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Abstract: The stagnation-point flow over a stretched surface is concerned in many industrial processes such as soft sheet 

extrusion, metal spinning, and paper production. On the account of these possible engineering applications, the study of 

stagnation-point flows has received a lot of attention. In the present paper, the non-aligned stagnation-point flow has found to 

be interesting and innovative in the analysis of viscous nanofluid over stretching surface with a convective boundary 

condition in presence of porous medium and magnetic effect. The suitable similarity transformation is utilized for the 

reduction of a set of governing equations, which are solved by using the differential transformation method (DTM) with the 

aid of MAPLE software. The effect of different physical parameters on flow is shown with the help of graphsThe skin 

friction, the Nusselt number, and Sherwood number are tabulated. Further, velocity, temperature, and nanoparticle volume 

fraction profiles are shown graphically and physical parameters are discussed. The comparison of the obtained results with a 

fourth-order Runge–Kutta–Fehlberg integration scheme with shooting technique is made. 
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1. Introduction  

In several industrial and engineering processes, prominent importance of flow over stretching sheet can be 

seen. For instance, in polymer sheets extrusion, production of glass-fiber and paper, wire drawing, metal-

spinning. In such cases, the rate of cooling and stretching are very much needed in obtaining the desired final 

quality of the product. The theory of flow over a stretching plate was coined by Crane L.J(1970). Stagnation-

point flows over stretched surfaces are common in industrial processes such as soft sheet extrusion, metal 

spinning, and paper production. Because of its usefulness in many engineering applications, the study of 

stagnation-point flows has received a lot of attention. A solid wall can stifle flow in some cases, whereas a free 

stagnation point or line can exist inside the fluid domain. A rigid or stretched wall covers the entire horizontal 

axisin a stagnation point, and the domain of fluid is 0 . The fluid strikes the wall in an orthogonal or oblique 

manner. This simple model of an oblique stagnation point assists us to know how a boundary layer forms. As a 

result, the position of the stagnation point is essential for understanding boundary layer behaviour. The study of 

this oblique stagnation point flow has piqued researchers' interest due to its numerous engineering and industrial 

applications, including solar central receivers uncovered to wind current, cooling of nuclear reactors during an 

emergency shutdown (Burde, 1995). Stuart (1959) was first to study the oblique stagnation point flow of a fluid 

approaching a fixed rigid surface. Later, Tamada (1979) and Dorrepaal (1986) independently examined this 

problem. Further, Reza and Gupta (2005) investigated the flow of a fluid approaching a stretching surface from 

an oblique stagnation point. Some investigations on oblique stagnation-point flow are (Mahapatraet al., 2012; 

Nadeemet al., 2013; Makindeet al., 2016 ; JayachandraBabuet al., 2016; Vijayaet al., 2019).. 

Various examinations of the flow of water in porous media have been conducted during the last few decades. 

Fluid flow across a porous medium offers a wide range of physical and industrial applications. Fiber and granular 

insulation, building thermal insulation, food processing and storage, and underground heavy water disposal are 

just a few examples. Flow through a porous medium saturated with fluid is significant in a variety of 

technological applications, and it is becoming more important as the use of geothermal energy and astrophysical 

difficulties grows. In porous media, knowing of fundamentals of mass, energy, and momentum transport could 

benefit a variety of other applications, including nuclear reactor cooling, nuclear waste disposal underground, 

food processing, petroleum reservoir operations, building insulation, and welding in manufacturing processes. 

Raptis and Takhar (1987) were among the first to investigate the flow through a porous medium over a semi-

infinite plate. Several attempts have been to investigate the porous medium in various circumstances (Seddeek, 

2007; Rehmanet al., 2013; Reddy et al.,2021; Megahedand Abbas, 2022 ; Gulet al.,2018; Ullahet al., 2020). 

In current metallurgical and metal-working operations, the study of magneto-hydrodynamic (MHD) 

movement of an electrically conducting fluid is of great passion. The application of a magnetic field to fuse 

metals in an electrical furnace and the cooling of the wall within a nuclear reactor container are two examples of 

such fields (Ibrahim et al., 2013).  Hydro-magnetic techniques are used to purify molten metals from non-

metallic impurities by applying a magnetic field to them. As a result, the problem we are working on is extremely 
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beneficial to polymer technology and metallurgy. A few other interesting works on magnetic effect are (Ishakaet 

al., 2009; Maboodet al., 2017; Rajendaret al., 2017; Uka and Amos, 2022) 

Nanofluid is said to be a composite of solid-liquid mixture of nanoparticles of sizes 1-100nm. It consists of a 

liquid called base fluid such as ethyl glycol, water, oil etc., and solid particles known as nanoparticles. The term 

nanofluid was first investigated by Choi (1995). The use of nanofluid is essential due to their high thermal 

conductivity properties. This study has applications in the areas of blowing and spinning of glass, paper 

production, drawing of wires and sheets of fiber, steel, metals and aluminum alloy spinning, and drawing of 

plastic films. During the processes, the transfer of heat between the sheet and medium of the fluid takes place and 

as a result of this, the material needs to be stretched. Meanwhile, the cooling and stretching of the sheet is very 

important, hence the quality of the product is dependent on the rate at which the cooling and stretching takes 

place. Some studies on nanofluids can be seen in (Mehmoodet al., 2015; Khan and Pop, 2012; Rizwan and 

Nadeem, 2014; Das et al., 2015; Makinde and Aziz, 2011) 

From the above mentioned literature, the problem of non-aligned stagnation point flow of nanofluid over 

stretching surface in a porous medium with a convective boundary condition the presence of magnetic effect with 

DTM is not yet studied. The set of ordinary differential equations which are obtained by using appropriate 

similarity transformation are highly nonlinear, and are solved by using semi-analytical method known as 

differential transformation method (DTM) (Sepasgozaret al.,2017;Ganji and Mirzaaghaian, 2016;Hatami and 

Jing, 2016). 

2.Significance Of The Study  

The stagnation-point flow over stretched surface is concerned in many industrial processes such as soft sheet 

extrusion, metal spinning, and paper production. On the account of these possible engineering applications, the 

study of stagnation-point flows has received a lot of attention. In the present paper, the non-aligned stagnation-

point flow has found to be interesting and innovative in the analysis of viscous nanofluid over stretching surface 

with a convective boundary condition in presence of porous medium and magnetic effect. 

3. Methodology:  

The suitable similarity transformation is utilized for the reduction of a set of governing equations, which are 

solved by using the differential transformation method (DTM). The skin friction, the Nusselt number, and 

Sherwood number are tabulated. Further, velocity, temperature, and nanoparticle volume fraction profiles are 

shown graphically and studied in detail for various physical parameters. The comparison of the obtained results 

with a fourth-order Runge–Kutta–Fehlberg integration scheme with shooting technique is made and an excellent 

agreement is found.  

4. Findings: 

 It is noticed that as the magnetic parameter enhances, the temperatureand nanoparticle volume fraction profiles 

reduces but the opposite behaviour can be seen in the velocity  profile. Enhancement in the effect of the porosity 

parameter diminishes the velocity profile while enhance the temperature profile. 

5. Originality: 
To the best of the author’s knowledge, so far the problem of non-aligned stagnation point flow of nanofluid over 

stretching surface in a porous medium with a convective boundary condition in presence of magnetic effect by 

differential transform method is not yet studied. 

6. Mathematical Formulation 

By maintaining the origin stationary with the velocity
ˆ̂

( )WU x cx , the sheet is stretched along the x -axis by 

two equal and opposite forces. Outside the boundary layer, let 
ˆ̂

( )U x ax by    be the fluid velocity as shown in 

figure. 1. 

 

The governing equations are given below  
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The boundary conditions are as follows  
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Non-dimensional similarity variables as follows: 
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 ( ) ( ) ,fv Xf g    is : 
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Here, ( )f   and ( )g   are the normal and tangential components of flow. 

Eq. (1) is automatically satisfied by using (8) and Eqs. (2) - (4) are reduced into ordinary differential 

equations as given below: 

    
2

''' '' ' ' 2

1 1 0,pf ff f M K f Grt Grc           
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 Boundary conditions (5) and (6) are transformed as follows,  

0,f  ' 1,f  ' 0,g   ' 1 ( ) ,Bi     1  at 0,  (13) 
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Substituting Eq. (15) into Eq. (10), (13) and  (14), we obtain 
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Using Eq. (23) in Eq. (22), we obtain 

 '' ''(0) (0) ,fC Xf g 
' (0)Nu   and ' (0).Sh   (22) 

7. Method of solution: 

The reduced governing   equations (9), (11), (12) and (16)  with the boundary conditions (17) and (18) are 

resolved by utilizing DTM method and we get the following equations (23) - (26).  
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Transformed boundary conditions are: 

[0] 0,F  [1] 1,F  [2] ,
2

b
F  [0] 0,H  [1] ,H e [0] ,

Bi c
T

Bi


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[1] ,T c [0] 1,P  [1] .P d (27) 

Differential transform of   ,f   ,   ,   G    are  ( ),F i  ,T i  ,P i  H i and with the help of boundary 

conditions (17)-(18), we can find constants ,b ,c d and .e By utilizing transformed boundary conditions (27) and 

equations (23)-(26), we obtain the closed form of solution. 

8. Result and discussion 
The results are shown in Figure 2–16 and explored in detail to demonstrate the characteristics of the problem.

Sh , Nu , and fC are all tabulated. With a fourth-order Runge–Kutta–Fehlberg integration scheme and shooting 

technique, the accuracy of the acquired results is checked, and an excellent agreement is found which are shown 

in table 1 and table 2. 

 

 

 

Table 1: Coefficient of ''(0)f with 0,M  0,pK  0  . 

 Present results Results obtained by Makindeet al.2016 

1

1  

S  ''(0)f  ' (0)G  S  ''(0)f  ' (0)G  

0.1 0.791705 -0.969386 0.26332 -0.791705 -0.969386 0.26332 

0.2 - -0.919209 - - - - 

0.3 0.519499 -0.849420 0.60631 -0.519499 - 0.849420 0.60631 

0.8 - - - -0.114527 -0.299388 0.93472 

2 0.410407 2.017502 1.16521 0.410407 2.017502 1.16521 

3 0.693053 4.729282 - 0.693053 4.729282 1.23465 
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Table 2: Comparison with Makindeet al.2016 when
1 0, Pr 10, 10, 0.1.pNr M K Le Bi        

 

 Present results Results obtained by Makindeet al.2016 

Nt

Nt  

' (0)
 

0.1Nb   

' (0)

0.1Nb   

' (0)

0.5Nb   

' (0)

0.5Nb   

' (0)

0.1Nb   

 

' (0)

0.1Nb   

 

' (0)

0.5Nb   

 

' (0)

0.5Nb   

0.1 0.092135 2.277412 0.038331 2.356031 0.0921 2.27741 0.03833 2.35603 

0.2 0.092551 2.222812 0.026901 2.457621 0.09255 2.22281 0.02690 2.45762 

0.3 0.092121 2.178343 0.018001 2.543524 0.09212 2.17834 0.01800 2.54352 

 

8.1 Velocity Profile 

The impact of the magnetic parameter M  on the axial and oblique velocity gradient profiles (i.e. ' ( )f  and 

' ( )G  )in the boundary layer is seen in figures 2 and 7. The Lorentz force is a resistive-type force that occurs 

when a transverse magnetic field is applied to an electrically conducting fluid and has a propensity to slow down 

the fluid in the boundary layer. As a result, the axial velocity drops. Figures 3 and 8 shows that the axial velocity 

as well as oblique velocity gradient profiles diminishes as values of porosity parameter
pK increases. Because, 

increasing 
pK amplifies the porous layer and thereby reduces the thickness of momentum boundary layer. In 

figures 4 and 5, as the values of thermal Grashof number Grt  and the solutalGrashof number Grc  rise, ' ( )f   

and ' ( )G   also rise. The ratio of the buoyant force to the viscous force is known as Grt  in this context. It is 

noted that the flow is accelerated as a result of the buoyant force being increased in accordance with the rising 

thermal Grt  for fluids. The buoyant force to viscous hydrodynamic force ratio is known as Grc . Thus, as 

hydrodynamic force increases and buoyancy force remains constant, the thickness of the momentum boundary 

layer decreases. The effect of the velocity ratio parameter 1  on '( )f  and ' ( )G   is depicted in figure 6 and 9. 

When  eU x  exceeds  wU x , the flow velocity increases, and the thickness of the boundary layer reduces as 1

rises. Furthermore, when    e wU x U x , the flow field velocity reduces, as does the thickness of the boundary 

layer. The flow exhibits an inverted boundary layer structure when 1 1  .  

8.2 Temperature Profile and nanoparticles volume fraction 

The effect of M on ( )   in the boundary layer is demonstrated in figure 10. The Lorentz force is a resistive-

type force that is produced when a transverse magnetic field is applied to an electrically conducting fluid. This 

force tends to delay the fluid's velocity and raise its temperature in the boundary layer. In addition, when the 

magnetic field intensity increases, the impacts on flow and heat fields become more prominent. As shown in 

figure 11, temperature profiles rise when the porosity parameter pK  rises. Due to the expansion of the fluid's 

pores, pK  develops a resistance force that opposes the flow field and raises the thickens the thermal boundary 

layer.The effect of Biot number Bi  on the thermal boundary layer is depicted in figure. 12. Higher surface 

temperatures are caused by stronger convection, which increases the thermal effect to penetrate deeper into the 

static fluid, as predicted. With an increase in 1 , the dimensionless ( )   drops, diminishing the thickness of the 

thermal boundary layer and therefore the thermal resistance as shown in figure 13. Figure 14 shows that as Lewis 

number Le rises nanoparticle volume fraction profile ( )  ) degrades, Le and Brownian diffusion coefficient are 

of opposite behaviour as Le rises Brownian diffusion coefficient reduces. Figure 15 illustrates that ( )   increases 

as the values of Nt  increases. The influence of the M  on ( )   in the boundary layer is seen in figure 15. The 

Lorentz force is a resistive-type force and has the effect of slowing the velocity of the fluid in the boundary layer 

and creating a higher concentration of nanoparticles in the fluid. 

8.3 Streamlines 

Figures 16 (a) to 16 (c) shows the streamlines patterns for oblique flow. The streamlines are inclined left for 

positive values of 2  as shown in figure 16 (a) and right for negative values of 2  in figure 16 (c), as expected. 

When 2 0  , the streamlines are found to be normal to the surface in figure 16(b). This is because raising the 

velocity ratio parameter 2  enhances shearing motion, which causes the flow to become increasingly obliquity 

towards the stretched surface. 
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Figure 1   Physical model 

 

 
 

 

Figure 2: Variation of '( )f   on M

1 0.1, 0.1, 0.5, 0.2, 0.5, 0.5, 0.2, 5,Pr 2.pBi Nb Grt Nt K Grc Le           
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Figure 3: Variation of '( )f   on pK

1 0.1, 0.1, 0.5, 0.2, 0.3, 0.5, 0.2, 5,Pr 2.Bi Nb Grt M Nt Grc Le           

 

Figure 4: Variation of '( )f   on Grt

1 0.1, 0.1, 0.5, 0.3, 0.3, 0.5, 0.2, 5,Pr 2.pBi Nb K M Nt Grc Le           
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Figure 5: Variation of '( )f   on Grc

1 0.1, 0.1, 0.5, 0.3, 0.3, 0.5, 0.2, 5,Pr 2.pBi Nb K M Nt Grt Le         
 

 

Figure 6: Variation of '( )f  on 1  

0.2, 0.1, 0.5, 0.3, 0.3, 0.5, 0.2, 5,Pr 2.pGrc Bi Nb K M Nt Grt Le        
 



Semi analytical solution of MHD Non-aligned Stagnation-point flow of Nanofluid 

 

 1051 

 

Figure 7: Variation of '( )G   on M

10.5, 0.1, 0.5, 0.3, 0.5, 0.5, 100,Pr 2, 0.1,pGrc Bi Nb K Nt Grt Le         
 

 

Figure 8: Variation of '( )G   on pK

10.5, 0.1, 0.5, 0.3, 0.5, 0.5, 100,Pr 2, 0.1,Grc Bi Nb M Nt Grt Le         
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Figure 9: Variation of '( )G   on
1  

0.5, 0.1, 0.5, 0.3, 0.5, 0.5, 100,Pr 2, 0.3.pGrc Bi Nb M Nt Grt Le K        
 

 

Figure 10: Variation of ( )   on M  

10.1, 0.1, 0.1, 100,Pr 1, 0.3, 0.1, 0.1.pGrc Nt Grt Le K Nb         
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Figure 11: Variation of ( )   on pK
 

10.1, 0.1, 0.1, 100,Pr 1, 0.3, 0.1, 0.1.Grc Nt Grt Le M Nb         

 

Figure 12: Variation of ( )   on Bi  

10.1, 0.1, 0.3, 0.1, 0.1, 100,Pr 1, 0.3, 0.1.pGrc Nb M Nt Grt Le K           
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Figure 13: Variation of ( )   on
1

0.1, 1, 0.3, 0.1, 0.1, 100, 0.1, 0.3,Pr 1.pGrc Bi M Nb Grt Le Nt K          

 

 

Figure 14: Variation of ( )   on Le  

0.1, 0.1, 0.3, 0.1, 0.1, 0.1, 0.3,Pr 1.pGrc Bi M Nb Grt Nt K         
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Figure 15: Variation of ( )   on M  

10.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.3,Pr 1.pGrc Bi Nt Nb Grt K         

 

Figure 16 (a): Streamline patterns for the oblique flow for 

1 20.1, 0.1, 0.1, 0.5,Pr 6, 0.5, 0.1, 2.5.pGrc Bi Grt K M           
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Figure 16(b): Streamline patterns for the oblique flow for 

1 20.1, 0.1, 0.1, 0.5,Pr 6, 0.5, 0.1, 0pGrc Bi Grt K M           

 

Figure 16(c): Streamline patterns for the oblique flow for 

1 20.1, 0.1, 0.1, 0.5,Pr 6, 0.5, 0.1, 2.5.pGrc Bi Grt K M          
 

 

9. Conclusions: 

Non-aligned Stagnation-point flow of Nanofluid over Stretching Surface in a Porous Medium with a 

Convective Boundary Condition in the presence of magnetic effect has been studied by using DTM. The 

outcome of various parameters is given below: 

 As values of  M increases, the axial velocity and oblique velocity gradient profiles decreases but 

opposite behavior can be seen in both ( )  and ( )  . 
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 As values of  
pK increases, temperature profile increases but opposite behavior can be seen in the axial 

velocity and oblique velocity gradient profiles. 

 As values of  
1 increases, similar behavior can be seen in both oblique velocity gradient and temperature 

profiles. 

 As values of  Grt and Grc rises, axial velocity profile increases. 

 Increase in Biot number Bi  increases the temperature profile.. 

 As  Le  rises, the nanoparticle volume fraction profile reduces. 

 Streamline patterns for the oblique flow for different values of 
2 can be seen. 
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