A NOVEL PROBLEM FOR SOLVING CORDIAL LABELING OF CORONA PRODUCT BETWEEN PATH AND THIRD ORDER OF CONE GRAPHS

A. Elrokh a, M. M. Ali Al-shamiri b, Atef Abd El-hay c

E mail address: ^aashraf.hefnawy68@yahoo.com, ^bmal-shamiri@kku.edu.sa and ^catef_1992@yahoo.com **Article History**: *Do not touch during review process(xxxx)*

Article filstory: Do not touch during review process(xxxx)

Abstract: A simple graph is said to be cordial if it admits 0-1 labeling that satisfies certain conditions. In this paper we investigate necessary and sufficient conditions for cordial labeling of the corona Product between path and third order of cone graphs.

Keywords: Path, Cone, Third power of graph, Corona Product, Cordial labeling.

1. Introduction

Let G be a graph with p vertices and q edges. All graphs considered here are simple, finite, connected and undirected. A labeling of a graph G is a process of allocating numbers or labels to the nodes of G or lines of G or both through mathematical functions [2]. There are several types of labeling and a complete survey of graph labeling is available in [6]. Graph theory has a good development in the graph labeling and has a broad range of applications which reported in the work of Yegnanaryanan and Vaidhyanathan [9]. Cordial labeling is a weaker version of graceful labeling and harmonious labeling introduced by Cahit in [3]. Based on this labeling, more papers published in cordial labeling such as mean cordial labeling, H_1 - and H_2 -cordial labeling of some graphs [7]. In 1990, Chait [4], proved the following: each tree is cordial; an Euerlian graph is not cordial if its size is congruent to $2(mod\ 4)$; a complete graph K_n is cordial if and only if $n \le 3$ and a complete bipartite graph $K_{n,m}$ is cordial for all positive integers n and m. Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. The corona $G_1 \odot G_2$ of two graphs G_1 (with n_1 vertices , m_1 edges) and G_2 (with n_2 vertices , n_2 edges) is defined as the graph obtained by taking one copy of G_1 and copies of G_2 , and then joining the ith vertex of G_1 with an edge to every vertex in the ith copy of G_2 . It is easy to see that the corona $G_1 \odot G_2$ that has $n_1 + n_1 n_2$ vertices and $m_1 + n_1 m_2 + n_1 n_2$ edges. We will give brief summary of definitions which are useful for the present investigations.

Definition 1. A mapping $f: V \to \{0,1\}$ is called *binary vertex labeling* of G and f(v) is called *the label of the vertex v of G under f. If for an edge e = uv, the induced edge labeling f^*: E(G) \to \{0,1\} is given by f^*(e) = |f(u) - f(v)|, where u, v \in V. Let v_f(i) be the numbers of vertices of G labeled i under f, and e_f(i) be the numbers of edges of G labeled i under f^* where i \in \{0,1\}.*

Definition 2. Binary vertex labeling of a graph G is called *cordial* if $\left| \left(v_f \right)_0 - \left(v_f \right)_1 \right| \le 1$ and $\left| \left(e_f \right)_0 - \left(e_f \right)_1 \right| \le 1$. A graph G is called *Cordial* if it admits cordial labeling.

Definition 3. The cone graph is the join between Null graph N_n and a cycles C_m denoted by $C_{n,m}$

Definition 4. The third power of a cone denoted by $C_{n,m}^3$, is $C_{n,m} \cup J$, where J is the set of all edges of the form edges $v_i v_j$ such that $2 \le d(v_i v_j) \le 3$ and i < j where $d(v_i v_j)$ is the shortest path from v_i to v_j .

2. Terminologies and Notations

we can use these symbols of labeling as follows

L'_{8s}	11000011(s-time)11000011
L_{8s}	00111100(s-time)00111100

^a Dept. of Math., Faculty of Science, Menoufia University, Shebeen Elkom, Egypt.

^b Dept. of Math, Faculty of Science and Art, Muharyl Asser ,King khalid University, Abha, Saudi Arabia.

^b Department of Mathematics and Computer, Faculty of Science, Ibb University, Ibb, Yemen

^eComputer science dep. Higher Institute of Computers and Information Technology, Shorouk Academy.

S_{8s}'	01101001(s-time)01101001
S_{8s}	10010110(s-time)10010110
M'_{8s}	01011010(s-time)01011010
M_{8s}	10100101(s-time)10100101
N'_{4r}	1100(s-time)1100
N_{8s}	0011(s-time)0011
F'_{4s}	0101(s-time)0101
F_{4s}	1010(s-time)1010
Q_{4s}'	1001(s-time)1001
Q_{4s}	0110(s-time)0110

Table 1. The symbols of labeling.

Suppose that A_a , A'_a , A''_a and A'''_a is a collection of labeling of a cycle c_k where $k = a \pmod{4}$ and for the special p_k we choose the labeling C_k , C'_k , C''_k and C'''_k , where k = 1,2,3.

Suppose that j = 0,1,2,3. let B_0^j meaning the labeling of $C_{n,4r+j}^3$ where r is odd and B_e^j meaning the labeling of $C_{n,4r+j}^3$ where r is even.

If L is a labeling for a path P_k and M is a labeling for third power of cone $C_{n,m}^3$, then we use the notation [L;M] to represent the labeling of the corona $P_k \odot C_{n,m}^3$. Additional notation that we use is the following: for a given labeling of the corona $P_k \odot C_{n,m}^3$, we let v_i and e_i (for i=0,1) be the numbers of vertices and edges, respectively, that are labeled by i of the corona $P_k \odot C_{n,m}^3$, and let x_i and a_i be the corresponding quantities for P_k , and we let y_i and b_i be those for $C_{n,m}^3$. It is easy to verify that $v_0 = x_0 + ky_0$, $v_1 = x_1 + ky_1$, $e_0 = a_0 + kb_0 + x_0y_0 + x_1y_1$ and $e_1 = a_1 + kb_1 + x_0y_1 + x_1y_0$. Thus, $v_0 - v_1 = (x_0 - x_1) + k(y_0 - y_1) + and <math>e_0 - e_1 = (a_0 - a_1) + k(b_0 - b_1) + (x_0 - x_1)(y_0 - y_1)$. When it comes to the proof, we only need to show that, for each specified combination of labeling, $|v_0 - v_1| \le 1$ and $|e_0 - e_1| \le 1$.

3. Main result

In this section we study the necessary and sufficient condition of the cordial labeling of a corona between paths and a third power of Cone graphs denoted by $P_k \odot C_{n,m}^3$ for all k, m, n.

the next table illustrate the vertex and edges of the path P_k where k = 1,2,3

k = 1,2,3	x_0	x_1	a_0	a_1
$P_1 = 0$	1	0	0	0
$P_{1}' = 1$	0	1	0	0
$P_2 = 01$	1	1	0	1
$P_2'=0_2$	2	0	1	0
$P_2^{"}=1_2$	0	2	1	0
$P_3 = 010$	2	1	0	2
$P_3'=0_3$	3	0	2	0
$P_3^{"}=1_3$	0	3	2	0
$P_3^{""} = 0_2 1$	2	1	1	1
$P_3^{''''} = 1_2 0$	1	2	1	1

Table 2. Vertex labeling and edges of a path. P_k

the next table illustrate the vertex and edges of a path P_k where $k \equiv i \pmod{4}$ i.e. k = 4s + i, $\forall i = 0,1,2,3$.

P_k $k \equiv i (mod 4)$ $i = 0,1,2,3$		x_1	a_0	a_1
$A_0 = 0_{4s}$ $A'_0 = F'_{4s}$ $A''_0 = 1_{4s}$ $A'''_0 = N_{4s}$	4s 2s 0 2s	0 2s 4s 2s	0	4 <i>s</i> – 1
$A_1 = 0_{4s}0$ $A'_1 = F'_{4s}0$ $A''_1 = 1_{4s}1$ $A'''_1 = 1_{4s}0$	4s + 1 $2s + 1$ 0 $2s + 1$	2s $4s + 1$	4s 0 4s 2s	
$A_2 = 0_{4s}0_2$ $A'_2 = F'_{4s}01$ $A''_2 = 1_{4s}1_2$ $A'''_2 = N_{4s}10$	2s + 1	0 $2s + 1$ $4s + 2$ $2s + 1$	0 $4s + 1$	4s + 1
$A_3 = 0_{4s}0_3$ $A'_3 = F'_{4s}010$ $A''_3 = 1_{4s}1_3$ $A'''_3 = N_{4s}0_21$	2s + 2	0 $2s + 1$ $4s + 3$ $2s + 1$	4s + 2	4s + 2

Taple 3. Vertex labeling and edge of a path. P_k where $k \equiv i \pmod{4}$ $\forall i = 0,1,2,3$

Lemma 3.1 $P_k \odot C_{n,4r}^3, m \equiv 0 (mod 4)$ is cordial , for all r > 1.

The next table (4) illustrate the labeling of the Cone $C_{n,4r}^3$, n=1,2,3.

	labeling of cone				
n	$C_{n,4r}^3$	y_0	y_1	b_0	b_1
	D 0.1/	1 00	1	16 2	16 2
1	$B_e = 0; L'_{8r}$	4 <i>r</i>		16r - 3	16r - 2
	$B_e' = 0; 1L_{8r-8}'N_4'0_21$	4r + 1		16r - 2	16r - 3
	$B_0 = 0; S_{8r}Q_4'$	-		16r + 5	16r + 6
	$B_O' = 0; 101_2 L_{8r-8}' N_4' 0_2 10$	4r + 3	4r + 2	16r + 6	16r + 5
2	$B_e = 01; L'_{8r}$	4r + 1	4r + 1	20r - 3	20r - 2
	$B_e' = 01; 1L_{8r-8}'N_4'0_21$	4r + 1	4r + 1	20r - 2	20r - 3
	$B_o = 01; S_{8r}Q_4'$	4r + 3	4r + 3	20r + 7	20r + 8
	$B'_{o} = 01; 101_{2}L'_{8r-8}N'_{4}0_{2}10$	4r + 3	4r + 3	20r + 8	20r + 7
3	$B_e = 010; L'_{8r}$	4r + 2	4r + 1	24r - 3	24r - 2
	$B_e' = 010; 1L_{8r-8}'N_4'0_21$	4r + 1	4r + 2	24r - 2	24r - 3
	$B_o = 010; S_{8r}Q_4'$	4r + 3	4r + 4	24r + 9	24r + 10
	$B'_{o} = 010; 101_{2}L'_{8r-8}N'_{4}0_{2}10$	4r + 4	4r + 3	24r + 10	24r + 9

Table 4. Vertex labeling and edge of a cone $C_{n,4r}^3$, n = 1, 2, 3.

By using table (2), we study the coordiality of $P_k \odot C_{n,4r}^3$, where k=1,2,3.

n	p_k	$C_{n,4r}^{3}$		
			$v_0 - v_1$	$e_0 - e_1$
1	P_1'	B' _o B' _e B' _o B' _o B' _o	0	0
		B'_e		
2	P_1	B'_o	1	1
		B'_e		
3	P_1'	B'_o	0	0
		B'_e		
1	P''_2	B'_o, B'_o	0	-1
		B'_e , B'_e		
2	P_2	$B'_e, B'_e \\ B'_o, B'_o$	0	1
		B'_e , B'_e		
3	$P_2^{\prime\prime}$	$B'_e, B'_e B'_o, B'_o$	0	-1
		B'_e , B'_e		
1	P''''	B'_{e}, B'_{e} B'_{o}, B'_{o}, B'_{o}	0	0
		B'_e, B'_e, B'_e		
2	P_3	B'_o, B'_o, B'_o	1	1
		B_e', B_e', B_e'		
3	P''''	B'_{e}, B'_{e}, B'_{e} B'_{o}, B'_{o}, B'_{o}	0	0
		B'_e, B'_e, B'_e		

Table 5. Vertex labeling and edge of $P_k \odot C_{n,4r}^3$, n = 1,2,3.

By using table (3), we study the cordiality of $P_k \odot C_{n,4r}^3$ when $k = i (mode) 4 \ \forall i = 0,1,2,3$.

		$C_{n,4s}^{3}$		
n	P_k	·		
			$v_0 - v_1$	$e_0 - e_1$
		$B'_{o}, B'_{o}, B_{o}, B_{o} \dots$	0	1
1	$A_0^{\prime\prime}$	$B'_e, B'_e, B_e, B_e \dots$	U	1
	U	$B'_o, B'_o, B'_o, B'_o \dots$	0	1
2	A_0'	B'_e , B'_e , B'_e , B'_e		
		B'_o , B'_o , B_o , B_o	0	1
3	$A_0^{\prime\prime}$	$B'_e, B'_e, B_e, B_e \dots$		
1	Λ''	$B'_o, B'_o, B_o, B_o, \dots, B_o$	0	0
1	$A_1^{\prime\prime}$	$B'_{e}, B'_{e}, B_{e}, B_{e}, \dots, B_{e}$ $B'_{o}, B'_{o}, B'_{o}, B'_{o}, \dots, B'_{o}$	1	1
2	A_1'	$B'_{e}, B'_{e}, B'_{e}, B'_{e}, \dots, B'_{e}$	1	1
_	1	$B'_{o}, B'_{o}, B_{o}, B_{o}, \dots, B_{o}$	0	0
3	$A_1^{\prime\prime}$	$B'_e, B'_e, B_e, B_e, \dots, B_e$		
		$B'_o, B'_o, B_o, B_o, B_o, B_o$	0	-1
1	$A_2^{\prime\prime}$	$B'_{e}, B'_{e}, B_{e}, B_{e}, \dots, B'_{e}, B_{e}$ $B'_{o}, B'_{o}, B'_{o}, B'_{o}, \dots, B'_{o}, B'_{o}$		
2	41		0	-1
2	A_2'	$B'_{e}, B'_{e}, B'_{e}, B'_{e}, \dots, B'_{e}, B'_{e}$ $B'_{o}, B'_{o}, B_{o}, B_{o}, \dots, B'_{o}, B_{o}$	0	-1
3	$A_2^{\prime\prime}$	$B'_{e}, B'_{e}, B_{e}, B_{e}, \dots, B'_{e}, B_{e}$	U	-1
	2	$\mathcal{L}_{\ell},\mathcal{L}_{\ell},\mathcal{L}_{\ell},\mathcal{L}_{\ell},\mathcal{L}_{\ell},\mathcal{L}_{\ell},\mathcal{L}_{\ell},\mathcal{L}_{\ell}$	0	-1
1	$A_3^{\prime\prime}$	$B'_{o}, B'_{o}, B_{o}, B_{o}, B_{o}, B'_{o}, B'_{o}$		
		$B'_{e}, B'_{e}, B_{e}, B_{e}, \dots, B'_{e}, B_{e}, B'_{e}$		
			1	1
2	A_3'	$B'_{o}, B_{o}, B'_{o}, B_{o}, B'_{o}, B'_{o}$	1	1
	113	$B'_e, B_e, B'_e, B_e,, B'_e, B_e, B'_e$		
		c, c,-e,-e,-e,-e,-e,-e,-e,-e,-e,-e,-e,-e,-e,	0	1
3	$A_3^{\prime\prime}$	$B'_{o}, B_{o}, B'_{o}, B_{o}, B'_{o}, B'_{o}, B'_{o}$		
		$B'_{e}, B_{e}, B'_{e}, B_{e}, B'_{e}, B'_{e}$		Ω C^3

Table 6. Vertex labeling and edge of $P_k \odot C_{n,4r}^3$

subcase (3-1): if $n = i \pmod{4}$, where i = 0,1,2,3.

The next table (7) illustrate the labeling of the Cone $C_{n,4r}^3$.

i	labeling of cone $C_{n,4r}^3$	y_0	y_1	b_0	b_1
0	$B_e = F'_{4t}; L'_{8r}$ $B'_e = F'_{4t}; 1L'_{8r-8}N'_40_21$ $B_o = F'_{4t}; S_{8r}Q'_4$	4r + 2t $4r + 2t + 2$	4r + 2t $4r + 2t$ $4r + 2t + 2$		
1	$B'_{O} = F'_{4t}; 101_{2}L'_{8r-8}N'_{4}0_{2}10$ $B_{e} = F'_{4t}0; L'_{8r}$ $B'_{e} = F'_{4t}0; 1L'_{8r-8}N'_{4}0_{2}1$ $B_{o} = F'_{4t}0; S_{8r}Q'_{4}$	4r + 2t + 1 4r + 2t + 1 4r + 2t + 3	4r + 2t $4r + 2t + 2$	16r + 16rt - 3 $16r + 16rt - 2$ $16r + 16rt + 8t + 5$	
2	$B'_o = F'_{4t}0; 101_2L'_{8r-8}N'_40_210$ $B_e = F'_{4t}01; L'_{8r}$ $B'_e = F'_{4t}01; 1L'_{8r-8}N'_40_21$ $B_o = F'_{4t}01; S_{8r}Q'_4$ $B'_o = F'_{4t}01; 101_2L'_{8r-8}N'_40_210$	4r + 2t + 1 4r + 2t + 1 4r + 2t + 3	4r + 2t + 2 4r + 2t + 1 4r + 2t + 1 4r + 2t + 3 4r + 2t + 3	20r + 16rt - 3 $20r + 16rt - 2$ $20r + 16rt + 8t + 7$	$ \begin{array}{r} 16r + 16rt + 8t + 5 \\ 20r + 16rt - 2 \\ 20r + 16rt - 3 \\ 20r + 16rt + 8t + 8 \\ 20r + 16rt + 8t + 7 \end{array} $
3	$B_e = F'_{4t}010; L'_{8r}$ $B'_e = F'_{4t}010; 1L'_{8r-8}N'_40_21$ $B_o = F'_{4t}010; S_{8r}Q'_4$ $B'_o = F'_{4t}010; 101_2L_{8r-8}N'_40_210$	4r + 2t + 2 $4r + 2t + 4$	4r + 2t + 1 $4r + 2t + 3$	24r + 16rt - 3 $24r + 16rt - 2$ $24r + 16rt + 8t + 9$ $24r + 16rt + 8t + 10$	24r + 16rt - 2 $24r + 16rt - 3$ $24r + 16rt + 8t + 10$ $24r + 16rt + 8t + 9$

Table 7. Vertex labeling and edge of a cone $C_{n,4r}^3$.

By using table (2), we study the cordiality of $P_3 \odot C_{n,4r}^3$.

i	P_k	$C_{n,4s}^3$	$v_0 - v_1$	$e_0 - e_1$
0	P_1	$B_o' \ B_e'$	1	1
1	P_1'	B'_e B'_o B'_e	0	0
2	P_1	B'_e B'_o B'_o	1	1
3	P_1'	B' _e B' _o B' _e	0	0
0	P_2	B'_{o}, B'_{o} B'_{e}, B'_{e}	0	1
1	P'' ₂	B_o', B_o'	0	1
2	P ₂	B'_e, B'_e B'_o, B'_o	0	1
3	P'' ₂	B'_e, B'_e B'_o, B'_o	0	1
0	P_2	B'_e, B'_e B'_o, B'_o, B'_o	1	1
0	1 3	B_e, B_e, B_e'		0
1	$P_3^{\prime\prime\prime}$	$B'_{o}, B'_{o}, B'_{o} B'_{e}, B'_{e}, B'_{e}$	0	0
2	P_3	<i>σ</i> _e , <i>σ</i> _e , <i>σ</i> _e	1	1

		B'_{o}, B'_{o}, B'_{o} B'_{e}, B'_{e}, B'_{e}		
3	$P_3^{\prime\prime\prime}$	B'_{o}, B'_{o}, B'_{o} B'_{e}, B'_{e}, B'_{e}	0	0
		B'_{e}, B'_{e}, B'_{e}		

Table 8. Vertex labeling and edge of $P_k \odot C_{n,4r}^3$.

By using table (3), we study the cordiality of $P_k \odot C_{n,4r+j}^3$ when k = i (mode) 4 where i = 0,1,2,3.

i	P_k	$C_{n,4s}^3$	$v_0 - v_1$	$e_0 - e_1$
0	A_0'	$B'_{o}, B'_{o}, B'_{o}, B'_{o}$ $B'_{e}, B'_{e}, B'_{e}, B'_{e}$	0	1
1	$A_0^{\prime\prime}$	$B'_{e}, B'_{e}, B'_{e}, B'_{e}, B'_{e}$ $B'_{o}, B'_{o}, B_{o}, B_{o}$ $B'_{e}, B'_{e}, B_{e}, B_{e}$ $B'_{o}, B'_{o}, B'_{o}, B'_{o}$	0	1
2	A_0'	$B'_{o}, B'_{o}, B'_{o}, B'_{o}$ $B'_{e}, B'_{e}, B'_{e}, B'_{e}$	0	1
3	$A_0^{\prime\prime}$	$B'_o, B'_o, B_o, B_o \dots$	0	1
0	A_1'	$B'_{e}, B'_{e}, B_{e}, B_{e}, \dots$ $B'_{o}, B'_{o}, B'_{o}, B'_{o}, \dots, B'_{o}$ $B'_{e}, B'_{e}, B'_{e}, B'_{e}, \dots, B'_{e}$	1	1
1	$A_1^{\prime\prime}$	$B_o, B'_o, B_o, B'_o, B_o$ $B_e, B'_e, B_e, B'_e, B_e$	0	0
2	A_1'	$B'_{o}, B'_{o}, B'_{o}, B'_{o},, B'_{o}$ $B'_{e}, B'_{e}, B'_{e}, B'_{e},, B'_{e}$	1	1
3	$A_1^{\prime\prime}$	B'_o , B'_o , B_o , B_o , B_o	0	0
0	A_2'	$B'_{e}, B'_{e}, B_{e}, B_{e}, \dots, B_{e}$ $B'_{o}, B'_{o}, B'_{o}, B'_{o}, \dots, B'_{o}, B'_{o}$ $B'_{e}, B'_{e}, B'_{e}, B'_{e}, \dots, B'_{e}, B'_{e}$	0	1
1	$A_2^{\prime\prime}$	$B'_e, B'_e, B'_e, B'_e,, B'_e, B'_e$ $B'_o, B'_o, B_o, B_o,, B_o, B'_o$ $B'_e, B'_e, B_e, B_e,, B_e, B'_e$	0	-1
2	A_2'	$B'_{e}, B'_{e}, B_{e}, B_{e}, \dots, B_{e}, B'_{e}$ $B'_{o}, B'_{o}, B'_{o}, B'_{o}, \dots, B'_{o}, B'_{o}$ $B'_{e}, B'_{e}, B'_{e}, B'_{e}, \dots, B'_{e}, B'_{e}$	0	1
3	$A_2^{\prime\prime}$	$B'_{o}, B'_{o}, B_{o}, B_{o}, \dots, B'_{o}, B_{o}$ $B'_{e}, B'_{e}, B_{e}, B_{e}, \dots, B'_{e}, B_{e}$	0	-1
0	A_3'	$B'_{o}, B'_{o}, B'_{o}, B'_{o}, \dots, B'_{o}, B'_{o}, B'_{o}$ $B'_{e}, B'_{e}, B'_{e}, B'_{e}, \dots, B'_{e}, B'_{e}, B'_{e}$	1	1
1	$A_3^{\prime\prime}$	$B'_{o}, B_{o}, B'_{o}, B_{o}, \dots, B'_{o}, B_{o}, B'_{o}$ $B'_{e}, B_{e}, B'_{e}, B_{e}, \dots, B'_{e}, B_{e}, B'_{e}$	0	1
2	A_3'	$B'_{o}, B'_{o}, B'_{o}, B'_{o}, \dots, B'_{o}, B'_{o}, B'_{o}$ $B'_{e}, B'_{e}, B'_{e}, B'_{e}, \dots, B'_{e}, B'_{e}, B'_{e}$	1	1
3	$A_3^{\prime\prime}$	$B'_{o}, B_{o}, B'_{o}, B'_{o}, B_{o}, \dots, B'_{o}, B_{o}, B'_{o}$ $B'_{e}, B_{e}, B'_{e}, B_{e}, \dots, B'_{e}, B_{e}, B'_{e}$	0	1

Table 9. Vertex labeling and edge of $P_k \odot C_{n,4r}^3$

Lemma 3.2 $P_k \odot C_{n,m}^3$ is cordial, $m \equiv 1 \pmod{4}$, i.e. m = 4r + 1, except at r = 1. **subcase (3-2-1):** if n = 1,2,3.

The next table (10) illustrate the labeling of the Cone $C_{n,4r+1}^3$.

n	labeling of cone $C_{n,4r+1}^3$	y_0	y_1	b_0	b_1
1	$\begin{split} B_e^1 &= 0; L_{8r}' 1 \\ B_e^{1\prime} &= 0; L_{8r-8}N_4 1 N_4' \\ B_o^1 &= 0; 1_2 L_{8r}' 0_2 1 \\ B_o^{1\prime} &= 0; 1_2 L_{8r-8}' N_4' 0 N_4 1 0 \end{split}$	4r + 1 $4r + 3$	4r + 1 $4r + 3$	16r - 1 $16r$ $16r + 7$ $16r + 8$	16r $16r - 1$ $16r + 8$ $16r + 7$
2	$B_e^1 = 01; L_{8r}1$ $B_o^1 = 01; 1_2 L_{8r} 0_2 1$		4r + 2 $4r + 4$	20r $20r + 10$	20r $20r + 10$
3	$\begin{split} B_e^1 &= 010; L_{8r}'1 \\ B_e^{1'} &= 010; L_{8r-8}N_41N_4' \\ B_o^1 &= 010; 1_2L_{8r}'0_21 \\ B_o^{1'} &= 010; 1_2L_{8r-8}'N_4'0N_410 \end{split}$	4r + 2 $4r + 4$	4s + 2 $4s + 4$	24r 24r + 1 24r + 12 24r + 13	24r + 13

Table 10. Vertex labeling and edge of a cone $C_{n,4r+1}^3$.

By using table (2), we study the coordiality of $P_k \odot C_{n,4r+1}^3$, where k=1,2,3.

n	p_k	$C_{n,4r+1}^3$	$v_0 - v_1$	$e_0 - e_1$
1	P_1	$B_o^{1\prime}$ $B_e^{1\prime}$ $B_o^{1\prime}$	1	1
2	P_1	$B_o^{1\prime}$ $B_e^{1\prime}$	0	1
3	P_1	$B_e^{1'}$ $B_o^{1'}$ $B_e^{1'}$ $B_e^{1'}$	1	1
1	P_2	$B_o^{1'}, B_o^{1'}$ $B_e^{1'}, B_e^{1'}$	0	1
2	P_2'	$B_o^{1\prime}, B_o^{1\prime}$	0	-1
3	P_2	$B_e^{1'}, B_e^{1'} \ B_o^{1'}, B_o^{1'} \ B_e^{1'}, B_e^{1'}$	0	1
1	P_3	$B_o^{1'}, B_o^{1'}, B_o^{1'}$ $B_e^{1'}, B_e^{1'}, B_e^{1'}$	1	1
2	P_3'	$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}$	0	1
3	P_3	$B_e^{1'}, B_e^{1'}, B_e^{1'}$ $B_o^{1'}, B_o^{1'}, B_o^{1'}$ $B_e^{1'}, B_e^{1'}, B_e^{1'}$	1	1

Table 11. Vertex labeling and edge of $P_k \odot C_{n,4r+1}^3$.

By using table (3), we study the cordiality of $P_k \odot C_{n,4r+1}^3$ when $k = i (mode) 4 \ \forall i = 0,1,2,3$.

n	P_k	$C_{n,4s+1}^3$	$v_0 - v_1$	$e_0 - e_1$
		$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, \dots$	0	1
1	A'_0	$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}$		
		$B_o^1, B_o^1, B_o^1, B_o^1 \dots$	0	-1
2	A_0	$B_e^1, B_e^1, B_e^1, B_e^1 \dots$		
		$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, \dots$	0	1
3	A_0'	$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}$		

_				
		$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, \dots, B_o^{1\prime}$	1	1
1	A_1'	$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, \dots, B_e^{1\prime}$		
		$B_o^1, B_o^1, B_o^1, B_o^1, \dots, B_o^1$	0	-1
2	A_1	$B_e^1, B_e^1, B_e^1, B_e^1, \dots, B_e^1$		
		$B_o^{1\prime}, B_o^1, B_o^{1\prime}, B_o^{1\prime}, \dots, B_o^{1\prime}$	1	1
3	A_1'	$B_e^{1\prime}, B_e^1, B_e^{1\prime}, B_e^{1\prime},, B_e^{1\prime}$		
		$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime},, B_o^{1\prime}, B_o^{1\prime}$	0	1
1	A_2'	$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, \dots, B_e^{1\prime}, B_e^{1\prime}$		
		$B_o^1, B_o^1, B_o^1, B_o^1, \dots, B_o^1, B_o^1$	0	-1
2	A_2	$B_e^1, B_e^1, B_e^1, B_e^1, \dots, B_e^1, B_e^1$		
		$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, \dots, B_o^{1\prime}, B_o^{1\prime}$	0	1
3	A_2'	$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, \dots, B_e^{1\prime}, B_e^{1\prime}$		
			1	1
1	A_3'	$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, \dots, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}$		
		$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, \dots, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}$		
	4	$B_o^1, B_o^1, B_o^1, B_o^1, \dots, B_o^1, B_o^1, B_o^1$	0	-1
2	A_3	$B_e^1, B_e^1, B_e^1, B_e^1, \dots, B_e^1, B_e^1, B_e^1$		
	.,	51, 51, 51, 51, 51, 51, 51,	1	1
3	A_3'	$B_0^{1\prime}, B_0^{1\prime}, B_0^{1\prime}, B_0^{1\prime}, \dots, B_0^{1\prime}, B_0^{1\prime}, B_0^{1\prime}$		
		$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime},, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}$		

Table 12. Vertex labeling and edge of $P_k \odot C_{n,4r+1}^3$

subcase (3-2-2): if $n = i \pmod{4}$, where i = 0,1,2,3.

The next table (2.4) illustrate the labeling of the Cone $C_{n,4r+1}^3$.

n	labeling of cone $C_{n,4r+1}^3$	y_0	y_1	b_0	b_1
0	$B_e^1 = F'_{4t}; L'_{8r} 1 B_o^1 = F'_{4t}; 1_2 L'_{8r} 0_2 1$			12r + 16rt + 2t + 1 12r + 16rt + 10t + 5	12r + 16rt + 2t + 1 $12r + 16rt + 10t + 5$
1	$ B_e^1 = F'_{4t}0; L'_{8r}1 $ $ B_e^{1\prime} = F'_{4t}0; L_{8r-8}N_41N'_4 $ $ B_o^1 = F'_{4t}0; 1_2L'_{8r}0_21 $ $ B_o^{1\prime} = F'_{4t}0; 1_2L'_{8r-8}N'_40N_410 $	4r + 2t + 1 $4r + 2t + 3$	4r + 2t + 1 $4r + 2t + 3$	16r + 16rt + 2t - 1 $16r + 16rt + 2t$ $16r + 16rt + 10t + 7$ $16r + 16rt + 10t + 8$	
2	$B_e^1 = F_{4t}' 10; L_{8r}' 1$ $B_o^1 = F_{4t}' 10; 1_2 L_{8r}' 0_2 1$			20r + 16rt + 2t 20r + 16rt + 10t + 10	20r + 16rt + 2t $20r + 16rt + +10t + 10t$
3	$B_e^1 = F'_{4t}010; L'_{8r}1$ $B_e^{1'} = F'_{4t}010; L_{8r-8}N_41N'_4$ $B_o^1 = F'_{4t}010; 1_2L'_{8r}0_21$ $B_o^{1'} = F'_{4t}010; 1_2L'_{8r-8}N'_40N_410$	4r + 2t + 2 $4r + 2t + 4$	4r + 2t + 2 $4r + 2t + 4$	24r + 16rt + 2t $24r + 16rt + 2t + 1$ $24r + 16rt + 10t - 13$ $24r + 16rt + 10t - 12$	

Table 13. Vertex labeling and edge of a cone $C_{n,4r+1}^3$.

By using table (2), we study the coordiality of $P_k \odot C_{n,4r+1}^3$, where k=1,2,3.

i	P_k	$C_{n,4r+1}^3$	$v_0 - v_1$	$e_0 - e_1$
		$B_o^{1\prime}$	0	1
0	p_1	$B_o^{1\prime} \ B_e^{1\prime}$		
		$B_o^{1\prime}$ $B_e^{1\prime}$	1	1
1	P_1	$B_e^{1\prime}$		

		n1/	_	4
		$B_o^{1\prime}$	0	1
2	P_1	$B_e^{1\prime}$		
		$B_o^{1\prime}$	1	1
3	P_1		•	•
	11	$B_e^{1'}$		
		B_o^1 , B_o^1	0	-1
0	P_2'	B_e^1 , B_e^1		
		$B_o^{1'}, B_o^{1'}$	0	1
1	P_2	$B_e^1, B_e^{1\prime}$		
		B_o^1, B_o^1	0	-1
2	P_2'		Ü	-
-	- 2	B_e^1, B_e^1 $B_o^{1'}, B_o^{1'}$	0	4
	_		0	-1
3	P_2	$B_e^{1\prime}, B_e^{1\prime}$		
			0	1
0	P_3'	B_0^1, B_0^1, B_0^1		
		B_e^1, B_e^1, B_e^1		
		D_e , D_e , D_e	1	1
1	D	$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}$	1	1
1	P_3			
		$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}$		
			0	1
2	P_3'	B_o^1, B_o^1, B_o^1		
	5	B_e^1, B_e^1, B_e^1		
		D_e, D_e, D_e	1	1
,	ח	D1/ D1/ D1/	1	1
3	P_3			
		$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}$		

Table 14. Vertex labeling and edge of $P_k \odot C_{n,4r+1}^3$.

By using table (3), we study the cordiality of $P_k \odot C_{n,4r+1}^3$ when $k = i \pmod{4}$ where i = 0,1,2,3.

_				
i	P_k	$C_{n,4s+1}^3$	$v_0 - v_1$	$e_0 - e_1$
0	A_0	$B_o^1, B_o^1, B_o^1, B_o^1, \dots$ $B_o^1, B_o^1, B_o^1, B_o^1, \dots$	0	-1
1	A'_0	$B_e^1, B_e^1, B_e^1, B_e^1 \dots B_o^{1'}, B_o^{1'}, B_o^{1'}, B_o^{1'} \dots B_o^{1'}, B_o^{1'}, B_o^{1'}, B_o^{1'} \dots$	0	1
2	A_0	$B_e^{1'}, B_e^{1'}, B_e^{1'}, B_e^{1'}, B_e^{1'} \dots$ $B_o^1, B_o^1, B_o^1, B_o^1, B_o^1 \dots$	0	-1
3		$B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \dots$ $B_{o}^{1\prime}, B_{o}^{1\prime}, B_{o}^{1\prime}, B_{o}^{1\prime} \dots$	0	1
	A' ₀	$B_e^{1'}, B_e^{1'}, B_e^{1'}, B_e^{1'}, B_e^{1'} \dots$ $B_o^1, B_o^1, B_o^1, B_o^1, \dots, B_o^1$	0	1
0	A_1	$B_e^1, B_e^1, B_e^1, B_e^1, \dots, B_e^1$ $B_o^{1'}, B_o^{1'}, B_o^{1'}, B_o^{1'}, \dots, B_o^{1'}$	1	1
1	A_1'	$B_e^{1'}, B_e^{1'}, B_e^{1'}, B_e^{1'}, B_e^{1'}, \dots, B_e^{1'}$ $B_o^1, B_o^1, B_o^1, B_o^1, \dots, B_o^1$	0	-1
2	A_1	$B_e^1, B_e^1, B_e^1, B_e^1, \dots, B_e^1$ $B_o^{1'}, B_o^{1'}, B_o^{1'}, B_o^{1'}, B_o^{1'}, \dots, B_o^{1'}$	1	1
3	A_1'	$B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, \dots, B_{e}^{1}$ $B_{0}^{1}, B_{0}^{1}, B_{0}^{1}, B_{0}^{1}, \dots, B_{0}^{1}, B_{0}^{1}$	1	1
0	A_2		0	-1
1	A_2'	$B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, \dots, B_{e}^{1}, B_{e}^{1}$ $B_{o}^{1\prime}, B_{o}^{1\prime}, B_{o}^{1\prime}, B_{o}^{1\prime}, \dots, B_{o}^{1\prime}, B_{o}^{1\prime}$ $B_{e}^{1\prime}, B_{e}^{1\prime}, B_{e}^{1\prime}, B_{e}^{1\prime}, \dots, B_{e}^{1\prime}, B_{e}^{1\prime}$	0	1
2	A_2	$B_o^1, B_o^1, B_o^1, B_o^1, \dots, B_o^1, B_o^1$	0	-1
		$B_e^1, B_e^1, B_e^1, B_e^1, \dots, B_e^1, B_e^1$ $B_o^{1'}, B_o^{1'}, B_o^{1'}, B_o^{1'}, \dots, B_o^{1'}, B_o^{1'}$	0	1
3	A_2'	$B_e^{1\prime}$, $B_e^{1\prime}$, $B_e^{1\prime}$, $B_e^{1\prime}$, $B_e^{1\prime}$		

0	A_3	$B_o^1, B_o^1, B_o^1, B_o^1, B_o^1, \dots, B_o^1, B_o^1, B_o^1$ $B_e^1, B_e^1, B_e^1, B_e^1, \dots, B_e^1, B_e^1, B_e^1$	0	-1
1	A_3'	$B_o^{1\prime}, B_o^1, B_o^{1\prime}, B_o^{1\prime},, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}$	1	1
		$B_e^{1\prime}, B_e^{1}, B_e^{1\prime}, B_e^{1\prime},, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}$		
		$B_o^1, B_o^1, B_o^1, B_o^1, \dots, B_o^1, B_o^1, B_o^1$	0	-1
2	A_3	$B_e^1, B_e^1, B_e^1, B_e^1,, B_e^1, B_e^1, B_e^1$		
			1	1
3	A_3'	$B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}, \dots, B_o^{1\prime}, B_o^{1\prime}, B_o^{1\prime}$		
		$B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}, \dots, B_e^{1\prime}, B_e^{1\prime}, B_e^{1\prime}$		

Table 15. Vertex labeling and edge of $P_k \odot C_{n,4r+1}^3$

Lemma 3.3 $P_k \odot C_{n,m}^3$, $m \equiv 2 \pmod{4}$, i.e. m = 4r + 2 then is cordial, except at r = 1. **subcase (3-3-1):** if n = 1,2,3.

The next table (16) illustrate the labeling of the Cone $C_{n,4r+2}^3$.

n	labeling of cone $C_{n,4r+2}^3$	y_0	y_1	b_0	b_1
1	$B_e^2 = 0; L'_{8r}01$ $B_e^{2'} = 0; 1_2 L'_{8r-8} N'_4 010_2$ $B_o^2 = 0; 1 L'_{8r} N'_4 0$ $B_o^{2'} = 0; 1 L_{8r-8} 0 N_4$	4r + 2 $4r + 4$	4r + 1 $4r + 3$	$ \begin{array}{r} 16r + 1 \\ 16r + 2 \\ 16r + 9 \\ 16r + 10 \end{array} $	
2	$B_e^2 = 01; L'_{8r}01$ $B_e^2' = 01; 1_2 L'_{8r-8} N'_4 010_2$ $B_o^2 = 01; 1L'_{8r} N'_4 0$ $B_O^{2'} = 01; 1L_{8r-8} 0N_4$	4r + 2 $4r + 4$	4r + 2 $4r + 4$		
3	$B_e^2 = 010; L'_{8r}01$ $B_e^{2'} = 010; 1_2L'_{8r-8}N'_4010_2$ $B_o^2 = 010; 1L'_{8r}N'_40$ $B_O^{2'} = 010; 1L_{8r-8}0N_4$	4r + 3 4r + 5	4r + 2 $4r + 4$		

Table 16. Vertex labeling and edge of a cone $C_{n,4r+2}^3$.

By using table (2), we study the coordiality of $P_k \odot C_{n,4r+2}^3$, where k=1,2,3.

n	P_k	$C_{n,4r+2}^3$	$v_0 - v_1$	$e_0 - e_1$
1	P_1'	$B_o^{2\prime}$ $B_e^{2\prime}$	0	0
2	P_1	$B_o^{2\prime} \ B_e^{2\prime}$	1	1
3	P_1'	$B_o^{2\prime} \ B_e^{2\prime}$	0	0
1	$P_2^{\prime\prime}$	$B_o^{2'}, B_o^{2'}$ $B_e^{2'}, B_e^{2'}$	0	1

2	P_2	$B_o^{2\prime}, B_o^{2\prime} B_e^{2\prime}, B_e^{2\prime}$	0	1
3	$P_2^{\prime\prime}$	$B_o^{2'}, B_o^{2'}$ $B_e^{2'}, B_e^{2'}$	0	1
1	P''_3	$B_o^{2'}, B_o^{2'}, B_o^2$ $B_e^{2'}, B_e^{2'}, B_e^2$	0	0
2	P_3	$B_o^{2'}, B_o^{2'}, B_o^{2'}$ $B_e^{2'}, B_e^{2'}, B_e^{2'}$	1	1
3	$P_3^{\prime\prime}$	$B_o^{2\prime}, B_o^{2\prime}, B_o^2$ $B_e^{2\prime}, B_e^{2\prime}, B_e^2$	0	0

Table 17. Vertex labeling and edge of $P_3 \odot C_{n,4r+2}^3$.

By using table (3), we study the cordiality of $P_k \odot C_{n,4r+2}^3$ when $k=i (mode) 4 \ \forall i=0,1,2,3$.

				1
n	P_k	$C_{n,4s+2}^3$	$v_0 - v_1$	$e_0 - e_1$
1	$A_0^{\prime\prime}$	$B_o^{2'}, B_o^{2'}, B_o^2, B_o^2 \dots$ $B_o^{2'}, B_o^{2'}, B_o^2, B_o^2 \dots$	0	-1
2	A'_0	$B_e^{2'}, B_e^{2'}, B_e^2, B_e^2$ $B_0^{2'}, B_0^{2'}, B_0^{2'}, B_0^{2'}$ $B_0^{2'}, B_0^{2'}, B_0^{2'}, B_0^{2'}$	0	1
3	A'' ₀	$B_e^{2'}, B_e^{2'}, B_e^{2'}, B_e^{2'}, \dots$ $B_o^{2'}, B_o^{2'}, B_o^{2}, B_o^{2}, \dots$	0	-1
1	A'' ₁	$B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2}$ $B_{o}^{2'}, B_{o}^{2'}, B_{o}^{2}, B_{o}^{2}, B_{o}^{2'}$ $B_{o}^{2'}, B_{o}^{2'}, B_{o}^{2}, B_{o}^{2}, B_{o}^{2'}$	0	0
2	$A_1^{\prime\prime\prime}$	$B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2}, B_{e}^{2}, \dots, B_{e}^{2'}$ $B_{o}^{2'}, B_{o}^{2}, B_{o}^{2'}, B_{o}^{2}, \dots, B_{o}^{2'}$	1	1
	-	$B_e^{2'}, B_e^2, B_e^{2'}, B_e^2 \dots, B_e^{2'}$ $B_o^{2'}, B_o^2, B_o^{2'}, B_o^2 \dots, B_o^{2'}$	0	0
3	A''	$B_e^{2\prime}, B_e^2, B_e^{2\prime}, B_e^2, \dots, B_e^{2\prime}$ $B_o^{2\prime}, B_o^{2\prime}, B_o^2, B_o^2, \dots, B_o^2, B_o^{2\prime}$	0	-1
1	$A_2^{\prime\prime}$	$B_e^{2'}, B_e^{2'}, B_e^2, B_e^2, \dots, B_e^2, B_e^{2'}$ $B_o^2, B_o^2, B_o^{2'}, B_o^{2'}, \dots, B_o^{2'}, B_o^2$	0	1
2	$A_2^{\prime\prime\prime}$	$B_e^2, B_e^2, B_e^{2'}, B_e^{2'}, \dots, B_e^{2'}, B_e^2$ $B_0^{2'}, B_0^{2'}, B_0^{2}, B_0^{2}, \dots, B_0^{2'}, B_0^{2}$	0	-1
3	$A_2^{\prime\prime}$	$B_e^{2'}, B_e^{2'}, B_e^2, B_e^2, \dots, B_e^{2'}, B_e^2$	0	0
1	$A_3^{\prime\prime}$	$B_o^{2\prime}, B_o^{2\prime}, B_o^2, B_o^2, \dots, B_o^{2\prime}, B_o^2, B_o^{2\prime}$ $B_e^{2\prime}, B_e^{2\prime}, B_e^2, B_e^2, \dots, B_e^{2\prime}, B_e^2, B_e^{2\prime}$	O	o
2	$A_3^{\prime\prime\prime}$	$B_o^{2'}, B_o^{2'}, B_o^2, B_o^2, \dots, B_o^{2'}, B_o^2, B_o^{2'}$ $B_e^{2'}, B_e^{2'}, B_e^2, B_e^2, B_e^2, \dots, B_e^{2'}, B_e^2, B_e^2'$	1	1
3	$A_3^{\prime\prime}$	$B_o^{2\prime}, B_o^2, B_o^{2\prime}, B_o^2, \dots, B_o^{2\prime}, B_o^2, B_o^{2\prime}$	0	0
		$B_e^{2\prime}, B_e^2, B_e^{2\prime}, B_e^2, \dots, B_e^{2\prime}, B_e^2, B_e^{2\prime}$		

Table 18. Vertex labeling and edge of $P_k \odot C_{n,4r+2}^3$

subcase (3-3-2): if $n = i \pmod{4}$, where i = 0,1,2,3.

The next table (19) illustrate the labeling of the Cone $C_{n,4r+2}^3$.

n	labeling of cone $C_{n,4r+2}^3$	y_0	y_1	b_0	b_1
0	$B_e^2 = F_{4t}'; L_{8r}' 01$ $B_e^2' = F_{4t}'; 1_2 L_{8r-8}' N_4' 010_2$ $B_o^2 = F_{4t}'; 1L_{8r}' N_4' 0$ $B_0^2' = F_{4t}'; 1L_{8r-8}' 0N_4$	4r + 2t + 1 $4r + 2t + 3$	4r + 2t + 1 $4r + 2t + 3$	12r + 16rt + 4t $12r + 16rt + 4t + 1$ $12r + 16rt + 12t + 6$ $12r + 16rt + 12t + 7$	12r + 16rt + 4t + 1 $12r + 16rt + 4t$ $12r + 16rt + 12t + 7$ $12r + 16rt + 12t + 6$
1	$B_e^2 = F'_{4t}0; L'_{8r}01$ $B_e^{2'} = F'_{4t}0; 1_2L'_{8r-8}N'_4010_2$ $B_o^2 = F'_{4t}0; 1L'_{8r}N'_40$ $B_0^{2'} = F'_{4t}0; 1L_{8r-8}0N_4$	4r + 2t + 2 $4r + 2t + 4$	4r + 2t + 1 $4r + 2t + 3$	16r + 16rt + 4t + 1 $16r + 16rt + 4t + 2$ $16r + 16rt + 12t + 9$ $16r + 16rt + 12t + 10$	16r + 16rt + 4t + 2 $16r + 16rt + 4t + 1$ $16r + 16rt + 12t + 10$ $16r + 16rt + 12t + 9$
2	$B_e^2 = F'_{4t}01; L'_{8r}01$ $B_e^2' = F'_{4t}01; 1_2L'_{8r-8}N'_4010_2$ $B_o^2 = F'_{4t}01; 1L_{8r}N'_40$ $B_0^2' = F'_{4t}01; 1L_{8r-8}0N_4$	4r + 2t + 2 $4r + 2t + 4$	4r + 2t + 2 $4r + 2t + 4$	20r + 16rt + 4t + 2 $20r + 16rt + 4t + 3$ $20r + 16rt + 12t + 12$ $20r + 16rt + 12t + 13$	
3	$B_e^2 = F'_{4t}010; L'_{8r}01$ $B_e^2' = F'_{4t}010; 1_2L'_{8r-8}N'_4010_2$ $B_o^2 = F'_{4t}010; 1L'_{8r}N'_40$ $B_o^2' = F'_{4t}010; 1L_{8r-8}0N_4$	4r + 2t + 3 $4r + 2t + 5$	4r + 2t + 2 $4r + 2t + 4$	24r + 16rt + 4t + 3 $24r + 16rt + 4t + 4$ $24r + 16rt + 12t + 15$ $24r + 16rt + 12t + 16$	

Table 19. Vertex labeling and edge of a cone $C_{n,4r+2}^3$.

By using table (2), we study the coodiality of $P_k \odot C_{n,4r+2}^3$.

i	p_k	$C_{n,4r+2}^3$	$v_0 - v_1$	$e_0 - e_1$
0	P_1	$B_o^{2'} \ B_e^{2'} \ B_o^{2'}$	1	1
1	P_1'	$B_o^{2\prime}$ $B_e^{2\prime}$	0	0
2	P_1	$B_e^{2\prime}$ $B_o^{2\prime}$ $B_o^{2\prime}$	1	1
3	P_1'	$B_e^{2'}$ $B_o^{2'}$ $B_e^{2'}$	0	0
0	P_2	$B_o^{2\prime}$, $B_o^{2\prime}$	0	1
1	P''	$B_e^{2'}, B_e^{2'}$ $B_o^{2'}, B_o^{2'}$ $B_o^{2'}, B_o^{2'}$	0	1
2	P_2	$B_e^{2'}, B_e^{2'}$ $B_o^{2'}, B_o^{2'}$ $B_o^{2'}, B_o^{2'}$	0	1
3	P''	$B_e^{2'}, B_e^{2'}$ $B_o^{2'}, B_o^{2'}$ $B_e^{2'}, B_e^{2'}$	0	1
0	P_3	$B_e^{2'}, B_e^{2'}, B_e^{2'}$ $B_e^{2'}, B_e^{2'}, B_e^{2'}$	1	1
1	$P_3^{\prime\prime}$	$B_o^2, B_o^{2'}, B_o^{2'}$ $B_e^2, B_e^{2'}, B_e^{2'}$	0	0
2	P_3	$B_o^{2'}, B_o^{2'}, B_o^{2'}$ $B_e^{2'}, B_e^{2'}, B_e^{2'}$	1	1
			0	0

3	$P_{2}^{\prime\prime}$	$B_o^{2\prime}$, $B_o^{2\prime}$, B_o^2	
	3	$B_e^{2\prime}, B_e^{2\prime}, B_e^2$	

Table 20. Vertex labeling and edge of $P_k \odot C_{n,4r+2}^3$.

By using table (3), we study the cordiality of $p_k \odot C_{n,4r+2}^3$ when $k = i \pmod{4}$ where i = 0,1,2,3.

i	p_k	$C_{n,4r+2}^{3}$	$v_0 - v_1$	$e_0 - e_1$
0	A_0'	$B_o^{2'}, B_o^{2'}, B_o^{2'}, B_o^{2'} \dots$ $B_e^{2'}, B_e^{2'}, B_e^{2'}, B_e^{2'} \dots$ $B_o^{2'}, B_o^{2'}, B_o^{2}, B_o^{2} \dots$	0	1
1	$A_0^{\prime\prime}$	$B_{o}^{2'}, B_{o}^{2'}, B_{o}^{2}, B_{o}^{2} \dots$ $B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2} \dots$ $B_{o}^{2'}, B_{o}^{2'}, B_{o}^{2'}, B_{o}^{2'} \dots$	0	-1
2	A_0'	$B_o^{2'}, B_o^{2'}, B_o^{2'}, B_o^{2'}$ $B_e^{2'}, B_e^{2'}, B_e^{2'}, B_e^{2'}$ $B_o^{2'}, B_o^{2'}, B_o^{2}, B_o^{2}$	0	1
3	$A_0^{\prime\prime}$		0	-1
0	$A_1^{\prime\prime\prime}$	$B_e^{2'}, B_e^{2'}, B_e^2, B_e^2 \dots$ $B_o^{2'}, B_o^{2'}, B_o^2, B_o^2 \dots, B_o^{2'}$ $B_e^{2'}, B_e^{2'}, B_e^2, B_e^2 \dots, B_e^{2'}$	1	1
1	$A_1^{\prime\prime}$	$B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2}, B_{e}^{2}, \dots, B_{e}^{2'}$ $B_{o}^{2'}, B_{o}^{2'}, B_{o}^{2}, B_{o}^{2}, \dots, B_{o}^{2'}$ $B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2}, \dots, B_{e}^{2'}$	0	0
2	$A_1^{\prime\prime\prime}$	$B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2}, B_{e}^{2}, \dots, B_{e}^{2'}$ $B_{o}^{2'}, B_{o}^{2'}, B_{o}^{2}, B_{o}^{2}, \dots, B_{o}^{2'}$ $B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2}, \dots, B_{e}^{2'}$	1	1
3	$A_1^{\prime\prime}$	$B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2}, B_{e}^{2}, \dots, B_{e}^{2'}$ $B_{o}^{2'}, B_{o}^{2'}, B_{o}^{2}, B_{o}^{2}, \dots, B_{o}^{2'}$ $B_{e}^{2'}, B_{e}^{2'}, B_{e}^{2}, B_{e}^{2}, \dots, B_{e}^{2'}$	0	0
0	$A_2^{\prime\prime\prime}$	$B_e^{2'}, B_e^{2'}, B_e^2, B_e^2,, B_e^{2'}$ $B_o^{2'}, B_o^2, B_o^{2'}, B_o^2,, B_o^{2'}, B_o^2$ $B_e^2, B_e^2, B_e^{2'}, B_e^2,, B_e^{2'}, B_e^2$	0	1
1	$A_2^{\prime\prime}$	$B_e^2, B_e^2, B_e^{2\prime}, B_e^2, \dots, B_e^{2\prime}, B_e^2$ $B_o^{2\prime}, B_o^{2\prime}, B_o^2, B_o^2, \dots, B_o^{2\prime}, B_o^2$ $B_e^{2\prime}, B_e^{2\prime}, B_e^2, B_e^2, \dots, B_e^{2\prime}, B_e^2$	0	-1
2	$A_2^{\prime\prime\prime}$	$B_e^{2'}, B_e^{2'}, B_e^{2}, B_e^{2}, B_e^{2}, \dots, B_e^{2'}, B_e^{2}$ $B_o^{2}, B_o^{2'}, B_o^{2}, B_o^{2'}, \dots, B_o^{2'}, B_o^{2}$ $B_e^{2}, B_e^{2'}, B_e^{2}, B_e^{2'}, \dots, B_e^{2'}, B_e^{2}$	0	1
3	$A_2^{\prime\prime}$	$B_e^2, B_e^{2'}, B_e^2, B_e^{2'}, \dots, B_e^{2'}, B_e^2$ $B_o^{2'}, B_o^{2'}, B_o^2, B_o^2, \dots, B_o^{2'}, B_o^2$ $B_e^{2'}, B_e^{2'}, B_e^2, B_e^2, \dots, B_e^{2'}, B_e^2$	0	-1
0	A'''	$B_e^{2\prime}, B_e^{2\prime}, B_e^{2\prime}, B_e^{2}, B_e^{2}, \dots, B_e^{2\prime}, B_e^{2}$ $B_o^{2\prime}, B_o^{2\prime}, B_o^{2\prime}, B_o^{2\prime}, B_o^{2\prime}, B_o^{2\prime}, B_o^{2\prime}, B_o^{2\prime}, B_e^{2\prime}, B_e$	1	1
1	$A_3^{\prime\prime}$	$B_o^{2'}, B_o^2, B_o^{2'}, B_o^2, \dots, B_o^{2'}, B_o^2, B_o^{2'}$ $B_e^{2'}, B_e^2, B_e^{2'}, B_e^2, \dots, B_e^{2'}, B_e^2, B_e^{2'}$	0	0
2	A'''	$\begin{array}{c} B_e^{2\prime}, B_e^2, B_e^{2\prime}, B_e^2 \dots, B_e^{2\prime}, B_e^2, B_e^{2\prime} \\ B_o^{2\prime}, B_o^2, B_o^2, B_o^{2\prime} \dots, B_o^{2\prime}, B_o^{2\prime}, B_o^{2\prime} \\ B_e^{2\prime}, B_e^2, B_e^2, B_e^{2\prime} \dots, B_e^{2\prime}, B_e^{2\prime}, B_e^{2\prime} \end{array}$	1	1
3	A''	$\begin{array}{l} B_e^{2\prime}, B_e^2, B_e^2, B_e^{2\prime}, \dots, B_e^{2\prime}, B_e^2, B_e^{2\prime} \\ B_o^{2\prime}, B_o^2, B_o^{2\prime}, B_o^2, \dots, B_o^{2\prime}, B_o^2, B_o^{2\prime} \\ B_e^{2\prime}, B_e^2, B_e^{2\prime}, B_e^2, \dots, B_e^{2\prime}, B_e^2, B_e^{2\prime} \end{array}$	0	0

Table 21. Vertex labeling and edge of $p_k \odot C_{n,4r+2}^3$

Lemma 3.4 $P_k \odot C_{n,4s+3}^3$, $m \equiv 3 \pmod{4}$, i.e m = 4r + 3 is cordial.

subcase (3-4-1): if n = 1,2,3.

The next table (22) illustrate the labeling of the Cone $C_{n,4r+3}^3$.

1	$B_o^3 = 0; 01_2 L'_{8r-8} N'_4$ $B_o^{3'} = 0; 0L_{8r-8} N_4 1_2$	4r 4r	4r 4r	16r – 5 16r – 4	16r - 4 $16r - 5$
2	$B_o^3 = 01; 01_2 L'_{8r-8} N'_4$ $B_e^3 = 01; 1_2 L'_{8r} 0$	$4r \\ 4r + 2$	4r + 1 $4r + 3$	20r - 5 20r + 5	20r - 5 20r + 5
3	$B_o^3 = 010; 01_2 L'_{8r-8} N'_4 B_o^{3'} = 010; 0L_{8r-8} N_4 1_2$	4r + 1 $4r + 1$	4r + 1 $4r + 1$	24r - 6 24r - 5	24r - 5 24r - 6

Table 22. Vertex labeling and edge of a cone $C_{n,4r+3}^3$.

By using table (2), we study the coordiality of $P_k \odot C_{n,4r+3}^3$, where k=1,2,3.

n	P_k	$C_{n,4r+3}^3$	$v_{0} - v_{1}$	$e_0 - e_1$
1	P_1	B_o^3 B_e^3	1	-1
2	P_1	B_{e}^{3} B_{e}^{3} B_{o}^{3} B_{e}^{3} B_{o}^{3} B_{e}^{3}	0	-1
3	P_1	B_o^3 B_e^3	1	-1
1	P_2	$B_o^{3'}, B_o^{3'}$	0	1
2	P_2'	$B_o^{3'}, B_o^{3'}$ B_o^{3}, B_o^{3} B_e^{3}, B_e^{3}	0	-1
3	P_2	$B_0^{3\prime}, B_0^{3\prime}$	0	1
1	P_3	$B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}$	1	1
2	P_3'	$B_o^{3'}, B_o^{3'}, B_o^{3'}$ $B_o^{3}, B_o^{3}, B_o^{3}$ $B_e^{2}, B_e^{2}, B_e^{2}$ $B_o^{3'}, B_o^{3'}, B_o^{3'}$	0	-1
3	P_3	$B_o^{3'}, B_o^{3'}, B_o^{3'}$	1	1

Table 23. Vertex labeling and edge of $P_k \odot C_{n,4r+3}^3$.

By using table (3), we study the cordiality of $P_k \odot C_{n,4r+3}^3$ when $k = i (mode) 4 \ \forall i = 0,1,2,3$.

n	P_k	$C_{n,4s+3}^3$	$v_0 - v_1$	$e_0 - e_1$
1	A_0'	$B_0^{3'}, B_0^{3'}, B_0^{3'}, B_0^{3'} \dots$	0	1
2	A_0	$B_0^3, B_0^3, B_0^3, B_0^3 \dots$ $B_e^3, B_e^3, B_e^3, B_e^3 \dots$	0	-1
3	A_0'	$B_o^{3\prime}$, $B_o^{3\prime}$, $B_o^{3\prime}$, $B_o^{3\prime}$	0	1
1	A_1'	$B_0^{3\prime}, B_0^{3\prime}, B_0^{3\prime}, B_0^{3\prime}, \dots, B_0^{3\prime}$	1	1
2	A_1	$B_o^3, B_o^3, B_o^3, B_o^3, \dots, B_o^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3$	0	-1
3	A_1'	$B_0^{3\prime}, B_0^{3\prime}, B_0^{3\prime}, B_0^{3\prime}, \dots, B_0^{3\prime}$	1	1
1	A_2'	$B_0^{3\prime}, B_0^{3\prime}, B_0^{3\prime}, B_0^{3\prime}, \dots, B_0^{3\prime}, B_0^{3\prime}$	0	1
2	A_2	$B_0^3, B_0^3, B_0^3, B_0^3, \dots, B_0^3, B_0^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3, B_e^3$	0	-1
3	A_2'	$B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, \dots, B_o^{3\prime}, B_o^{3\prime}$	0	1
1	A_3'	$B_o^{3\prime}, B_o^{3\prime}, B_o^3, B_o^3, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}$	1	1

2	A_3	$B_o^3, B_o^3, B_o^3, B_o^3, \dots, B_o^3, B_o^3, B_o^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3, B_e^3, B_e^3$	0	-1
3	A_3'	$B_o^{3'}, B_o^3, B_o^{3'}, B_o^{3'},, B_o^{3'}, B_o^{3'}, B_o^{3'}$	1	1

Table 24. Vertex labeling and edge of $P_k \odot C_{n,4s+3}^3$

subcase (3-4-2): if $n = i \pmod{4}$, where i = 0,1,2,3.

The next table (25) illustrate the labeling of the Cone $C_{n,4r+3}^3$.

n	labeling of cone $C_{n,4r+3}^3$	y_0	y_1	b_0	b_1
0	$B_o^3 = F'_{4t}; 01_2 L'_{8r-8} N'_4$ $B_e^3 = F'_{4t}; 1_2 L'_{8r} 0$	4r + 2t - 1 $4r + 2t + 1$			12r + 16rt - 2t - 4 12r + 16rt + 6t + 2
1	$B_o^3 = F'_{4t}0; 01_2L'_{8r-8}N'_4$ $B_o^{3'} = F_{4t}0; 0L_{8r-8}N_41_2$	4r + 2t $4r + 2t$	4r + 2t $4r + 2t$		16r + 16rt - 2t - 4 $16r + 16rt - 2t - 5$
2	$B_o^3 = F'_{4t}01; 01_2L'_{8r-8}N_4$ $B_e^3 = F'_{4t}01; 1_2L'_{8r}0$	4r + 2t + 2	4r + 2t + 3	20r + 16rt + 6t + 5	20r + 16rt - 2t - 5 $20r + 16rt + 6t + 5$
3	$B_o^3 = F_{4t}' 010; 01_2 L_{8r-8}' N_4$ $B_o^{3t} = F_{4t}' 010; 0L_{8r-8} N_4 1_2$	4r + 2t + 1 $4r + 2t + 1$	4r + 2t + 1 $4r + 2t + 1$	24r + 16rt - 2t - 6 $24r + 16rt - 2t - 5$	24r + 16rt - 2t - 5 $24r + 16rt - 2t - 6$

Table 25. Vertex labeling and edge of a cone $C_{n,4r+3}^3$.

By using table (2), we study the coordiality of $P_k \odot C_{n,4r+3}^3$, where k=1,2,3.

i	P_k	$C_{n,4r+3}^3$	$v_0 - v_1$	e_0-e_1
0	P_1	B_o^3 B_e^3	0	-1
1	P_1	B_o^3 B_e^3	1	-1
2	P_1	B_o^3 B_e^3	0	-1
3	P_1	$B_o^3 \\ B_o^3$	1	-1
0	P_2'	$B_o^3, B_o^3 B_e^3, B_e^3$	0	-1
1	P_3	$B_o^{3'}, B_o^{3'}$	0	1
2	P_2'	$B_o^3, B_o^3 B_e^3, B_e^3$	0	-1
3	P_2	$B_o^{3'}, B_o^{3'}$	0	1
0	P_3'	B_o^3, B_o^3, B_o^3 B_e^3, B_e^3, B_e^3	0	-1
1	P_3	$B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}$	1	1

2	P_3'	B_o^3, B_o^3, B_o^3 B_e^3, B_e^3, B_e^3	0	-1
3	P_3	$B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}$	1	1

Table 26. Vertex and edge of $P_k \odot C_{n,4r+3}^3$.

By using table (3), we study the cordiality of $P_k \odot C_{n,4r+3}^3$ when k = i (mode) 4 where i = 0,1,2,3.

i	P_k	$C_{n,4r+3}^3$	$v_0 - v_1$	$e_0 - e_1$
0	A_0	$B_o^3, B_o^3, B_o^3, B_o^3 \dots$ $B_e^3, B_e^3, B_e^3, B_e^3 \dots$	0	-1
1	A_0'	$B_o^{3'}, B_o^{3'}, B_o^{3'}, B_o^{3'} \dots$	0	1
2	A_0	$B_o^3, B_o^3, B_o^3, B_o^3 \dots$ $B_e^3, B_e^3, B_e^3, B_e^3 \dots$	0	-1
3	A_0'	$B_o^{3'}, B_o^{3'}, B_o^{3'}, B_o^{3'} \dots$	0	1
0	A_1	$B_o^3, B_o^3, B_o^3, B_o^3, \dots, B_o^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3$	0	-1
1	A_1'	$B_o^{3'}, B_o^{3'}, B_o^{3'}, B_o^{3'}, \dots, B_o^{3'}$	1	1
2	A_1	$B_o^3, B_o^3, B_o^3, B_o^3, \dots, B_o^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3$	0	-1
3	A_1'	$B_o^{3'}, B_o^{3'}, B_o^{3'}, B_o^{3'}, \dots, B_o^{3'}$	1	1
0	A_2	$B_o^3, B_o^3, B_o^3, B_o^3, \dots, B_o^3, B_o^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3, B_e^3$	0	-1
1	A_2'	$B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime},, B_o^{3\prime}, B_o^{3\prime}$	0	1
2	A_2	$B_o^3, B_o^3, B_o^3, B_o^3, \dots, B_o^3, B_o^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3, B_e^3$	0	-1
3	A_2'	$B_o^{3'}, B_o^{3'}, B_o^{3'}, B_o^{3'}, \dots, B_o^{3'}, B_o^3$	0	1
0	A_3	$B_o^3, B_o^3, B_o^3, B_o^3, \dots, B_o^3, B_o^3, B_o^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3, B_e^3, B_e^3$	0	-1
1	A_3'	$B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, \dots, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}$	1	1
2	A_3	$B_o^3, B_o^3, B_o^3, B_o^3, \dots, B_o^2, B_o^3, B_o^3$ $B_e^3, B_e^3, B_e^3, B_e^3, \dots, B_e^3, B_e^3, B_e^3$	0	-1
3	A_3'	$B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}, \dots, B_o^{3\prime}, B_o^{3\prime}, B_o^{3\prime}$	1	1
Table 27. Vertex and edge of $P_k \odot C_{-4}^3$				

Table 27. Vertex and edge of $P_k \odot C_{n,4r+3}^3$.

As As a consequence of the previous Lemmasss one can establish the following theorem.

Theorem 3.1. The corona Product between paths and a third power of Cone graphs denoted by $P_k \odot C_{n,m}^3$ for all k, m, n are cordial.

4. Conclusion

This article is evidence for the presence of labeling for the corona Product between paths and a third power of Cone graphs. It was inspiring to investigate the cordiality of the corona Product between paths and a third power of Cone graphs. This labeling can be extended to various types of graphs and examined in the future.

References

- [1] A.Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris, (1967), pp. 349-355.
- [2] B.D. Acharya, S.M.Hegde, Arithmetic Graphs, J. Graph Theory, 14, (3), (1990), pp. 275–299.
- [3] I.Cahit, Cordial Graphs: A weaker version of graceful and harmonious Graphs, Ars Combinatoria, 23, (1987), pp. 201-207.
- [4] I.Cahit, On cordial and 3-eqtitable labeling of graphs, Utiliuies Math, 37, (1990).
- [5] I.Cahit, On cordial labeling of the second power of paths with other graphs, ARS Combinatoria, 97A, (2010), pp.327-343.
- [6] Josephm.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, DS6, (2017).
- [7] S.Freeda, S.R.Chellathurai, H_1 and H_2 cordial labeling of some graphs, Open J. Discrete Math, 2, (2012), pp 149 155.
- [8] S.I.Nada, A.T,Diab, A.Elrokh, and D.E.Sabra, The corona between paths and cycles, Ars Combin, 139 (2018)269-281.
- [9] V.Yegnanarayanan and P.Vaidhyanathan, "Some interesting applications of graph labellings, Journal of Mathematical and Computational Science, 2, no. 5, (2012), pp. 1522–1531...
- [10] ELrokh, A., Ali Al-Shamiri, M. M., Nada, S., & El-hay, A. A. (2022). Cordial and Total Cordial Labeling of Corona Product of Paths and Second Order of Lemniscate Graphs. Journal of Mathematics, 2022.
- [11] Badr, E., Nada, S., Ali Al-Shamiri, M. M., Abdel-Hay, A., & ELrokh, A. (2022). A novel mathematical model for radio mean square labeling problem. Journal of Mathematics, 2022.
- [12] ELrokh, A., Ali Al-Shamiri, M. M., & El-hay, A. (2022). A Novel Problem to Solve the Logically Labeling of Corona between Paths and Cycles. Journal of Mathematics, 2022.
- [13] Badr, E., Abd El-hay, A., Ahmed, H., & Moussa, M. (2021). Polynomial, exponential and approximate algorithms for metric dimension problem. Mathematical Combinatorics, 2, 51-67.