the weights for each     attribute    , and      is the         attribute of the     service 

associed to the task  . In the utility function definition, all QoS attributes are normalized by the definition of 

following equation :  
 

      {

|        |

   
       

                      
       

   

                                            

 (2) 

 Where     is defined as follow: 

 

     {

     
                                         

    
                                         

 (3) 

 

   
    and    

    are evaluated by the following equations respectively.  

 

    
       [    ] (4) 

 

 

    
       [    ] (5) 

 

5. Empirical studies 

 The goal of this study is to evaluate the effectiveness and efficiency of our approach, that achieves 

optimal outcomes with a significantly shorter computation time than the existing global and local optimization 

approaches. The global and locale approach are used as benchmark for the optimality and computing cost aspect 

respectively. In the following, we refer to our solution as GSS., the labels BF and MIP to refer to the global 

approaches based on the brute-force search and the standard mixed integer algorithm respectively, and the label 

Local to refer to the local services selection approach [7, 25, 21]. We have conducted several tests, which are 

discussed in this section, to evaluate the GSS efficiency and optimality.  

5.1 Evaluation methodology 
 

 We have created a variety of configurations of the       problem. Each configuration is an abstract 

workflow with n tasks,      candidate services per task   , and       attributes. We generated a collection of 

abstract workflows by varying these numbers, with each individual combination of these factors indicating a 

different abstract workflow. We applied each configuration test several times with various numbers of QoS 

attributes attributes in order to explore the effects of the number of QoS attributes in our proposal, and then we 
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computed the computation cost of the GSS algorithm. On the other hand, we consider this abstract workflows 

collection to compare our     approach to Local, BF, and MIP algorithms. The first is a Locale-based 

algorithm [7, 25], and the two last are a Global-based one [21]. These algorithms are exact optimization approach 

for a       problem [25, 21]. Indeed, we applied the Local and     optimization for each configuration in 

the collection test, and then, we record the obtained computation time and the utility values. Then, for the same 

collection test, we applied the BF and MIP algorithms, to record the obtained computation time and the global 

utility value. Based on the formulas presented in the section 4.2, and the obtained utility values, we compute the 

optimality of     and Local algorithms in relation to MIP algorithm.  

 

5.2 The Dataset and Experiment settings 
 

 We have used two data sources in this experimentation. The QWS real world dataset [46] is used to 

study the computing cost and optimality of the     algorithm compared to the Local, BF, and MPI algorithms. 

Indeed, the QWS data set includes measurements of 2     attributes (Throughput and Response Time) for 5 825 

real web services. As the number of     attributes is very limited in this QWS dataset (2     attributes), we 

also have used another real world data set to study the effect of the number of     attributes in the     

algorithm selection. The second QWS real word dataset includes measurements of 9     attributes (Availability, 

Response Time, Throughput, Reliability, Successability, Compliance, Latency, Best Practices, and 

Documentation) for 2 507 real Web services that exist on the Web [46-48]. For the implementation aspect, we 

used the version 5.5 of the open source Lp-Solve system [19] for implementing the MIP algorithm, while the 

Local, BF, and     algorithms were implemented by Java. The experiments were run on an Intel i7 with 2.40 

GHz processor and 4GB of RAM. The computer is using Windows 10. 

 

5.3 Analysis and Results 
 

 Scalability of service selection systems is influenced by the time complexity of the used algorithm. The 

number of tasks in the composition, the number of service candidates per task, and the number of QoS attributes 

are often used to determine the size of the O-QSC. As the       can be modeled as a     , which is 

known as NP- hard problem [9, 49], For a few hundred of potential candidate services that offer the same 

functionality, the computing time of any global exact-methode may exceed the run-time requirements [25, 21]. 

Such global optimization approaches traditionally address the       as a standard mixed integer program, 

which makes them unsuitable and unsupported for       problem, where the number of candidate services is 

big. In worst case, the MIP algorithm time-complexity is exponential [25, 21]. Although they are very scalable, 

and there are no exact or approximate approaches better than they, the existing local optimization solutions will 

not be supported at all as long as they have an issue of optimality. In our approach, we adopt an abstract 

Workflow to solve the       problem. However, the local selection technique, which is highly effective and 

scalable, is used to select services for AWF. The local utility computation for the required task is specifically 

linear in complexity with respect to the number of service candidates. Furthermore, as service composition can 

perform the local selection for abstract tasks in a     independently, the total time complexity of such 

independent selection is not influenced by the number of tasks in the workflow; hence, the time complexity of 

such services selection remains linear. Consequently, the GSS time complexity is linearly dependent on the 

number of available services, and on the number of tasks in workflow is fully independent. Such kind of features 

makes our solution highly scalable than existing global strategy based exact-solutions. On the other hand, the 

optimality of the     approach is controlled and fixed based on the abstract Workflows strategy. A candidate 

services for an     are modeled by a fully meshed    . In the other words, the       problem is not 

modeled by not-fully meshed    , which is known as NP-Hard, but it is conceptually modeled by a one     

that is fully meshed in our solution. Such fully meshed DAG insures in     solution the optimality of provided 

solutions contrary to the existing local strategy based exact-solutions and global strategy based approximate-

ones. 

 

5.4     performance and the impact of     attributes 
 

 Unlike the existing global approaches for       problem, which are influenced by the number of 

    attributes involved by a service composition, the increasing of the number of     attributes in the     

algorithm not increase the computation time. Indeed, the approximate approaches, usually, have such influence 

twice. When the number of     attributes is low, then they have a problem of optimality, and when it is a big, 
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then they have a problem of performance cost. Also, with the increasing number of     attributes and tasks the 

computation time then is always the same in general. This is an expected behavior as we already discussed in 

section 4, because the     approach not depend neither the tasks number, nor the     attributes number, and the 

amount of candidate services affects it linearly. When there are more services, tasks, and QoS requirements, 

adopting GSS for O-QSC problems becomes more efficient. In Fig. 5.a, for each configuration, we study the 

performance of the     algorithm under the same number of tasks. We have used the QWS real world data set 

which has 9     attributes. The range of service candidates for each task is 10 to 2500, while the number of 

tasks is fixed to 150. In this experiment, the computation times is measured for 2, 3, 5, 7 and 9     attributes. 

The results indicate that the     approach significantly is very independent to     attributes number. By 

varying the number of     attributes, the required computation time of the     approach perhaps is the same 

(the difference is about 2 ns). On the other hand, we study also the performance of the algorithm, but in that case, 

with respect to the number of tasks implied in the workflow.  

 

Fig. 5 The impact of     attributes in     algorithm 

a) 150 Tasks 

 

  

b) 1500 Candidate services 
 

        

 In the experiment shown by Fig. 5.b, we used the same QWS real world data set, and we have 

measured also the computation times for 2, 3, 5, 7 and 9     attributes. The number of tasks is varied from 3 to 

150 tasks, while the number of candidate services is fixed to 1 500 services. The results show, the computation 

time of     algorithm is also always the same not only for all     attributes, but also for all tasks number. 

Consequently, the GSS approach then is neither influenced by the amount of tasks, nor the amount of QoS 

attributes. This obviously will become more advantages for the real world, where the amount of tasks in WF, as 

well the amount of QoS attributes are very limited. The results shown by the figs. 5.a and 5.b indicate also that 
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our solution performs very well regarding the huge number of services. For example, when the number of tasks 

is 150 tasks with 9     attributes, and for 2500 candidate services per tasks (i.e. 375 000 services), the     

algorithm find the solution in 39.08 ms (millisecond). Also, when the services number is 1500, the solution is 

constantly found within time of 21.22 ms. 

 

Fig. 6 Algorithms Performance Results 

a) 31 Tasks 
 

 

b) 500 Candidate services 

 

 

 

5.5 MIP,     and Local Performance Results 

 In Fig. 6.a, the computation times is measured for    , Local, BF, and MIP optimization algorithms for 

each configuration. We compare the performance of the algorithms under the same candidate services number. In 

this experiment, and for all test cases, we used the first QWS real world data set (where the number of     

attributes is 2), the range of service candidates for each task is 10 to 5500, while the number of tasks is fixed to 

31. The results indicate that the GSS performs significantly better than the BF and MIP algorithms. the GSS  is 

particularly scalable because, in contrast to the MIP algorithm, the required computing time of the GSS approach 

increases relatively slowly with the number of service candidates. Indeed, the computation time is increased in 

the same manner as the Local algorithm increasing under the same number of candidate services per task, which 

say that our solution complexity is linear as the local one. In the experiment shown in Fig. 6.b, we study also the 

performance of the algorithms, but in that case, with respect to the number of tasks implied in the workflow. In 

this experiment, we used the first QWS real world data set, where the number of tasks is varied from 5 to 150, 
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and there are 500 service candidates available for each task. The results show that, in every test instance, our 

method consistently outperforms the global ones (BF and MIP algorithm).  
 

5.6 Optimality 
 

 As the MIP algorithm is an exact algorithm, it has not the issue of optimality, and it outperforms the BF 

one, By analyzing the results of the GSS and Local algorithms with those of the MIP optimization algorithms, we 

have assessed the quality of the result given by these algorithms. By comparing the overall utility value obtained 

by the GSS and Local algorithms for the selected services to the overall utility gains made for the optimal 

selection given by the MIP algorithm, we conclude if the solutions of the GSS and Local algorithms are optimal. 

The     and       optimality is computed by the following formulas 6 and 7).  

 

                
      

      
 (6) 

                  
        

      
 (7) 

 

Where        ,       , and          is the overall utility value obtained by    ,     and       
algorithm respectively. 

  

Fig. 7 Algorithms Optimality 

a) 51 Tasks 

 

 

b) 2500 Candidate services 
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The achieved optimality is shown in Fig. 7.a in numerous configurations with varied numbers of 

candidates service, and in Fig. 7.b in several configurations with variable numbers of trasks. The results show, 

except two specific cases, that the Local algorithm was able to achieve only a bit higher than 0.8 and 0.6 as 

indicated by the figs. 7.a and 7.b respectively. While the     algorithm achieves exactly the same optimality that 

the MIP and BF algorithms achieves. The results also show that the Local algorithm achieves the same 

optimality of the MIP and BF algorithms in some test cases. These test cases are done on workflows that are 

constituted by sequential flows only, and from this specific case the idea was conceived. 

 

6. Conclusion and future work 
 

We described our scalable solution to the O-QSC problem in this paper. Unlike the other already 

existing works, which do not use  the fuly mushed DAG (linear programming, heuristic, evolutionary algorithms, 

etc) to solve the issue. Our solution use such     to reduce the complexity. Firstly the global workflow is 

constituted by tasks called abstracte services. Then the best service for each task    in     is found through an 

efficient algorithm. The complexity of the proposed algorithm is linearly  dependent with the increasing amount 

of services. As a result, this method is less complex and scalable, particularly for service composition. This 

benefit is further confirmed by the extensive  experimental analysis  utilizing two real-world datasets with a large 

amount of potential services. As was mentioned, as the number of tasks increases, the computation time of our 

proposal becomes a little bit more. This is because the suggested algorithm has some innate qualities. The huge 

amount of tasks in WF, however, is not an issue because it is extremely constrained and unchanging. 

Furthermore, the proposed approach helps to enhance the organization’s applications integration based on 

services. Through a dynamic and flexible integration, software components (as a service) are efficiently located 

and dynamically bounded. Precisely, with an increase of such components, service quality is paramount in the 

application integration. Such integration must reflect the business needs of customers and providers so that to 

receive their confidence and achieve their goals. Also, the present approach opens a wide research on web 

service based applications. Further works will be done on the improvement of service selection performance and 

composition. In addition, other problems will be tackled such social and behavioral aspects. 
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