
1173

Turkish Journal of Computer and Mathematics Education Vol.13No.03 (2022),1173-1185

GSS : Global Services Selection approach

Mansour Mekour
a
, Abdelkrim Houacine

a
, Abdelkader Mostefai

b

mansour.mekour@univ-saida.dza, abdelkrim.houacine@univ-saida.dza, abdelkader.mostefai@univ-saida.dzb

aLGACA Laboratory, University of Saida, Dr. Taher Moulay, Algeria
bDepartment of Computer Science, University of Saida, Dr. Taher Moulay, Algeria

Article History: Received: 13 March 2022, Accepted: 31 May 2022, Available online 6 June 2022.

Abstract: The most well-known use of service-oriented architectures has given rise to several challenging research issues. One

of these is the ability to recursively create a composite service as a process of other already available services, which are
created by various companies and offer a variety of functionalities. Due to the ever-growing number of functionally identical
services supplied on the web, it is crucial to identify them using well defined non-functional criteria. This needs an efficient
method of selecting such services to compose. In this paper, adopting a service process and directed acyclic graph, we present
an efficient and scalable approach to address the issue. Services are chosen for their composition based on both positive and
negative QoS qualities, aiming to optimize user satisfaction. Experimental results show that our proposal scales very well

regarding the huge amount of candidate services. It is less complex, and it depends linearly on the services implied in the
composition.

Keywords: Service, Selection, Composition, QoS, Global Optimization.

__

1. Introduction

Distributed applications like e-business and enterprise systems are increasingly using the Service

Oriented Architecture (SOA) as a major software foundation. Distributed applications can be dynamically and

flexibly assembled by combining new and existing component services that have been independently integrated

to create complex business processes and interactions. As long as the functional interface specification of each

component service is correctly specified in WSDL and corresponds to a service request, it can be executed on

any platform. Thus, with the widespread proliferation of web services, Quality of Service (QoS) is becoming

increasingly crucial in determining the success of service providers. QoS refers to a number of non-functional

characteristics including response time, throughput, availability, and reliability. Different levels of QoS can be

used to provide services with comparable and compatible operation, so that one of the value-added services can

be created; which requires making good decisions. In this research area, authors make every effort to improve

QoS when using the service composition technique to construct a new composite service or to enhance an

already existing compositions. In this paper, we suggest a brand-new, efficient method to optimize performance

time of service composition and selection. The proposed solution enables also a flexible-behavioral selection,

integration and interleaving of web services [44, 45]. The behavioral selection, integration and interleaving of

web services are not addressed here in this current paper. The suggested algorithm's complexity is independent to

the number of web services, which is always increasing. Hence, this approach is scalable and less complex,

particularly for dynamic service compositions. The experimental results, using tow real world datasets with huge

amount of candidate services show this advantage as well. A related works are reviewed in Section 2. Section 3

the problem is defined. The approch is detailed and formalised in Section 4, followed by the candidate

services selection algorithm in Sub-Section 4.2. The algorithm is then introduced and with large datasets is

exprementally evaluated in Section 5. Finally, We come to conclusion and outline our future directions in

Section 6.

2. Related Works

 In the services composition topic, the QoS-based selection of Web services is an important study area.

These research can be categorised in two main classes:

a) Exact algorithms class: This class transform optimizing the aware service composition

() problem to a known model with the intention of using already available tools:

Research Article

mailto:mostefaia_aek@univ-saida.dzb

Mansour Mekour, Abdelkrim Houacine, Abdelkader Mostefai

1174

Zeng et al in [1] present an extensible model based on integer programming. Ardagna and

Pernici in [2] extend linear programming to support the local constraints. In order to adapt to

distributed systems, Alrifai et al. in [3] address the issue by local and global optimization

methods hybridization. For each abstract service, local selection is used to locate the best

services that satisfy these local requirements after using mixed integer programming (MIP) to

find the best global QoS constraints decomposition into local ones. When the problem is

small, such linear programming techniques work quite well. A QoS broker-based process

model for web service composition was proposed by the authors in [4]. The concept ensures

for consumers the quality of delivered service and also addresses issues like up to date

services and publishing only QoS in the registry. In [5], Zou et al. suggeste a planning-based

strategy to transform a composition problem with QoS supports to a planning one with

temporal and numerical characteristics. In [6] a systematic approach is proposed to calculate

 for composite services, taking into consideration probability of the execution paths. A

selection procedure for user preference satisfaction is proposed by Haddad et al. in [7],

expressed as weights over QoS criteria to describe transactional requirements semantically.

Although the research in [8] also present the transactional QoS-driven approach, in which the

QoS-driven service selection is local optimized and placed after the transactional service

selection.

However, such optimization techniques and methods are impractical for real-time and dynamic

applications because of thier exponential algorithmic complexity.

b) Approximate algorithms class: In this class, extensive studies on QoS-aware service

composition has been proposed, and various heuristic and metaheuristic techniques for the

problem are suggested in order to find a near to optimal solution [9-13] . The genetic

algorithms are also broadly used and improved by many other authors for QoS-aware service

composition [14-22]. Such algorithms ignore possible assignments of several tasks in

combination to decrease the time complexity. In [9] a heuristic algorithm is sugested to find a

sub-optimal solution. In order to manage services in grid systems with adaptive management

and QoS support, an adaptive method is suggested [10]. In [15], a dynamic and penalized

fitness function is adopted, and an integer array is used to represent the genomic structure of a

genetic algorithm. Where, each entry in the array refers to a web service, and a two-point

crossover operator based mutation enabals to substitutes the associated web service with a

different one from the pool of available services. Mardukhi et al. in [21] propose a top-down

approach based genetic algorithm for global constraints decomposition into local ones. Then,

for each abstract service, an optimal one is selected. The genetic-based algorithms are also

reported in [17, 23, 24] which mainly made variations on the coding scheme, QoS model,

fitness function, or handling techniques of population diversity. In [25], Wu and Zhu introduce

the transactional characteristics of services and focus on how to compose and select

component services transactionally. The problem is transformed into a constrained directed

acyclic graph based on the search for the best path satisfying the global constraints, then a sub-

optimal solution is provided using the ant colony optimization algorithm [26]. In [27, 28] a

multi-objective and bee colony algorithms are suggested to obtain the best QoS value of a sub-

optimal solution. Wada et al in [19-31] propose an optimization framework to address the O-

QSC problem by leveraging a multi-objective algorithms. Swarm and Memetic optimization

algorithms are also adopted [32-34] for Services scheduling, and also for the Internet of

Things Applications composition. Eagle strategies are investigated in [35, 36] for QoS-aware

cloud service composition. The O-QSC is also addressed in [37-42]. Ma et al In [43] have

proposed the CDP "compositional decision making process" approach for searching of Pareto-

optimal composition solutions in QSCRS "QoS-driven service composition with

reconfigurable services".

However, the drawback of those approaches is that either don’t scale well regarding the huge amount of

offered services or either don’t find the beste optimale solution effeciently. Our proposal raise the efficiency and

utility of services selection for this bouth aspects. On the other hand it enables a flexible-behavioral selection,

integration and interleaving of composite web services [44, 45]. The behavioral selection, integration and

interleaving of web services are not addressed here in the present paper.

3. Statement

On the basis of a prespecified business process, service composition aims to select and connect services

provided by various service providers. A workflow for web services, which specifies potential data dependencies

GSS : Global Services Selection approach

 1175

between tasks, can be used to represent the business process of the composite service. The most commonly-used

control structures for service orchestration include: sequence, choice, parallel and loop. For example, Fig. 1

illustrates a workflow representing a Make a Trip composite service. In this composite service, a Plan Air Flight

or a Plan Railway Trip service is performed. After that, services Book Tickets, Make Payment, Reserve Hotel and

Make Payment are performed sequentially one after the other.

Fig. 1 Make a Trip Composite service example

Moreover, QoS is an essential aspect that describe the reliability and utility of a web service, and it is a

primary key for the composition and the dynamic scheduling of provided services. Due to the ever-growing

availability of functionally identical services on the web, it is necessary to be able to identify them using a set of

precise QoS attributs. The quality model in this study is based on a collection of QoS that can be divided into

negative and positive attributes. The values of negative properties require to be minimized (e.g. Price and

response time etc.). Whereas, availability, throughput, and other positive attributes are to be maximized. Our

solution for the problem is formulated based on the following definitions.

Definition 1 (Atomic service) is a component service of a composite one associated with a set of

 parametres.

Definition 2 (Service Class) encompass all atomic services collection that have the same

functionality with nonfunctional properties (), and are candidate for being associated to task .

Definition 3 (Quality array) Q is a three dimensional array, where , in which

the entry defines the quality-property value (such as price) for service which is associated to task , is

the tasks number (service classes), is the quality-properties number, and is size of the service classe .

Definition 4 (Weight matrix) is a matrix in which the entry defines weight of quality-

property regarding user’s desires for the task .

Lemma 1 (quality-property weight) If is the weight of quality-property regarding user’s

preferences for the task , then ∑
 .

Definition 5 (utility Function) Each candidate service has a utility function F that is which is defined

by a set of QoS attributes such as response time, availability, reliability, etc.

Definition 6 (Abstract WorkFlow) represents the service structure that shows how several

tasks are combined to provide that composite service.

Definition 7 (Service Candidate Graph) is a directed acyclic graph built from and to

represent all paths for all combinations of candidate services that can be used to fulfull the required task.

4. GSS Optimization

Given the workflow AWF of composite service CS, quality array Q and weights of quality attributes W,

the O-QSC problem is the best combination of services which subject to all local and global QoS constraints on

one hand, and optimizes the objective value of the composite service CS on the other hand. We can distinguish

tow approaches for web service selection: local selection approach and global selection approach. Although very

Mansour Mekour, Abdelkrim Houacine, Abdelkader Mostefai

1176

efficient, local selection is a linear, , but it can’t handle global requirements. On the other hand, global

optimization, while it can support global constraints regards, is impractical for real-time and

dynamic applications due to its poor performance. Nevertheless, based on global approach, the is

known as NP-hard problem [1, 15, 19]. Here, based on directed acyclic graph and abstract service, we propose

our solution to tackle this problem.

4.1 model

Given a workflow that has tasks. we refer by () to the set of candidate services that can

fulfill the task functionality in the workflow. Furthermore, () is used to represent the candidate

service in . The directed acyclic graph G(C,E) describe the service composition problem, where C represent

the starting and sink nodes, plus of course the availabals candidate services. E is the set of edges that connect

candidate services from two adjacent sets and . The problem then becomes the best path search from the

starting node to the sink node that satisfies all global requirements.

Fig. 2 of the full Workflow

However, with respect to the considerable number of task to be realized and the huge amount of

available candidate services associated to these tasks the O-QSC problem is becoming much more difficult. This

problem is known as MMKP (multi dimensional multi objective knapsack) problem that has been proved to be

NP-complete [9, 49]. To tackle this problem several approaches have been proposed (such as linear

programming, heuristic, evolutionary algorithms, etc). In our solution, we adopt a locale approach for web

services selection. Furthermore, to overcome the drawback of local strategy selection, we consider an abstratcs

services in the workflow , then, we propose our GSS algorithm below (see algorithm shown in Fig. 3).

Then, candidate services for each task in an are modeled as an acyclic directed graph (see Fig. 4). After

that, the problem of finding the best path then is relaxed as best component service selection for each class .

GSS : Global Services Selection approach

 1177

Fig. 3 Global Services Selection

Fig. 4 Selected services graph

Mansour Mekour, Abdelkrim Houacine, Abdelkader Mostefai

1178

4.2 Candidate services selection

 Algorithms for selecting services aim pick componet services that achives to QoS requirements and

also offer the best value for the user-defined objective function. A weighted average of the positive and negative

QoS attributes enabals to define the utility function. Suppose a user has quality of service attributes in a service

request, (). In our solution, the utility function is defined as follows:

definition 8 A utility function . Suppose there are a set of (positive and negative) attributes. the

positive ones to be maximized and the negatives ones to be minimized. The utility function for service is

defined as , where :

 ∑ (1)

and are the weights for each attribute , and is the attribute of the service

associed to the task . In the utility function definition, all QoS attributes are normalized by the definition of

following equation :

 {

| |

 (2)

 Where is defined as follow:

 {

 (3)

 and

 are evaluated by the following equations respectively.

 [] (4)

 [] (5)

5. Empirical studies

 The goal of this study is to evaluate the effectiveness and efficiency of our approach, that achieves

optimal outcomes with a significantly shorter computation time than the existing global and local optimization

approaches. The global and locale approach are used as benchmark for the optimality and computing cost aspect

respectively. In the following, we refer to our solution as GSS., the labels BF and MIP to refer to the global

approaches based on the brute-force search and the standard mixed integer algorithm respectively, and the label

Local to refer to the local services selection approach [7, 25, 21]. We have conducted several tests, which are

discussed in this section, to evaluate the GSS efficiency and optimality.

5.1 Evaluation methodology

 We have created a variety of configurations of the problem. Each configuration is an abstract

workflow with n tasks, candidate services per task , and attributes. We generated a collection of

abstract workflows by varying these numbers, with each individual combination of these factors indicating a

different abstract workflow. We applied each configuration test several times with various numbers of QoS

attributes attributes in order to explore the effects of the number of QoS attributes in our proposal, and then we

GSS : Global Services Selection approach

 1179

computed the computation cost of the GSS algorithm. On the other hand, we consider this abstract workflows

collection to compare our approach to Local, BF, and MIP algorithms. The first is a Locale-based

algorithm [7, 25], and the two last are a Global-based one [21]. These algorithms are exact optimization approach

for a problem [25, 21]. Indeed, we applied the Local and optimization for each configuration in

the collection test, and then, we record the obtained computation time and the utility values. Then, for the same

collection test, we applied the BF and MIP algorithms, to record the obtained computation time and the global

utility value. Based on the formulas presented in the section 4.2, and the obtained utility values, we compute the

optimality of and Local algorithms in relation to MIP algorithm.

5.2 The Dataset and Experiment settings

 We have used two data sources in this experimentation. The QWS real world dataset [46] is used to

study the computing cost and optimality of the algorithm compared to the Local, BF, and MPI algorithms.

Indeed, the QWS data set includes measurements of 2 attributes (Throughput and Response Time) for 5 825

real web services. As the number of attributes is very limited in this QWS dataset (2 attributes), we

also have used another real world data set to study the effect of the number of attributes in the

algorithm selection. The second QWS real word dataset includes measurements of 9 attributes (Availability,

Response Time, Throughput, Reliability, Successability, Compliance, Latency, Best Practices, and

Documentation) for 2 507 real Web services that exist on the Web [46-48]. For the implementation aspect, we

used the version 5.5 of the open source Lp-Solve system [19] for implementing the MIP algorithm, while the

Local, BF, and algorithms were implemented by Java. The experiments were run on an Intel i7 with 2.40

GHz processor and 4GB of RAM. The computer is using Windows 10.

5.3 Analysis and Results

 Scalability of service selection systems is influenced by the time complexity of the used algorithm. The

number of tasks in the composition, the number of service candidates per task, and the number of QoS attributes

are often used to determine the size of the O-QSC. As the can be modeled as a , which is

known as NP- hard problem [9, 49], For a few hundred of potential candidate services that offer the same

functionality, the computing time of any global exact-methode may exceed the run-time requirements [25, 21].

Such global optimization approaches traditionally address the as a standard mixed integer program,

which makes them unsuitable and unsupported for problem, where the number of candidate services is

big. In worst case, the MIP algorithm time-complexity is exponential [25, 21]. Although they are very scalable,

and there are no exact or approximate approaches better than they, the existing local optimization solutions will

not be supported at all as long as they have an issue of optimality. In our approach, we adopt an abstract

Workflow to solve the problem. However, the local selection technique, which is highly effective and

scalable, is used to select services for AWF. The local utility computation for the required task is specifically

linear in complexity with respect to the number of service candidates. Furthermore, as service composition can

perform the local selection for abstract tasks in a independently, the total time complexity of such

independent selection is not influenced by the number of tasks in the workflow; hence, the time complexity of

such services selection remains linear. Consequently, the GSS time complexity is linearly dependent on the

number of available services, and on the number of tasks in workflow is fully independent. Such kind of features

makes our solution highly scalable than existing global strategy based exact-solutions. On the other hand, the

optimality of the approach is controlled and fixed based on the abstract Workflows strategy. A candidate

services for an are modeled by a fully meshed . In the other words, the problem is not

modeled by not-fully meshed , which is known as NP-Hard, but it is conceptually modeled by a one

that is fully meshed in our solution. Such fully meshed DAG insures in solution the optimality of provided

solutions contrary to the existing local strategy based exact-solutions and global strategy based approximate-

ones.

5.4 performance and the impact of attributes

 Unlike the existing global approaches for problem, which are influenced by the number of

 attributes involved by a service composition, the increasing of the number of attributes in the

algorithm not increase the computation time. Indeed, the approximate approaches, usually, have such influence

twice. When the number of attributes is low, then they have a problem of optimality, and when it is a big,

Mansour Mekour, Abdelkrim Houacine, Abdelkader Mostefai

1180

then they have a problem of performance cost. Also, with the increasing number of attributes and tasks the

computation time then is always the same in general. This is an expected behavior as we already discussed in

section 4, because the approach not depend neither the tasks number, nor the attributes number, and the

amount of candidate services affects it linearly. When there are more services, tasks, and QoS requirements,

adopting GSS for O-QSC problems becomes more efficient. In Fig. 5.a, for each configuration, we study the

performance of the algorithm under the same number of tasks. We have used the QWS real world data set

which has 9 attributes. The range of service candidates for each task is 10 to 2500, while the number of

tasks is fixed to 150. In this experiment, the computation times is measured for 2, 3, 5, 7 and 9 attributes.

The results indicate that the approach significantly is very independent to attributes number. By

varying the number of attributes, the required computation time of the approach perhaps is the same

(the difference is about 2 ns). On the other hand, we study also the performance of the algorithm, but in that case,

with respect to the number of tasks implied in the workflow.

Fig. 5 The impact of attributes in algorithm

a) 150 Tasks

b) 1500 Candidate services

 In the experiment shown by Fig. 5.b, we used the same QWS real world data set, and we have

measured also the computation times for 2, 3, 5, 7 and 9 attributes. The number of tasks is varied from 3 to

150 tasks, while the number of candidate services is fixed to 1 500 services. The results show, the computation

time of algorithm is also always the same not only for all attributes, but also for all tasks number.

Consequently, the GSS approach then is neither influenced by the amount of tasks, nor the amount of QoS

attributes. This obviously will become more advantages for the real world, where the amount of tasks in WF, as

well the amount of QoS attributes are very limited. The results shown by the figs. 5.a and 5.b indicate also that

GSS : Global Services Selection approach

 1181

our solution performs very well regarding the huge number of services. For example, when the number of tasks

is 150 tasks with 9 attributes, and for 2500 candidate services per tasks (i.e. 375 000 services), the

algorithm find the solution in 39.08 ms (millisecond). Also, when the services number is 1500, the solution is

constantly found within time of 21.22 ms.

Fig. 6 Algorithms Performance Results

a) 31 Tasks

b) 500 Candidate services

5.5 MIP, and Local Performance Results

 In Fig. 6.a, the computation times is measured for , Local, BF, and MIP optimization algorithms for

each configuration. We compare the performance of the algorithms under the same candidate services number. In

this experiment, and for all test cases, we used the first QWS real world data set (where the number of

attributes is 2), the range of service candidates for each task is 10 to 5500, while the number of tasks is fixed to

31. The results indicate that the GSS performs significantly better than the BF and MIP algorithms. the GSS is

particularly scalable because, in contrast to the MIP algorithm, the required computing time of the GSS approach

increases relatively slowly with the number of service candidates. Indeed, the computation time is increased in

the same manner as the Local algorithm increasing under the same number of candidate services per task, which

say that our solution complexity is linear as the local one. In the experiment shown in Fig. 6.b, we study also the

performance of the algorithms, but in that case, with respect to the number of tasks implied in the workflow. In

this experiment, we used the first QWS real world data set, where the number of tasks is varied from 5 to 150,

Mansour Mekour, Abdelkrim Houacine, Abdelkader Mostefai

1182

and there are 500 service candidates available for each task. The results show that, in every test instance, our

method consistently outperforms the global ones (BF and MIP algorithm).

5.6 Optimality

 As the MIP algorithm is an exact algorithm, it has not the issue of optimality, and it outperforms the BF

one, By analyzing the results of the GSS and Local algorithms with those of the MIP optimization algorithms, we

have assessed the quality of the result given by these algorithms. By comparing the overall utility value obtained

by the GSS and Local algorithms for the selected services to the overall utility gains made for the optimal

selection given by the MIP algorithm, we conclude if the solutions of the GSS and Local algorithms are optimal.

The and optimality is computed by the following formulas 6 and 7).

 (6)

 (7)

Where , , and is the overall utility value obtained by , and
algorithm respectively.

Fig. 7 Algorithms Optimality

a) 51 Tasks

b) 2500 Candidate services

GSS : Global Services Selection approach

 1183

The achieved optimality is shown in Fig. 7.a in numerous configurations with varied numbers of

candidates service, and in Fig. 7.b in several configurations with variable numbers of trasks. The results show,

except two specific cases, that the Local algorithm was able to achieve only a bit higher than 0.8 and 0.6 as

indicated by the figs. 7.a and 7.b respectively. While the algorithm achieves exactly the same optimality that

the MIP and BF algorithms achieves. The results also show that the Local algorithm achieves the same

optimality of the MIP and BF algorithms in some test cases. These test cases are done on workflows that are

constituted by sequential flows only, and from this specific case the idea was conceived.

6. Conclusion and future work

We described our scalable solution to the O-QSC problem in this paper. Unlike the other already

existing works, which do not use the fuly mushed DAG (linear programming, heuristic, evolutionary algorithms,

etc) to solve the issue. Our solution use such to reduce the complexity. Firstly the global workflow is

constituted by tasks called abstracte services. Then the best service for each task in is found through an

efficient algorithm. The complexity of the proposed algorithm is linearly dependent with the increasing amount

of services. As a result, this method is less complex and scalable, particularly for service composition. This

benefit is further confirmed by the extensive experimental analysis utilizing two real-world datasets with a large

amount of potential services. As was mentioned, as the number of tasks increases, the computation time of our

proposal becomes a little bit more. This is because the suggested algorithm has some innate qualities. The huge

amount of tasks in WF, however, is not an issue because it is extremely constrained and unchanging.

Furthermore, the proposed approach helps to enhance the organization’s applications integration based on

services. Through a dynamic and flexible integration, software components (as a service) are efficiently located

and dynamically bounded. Precisely, with an increase of such components, service quality is paramount in the

application integration. Such integration must reflect the business needs of customers and providers so that to

receive their confidence and achieve their goals. Also, the present approach opens a wide research on web

service based applications. Further works will be done on the improvement of service selection performance and

composition. In addition, other problems will be tackled such social and behavioral aspects.

References

[1] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. "QoS-aware middleware for

web services composition". IEEE Transactions on Software Engineering, 30 (5) (2004) 311-327.

[2] D. Ardagna, B. Pernici, Adaptive service composition in flexible processes, IEEE Transactions on Software

Engineering 33 (6) (2007) 369-384.

[3] M. Alrifai, T. Risse, W. Nejdl, A hybrid approach for efficient web service composition with end-to-end

constraints, ACM Transactions on the Web 6 (2) (2012) 1-31.

[4] M. Rathore, and U. Suman, "A Quality of Service Broker Based Process Model for Dynamic Web Service

Composition". Journal of Computer Science, 7 (8) (2011) 1267-1274.

Mansour Mekour, Abdelkrim Houacine, Abdelkader Mostefai

1184

[5] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, Y. Xiang, QoS-Aware Dynamic Composition of Web Services

Using Numerical Temporal Planning, IEEE Transactions On Services Computing, 7 (1) (2014) 18-31.

[6] H. Zheng, W. Zhao, J. Yang, A. Bouguettaya, Analysis for Web Service Compositions with Complex

Structures, IEEE Transactions On Services Computing, 6 (3) (2013) 373-386.

[7] J. El Hadad, M. Manouvrier, M. Rukoz, TQoS: transactional and QoS-aware selection algorithm for

automatic web service composition, IEEE Transactions on Services Computing 3 (1) (2010) 73-85.

[8] Q. Zhu, Q. Wu, G. Dai, M. Zhou, An approach for transactional QoS-driven service composition, Journal of

Computational Information Systems, 7 (10) (2011) 3398-3405.

[9] T. Yu, Y. Zhang, K.J. Lin, Efficient algorithms for web services selection with end-to-end constraints,

ACM Transactions on the Web, 1 (1) (2007) 1-26.

[10] J.Z. Luo, J.Y Zhou, Z.A. Wu, "An adaptive algorithm for QoS-aware service composition in grid

environments". Service Oriented Computing and Applications, 3 (3) (2009) 217-226.

[11] A. RamÃ­rez, J. Parejo, J. Romero, S. Segura, A. CortÃ©s. "Evolutionary composition of QoS-aware web

services: A many-objective perspective". Expert Systems with Applications, 72 (2017) 357-370.

[12] C. Li, J. Li; H. Chen. "A Meta-Heuristic-Based Approach for Qos-Aware Service Composition". IEEE

Access, 8 (2020) 69579-69592.

[13] H. Naghavipour, M. Idris. "Hybrid Metaheuristics Using Rough Sets for QoS-Aware Service Composition".

IEEE Access, 10 (2022) 112609-112628.

[14] Y. Ma, C. Zhang, Quick convergence of genetic algorithm for QoS-driven web service selection, Computer

Networks 52 (5) (2008) 1093-1104.

[15] G. Canfora, D.I. Penta, M.R. Esposito, M.L. Villani, A framework for QoS-aware binding and re-binding of

composite web services, Journal of Systems and Software, 81 (10) (2008) 1754-1769.

[16] L. Ai, M. Tang, C. Fidge, Partitioning composite web services for decentralized execution using a genetic

algorithm, Future Generation Computer Systems 27 (2) (2011) 157-172.

[17] X.L. Wang, Z. Jing, H.Z. Yang, Service selection constraint model and optimization algorithm for web

service composition, Journal of Information Technology 10 (5) (2011) 1024-1030.

[18] Q.Wu, Q. Zhu, P. Li, A caching mechanism for QoS-aware service composition, Journal of Web

Engineering 11 (2) (2012) 119-130.

[19] H. Wada, J. Suzuki, Y. Yamano, K. Oba, E : A Multiobjective Optimization Framework for SLA-Aware

Service Composition, IEEE Transactions On Services Computing, 5 (3) (2012) 358-372.

[20] D. Palanikkumar, G. Kousalya, An evolutionary algorithmic approach based optimal web service selection

for composition with quality of service, Journalof Computer Science, 8 (4) (2012) 573-578.

[21] F. Mardukhi, N. NematBakhsh, K. Zamanifar, A. Barati, decomposition for service composition using

genetic algorithm, Applied Soft Computing 13 (7) (2013) 3409-3421.

[22] D. Wang, Y. Yang, Z Mi. "A genetic-based approach to web service composition in geo-distributed cloud

environment". Computers & Electrical Engineering, 43 (2015) 129-141.

[23] C. Jatoth, G. Gangadharan, U. Fiore, R. Buyya. "QoS-aware Big service composition using MapReduce

based evolutionary algorithm with guided mutation". Future Generation Computer Systems, 86 (2018) 1008-

1018.

[24] C. Jatoth, G.R. Gangadharan, R. Buyya. Optimal Fitness Aware Cloud Service Composition using an

Adaptive Genotypes Evolution based Genetic Algorithm. Future Generation Computer Systems. 94 (2019)

185-198.

[25] Q. Wu, Q. Zhu, Transactional and QoS-aware dynamic service composition based on ant colony

optimization, Future Generation Computer Systems, 29 (5) (2013) 1112-1119.

[26] Q. Yu L. Chen B. Li. "Ant colony optimization applied to web service compositions in cloud computing".

Computers & Electrical Engineering, 41 (2015) 18-27.

[27] S. Zhang, S. Xu, X. Huang, W. Zhang, M. Chen. Networked correlation-aware manufacturing service

supply chain optimization using an extended artificial bee colony algorithm. Applied Soft Computing

Journal. 76 (2019), 121-139.

[28] F. Seghir. "FDMOABC: Fuzzy Discrete Multi-Objective Artificial Bee Colony approach for solving the

non-deterministic QoS-driven web service composition problem". Expert Systems with Applications, 167

(2021) 114413.

[29] M. Cremene, M. Suciu, D. Pallez, D.Dumitrescu. "Comparative analysis of multi-objective evolutionary

algorithms for QoS-aware web service composition". Applied Soft Computing, 39 (2016) 124-139.

[30] F. Chen, R. Dou, M. Li, H. Wu. "A flexible QoS-aware Web service composition method by multi-objective

optimization in cloud manufacturing". Computers & Industrial Engineering, 99 (2016) 423-431.

[31] N. Kashyap, A. Kumari, R. Chhikara. "Multi-objective Optimization using NSGA II for service composition

in IoT". Procedia Computer Science, 167 (2020) 1928-1933.

GSS : Global Services Selection approach

 1185

[32] X. Xu, H. Rong, E. Pereira. "Predatory Search-based Chaos Turbo Particle Swarm Optimisation (PS-

CTPSO): A new particle swarm optimisation algorithm for Web service combination problems". Future

Generation Computer Systems, 89 (2018) 375-386.

[33] C. Li, J Li, H. Chen, A. Heidari. "Memetic Harris Hawks Optimization: Developments and perspectives on

project scheduling and QoS-aware web service composition". Expert Systems with Applications, 171 (2021)

114529.

[34] B. Benmessahel, F. Nouioua. "DDAPSO: Hybrid Discrete Dragonfly Algorithm and Particle Swarm

Algorithm to Service Selection and Composition for the Internet of Things Applications". Revue

d’Intelligence Artificielle, 36 (3) (2022) 417-425.

[35] S. Gavvala, C. Jatoth, G. Gangadharan, R. Buyya. Huang. "QoS-aware cloud service composition using

eagle strategy". Future Generation Computer Systems, 90 (2019) 273-290.

[36] H. Jin, S. Lv, Z. Yang, Y. Liu. Huang. "Eagle strategy using uniform mutation and modified whale

optimization algorithm for QoS-aware cloud service composition". Applied Soft Computing, 114 (2022)

108053.

[37] H. Wang, W.Chiu, S. Wu. "QoS-driven selection of web service considering group preference". Computer

Networks, 93 (1) (2015) 111-124.

[38] A. Mousa J. Bentahar. "An Efficient QoS-aware Web Services Selection Using Social Spider Algorithm".

Procedia Computer Science, 94 (2016) 176-182.

[39] S. Wang, L. Huang, L. Sun, C. Hsu, F. Yang. "Efficient and reliable service selection for heterogeneous

distributed software systems". Future Generation Computer Systems, 74 (2017) 158-167.

[40] W. Serrai, A. Abdelli, L. Mokdad, Y. Hammal. "Towards an efficient and a more accurate web service

selection using MCDM methods". Journal of Computational Science, 74 (2017) 253-267.

[41] H. Wang, D. Yang, Q. Yu, Y. Tao. "Integrating modified cuckoo algorithm and creditability evaluation for

QoS-aware service composition". Knowledge-Based Systems, 140 (2018) 64-81.

[42] L. Zhao, W. Tan, N. Xie, L. Huang. "An optimal service selection approach for service-oriented business

collaboration using crowd-based cooperative computing". Applied Soft Computing, 92 (2020) 106270.

[43] H. Ma, F. Bastani, I-L. Yen, H. Mei, QoS-Driven Service Composition with Reconfigurable Services, 6 (1)

(2013) 20-34.

[44] M. Mekour and S. M. Benslimane, BRC: Behavior Reconfiguration and Combination to Enhance the

Dynamic Semantic Web Services Composition, Seventh International Conference on Next Generation Web

Services Practices, (2011) 410-415.

[45] M. Mekour and S. M. Benslimane, SP4PS: service process rewriting for efficient and proper web services

composition, International Journal of Web Engineering and Technology, 8 (4) (2013) 327-346 .

[46] Z. Zheng, Y. Zhang, and M. R. Lyu, Investigating of Real- World Web Services, IEEE Transactions on

Services Computing, 7(1), 2014, pp. 32-39.

[47] E.Al-Masri, and Q. H.Mahmoud, QoS-based Discovery and Ranking of Web Services, IEEE 16th

International Conference on Computer Communications and Networks (ICCCN), 2007, pp. 529-534.

[48] E. Al-Masri, and Q.H. Mahmoud, Investigating web services on the world wide web, in: proceeding of the

17th international conference on World Wide Web, WWW08, ACM, 2008, pp. 795-804.

[49] S. Martello and P. Toth, Algorithms for Knapsack problems, Discrete Math, 31 (1987) 70-79.

