A NOVEL PROBLEM FOR SOLVING CORDIAL LABELING OF CORONA PRODUCT BETWEEN PATH AND THIRD ORDER OF CONE GRAPHS

A. Elrokh ${ }^{\text {a }}$, M. M. Ali Al-shamiri ${ }^{\text {b }}$, Atef Abd El-hay ${ }^{\text {c }}$
${ }^{\text {a }}$ Dept. of Math., Faculty of Science, Menoufia University, Shebeen Elkom, Egypt.
${ }^{\text {b }}$ Dept.of Math, Faculty of Science and Art, Muharyl Asser ,King khalid University, Abha, Saudi Arabia.
${ }^{\text {b }}$ Department of Mathematics and Computer, Faculty of Science, Ibb University, Ibb, Yemen
${ }^{\text {c }}$ Computer science dep. Higher Institute of Computers and Information Technology, Shorouk Academy.
E mail address: a ashraf.hefnawy68@yahoo.com, ${ }^{\text {b }}$ mal-shamiri@kku.edu.sa and ${ }^{\text {catef_1992@ yahoo.com }}$ Article History: Do not touch during review process(xxxx)

Abstract

A simple graph is said to be cordial if it admits 0-1 labeling that satisfies certain conditions. In this paper we investigate necessary and sufficient conditions for cordial labeling of the corona Product between path and third order of cone graphs.

Keywords: Path, Cone, Third power of graph, Corona Product, Cordial labeling.

1. Introduction

Let G be a graph with p vertices and q edges. All graphs considered here are simple, finite, connected and undirected. A labeling of a graph G is a process of allocating numbers or labels to the nodes of G or lines of G or both through mathematical functions [2]. There are several types of labeling and a complete survey of graph labeling is available in [6]. Graph theory has a good development in the graph labeling and has a broad range of applications which reported in the work of Yegnanaryanan and Vaidhyanathan [9]. Cordial labeling is a weaker version of graceful labeling and harmonious labeling introduced by Cahit in [3]. Based on this labeling, more papers published in cordial labeling such as mean cordial labeling, H_{1} - and H_{2}-cordial labeling of some graphs [7]. In 1990, Chait [4], proved the following: each tree is cordial; an Euerlian graph is not cordial if its size is congruent to $2(\bmod 4)$; a complete graph K_{n} is cordial if and only if $n \leq 3$ and a complete bipartite graph $K_{n, m}$ is cordial for all positive integers n and m. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} (with n_{1} vertices , m_{1} edges) and G_{2} (with n_{2} vertices, m_{2} edges) is defined as the graph obtained by taking one copy of G_{1} and copies of G_{2}, and then joining the $i^{t h}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}. It is easy to see that the corona $G_{1} \odot G_{2}$ that has $n_{1}+n_{1} n_{2}$ vertices and $m_{1}+n_{1} m_{2}+n_{1} n_{2}$ edges. We will give brief summary of definitions which are useful for the present investigations.
Definition 1. A mapping $f: V \rightarrow\{0,1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f. If for an edge $e=u v$, the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ is given by $f^{*}(e)=$ $|f(u)-f(v)|$, where $u, v \in V$. Let $v_{f}(i)$ be the numbers of vertices of G labeled i under f, and $e_{f}(i)$ be the numbers of edges of G labeled i under f^{*} where $i \in\{0,1\}$.
Definition 2. Binary vertex labeling of a graph G is called cordial if $\left|\left(v_{f}\right)_{0}-\left(v_{f}\right)_{1}\right| \leq 1$ and $\left|\left(e_{f}\right)_{0}-\left(e_{f}\right)_{1}\right| \leq$ 1. A graph G is called Cordial if it admits cordial labeling.

Definition 3. The cone graph is the join between Null graph N_{n} and a cycles C_{m} denoted by $C_{n, m}$
Definition 4. The third power of a cone denoted by $C_{n, m}^{3}$, is $C_{n, m} \cup J$, where J is the set of all edges of the form edges $v_{i} v_{j}$ such that $2 \leq d\left(v_{i} v_{j}\right) \leq 3$ and $i<j$ where $d\left(v_{i} v_{j}\right)$ is the shortest path from v_{i} to v_{j}.

2. Terminologies and Notations

we can use these symbols of labeling as follows

$L_{8 s}^{\prime}$	$11000011 \ldots(\mathrm{~s}-$ time $) 11000011$
$L_{8 s}$	$00111100 \ldots(\mathrm{~s}-$ time $) 00111100$

$S_{8 S}^{\prime}$	$01101001 \ldots(\mathrm{~s}-$ time $) 01101001$
$S_{8 S}$	$10010110 \ldots(\mathrm{~s}-$ time $) 10010110$
$M_{8 S}^{\prime}$	$01011010 \ldots(\mathrm{~s}-$ time $) 01011010$
$M_{8 S}$	$10100101 \ldots(\mathrm{~s}-$ time $) 10100101$
$N_{4 r}^{\prime}$	$1100 \ldots .(\mathrm{s}-$ time $) 1100$
$N_{8 S}$	$0011 \ldots(\mathrm{~s}-$ time $) 0011$
$F_{4 s}^{\prime}$	$0101 \ldots(\mathrm{~s}-$ time $) 0101$
$F_{4 s}$	$1010 \ldots(\mathrm{~s}-$ time $) 1010$
$Q_{4 s}^{\prime}$	$1001 \ldots(\mathrm{~s}-$ time $) 1001$
$Q_{4 s}$	$0110 \ldots(\mathrm{~s}-$ time $) 0110$

Table 1. The symbols of labeling.

Suppose that $A_{a}, A_{a}^{\prime}, A_{a}^{\prime \prime}$ and $A_{a}^{\prime \prime \prime}$ is a collection of labeling of a cycle c_{k} where $k=a(\bmod 4)$ and for the special p_{k} we choose the labeling $C_{k}, C_{k}^{\prime}, C_{k}^{\prime \prime}$ and $C_{k}^{\prime \prime \prime}$, where $k=1,2,3$.

Suppose that $j=0,1,2,3$. let B_{0}^{j} meaning the labeling of $C_{n, 4 r+j}^{3}$ where r is odd and B_{e}^{j} meaning the labeling of $C_{n, 4 r+j}^{3}$ where r is even.

If L is a labeling for a path P_{k} and M is a labeling for third power of cone $C_{n, m}^{3}$, then we use the notation $[L ; M]$ to represent the labeling of the corona $P_{k} \odot C_{n, m}^{3}$. Additional notation that we use is the following: for a given labeling of the corona $P_{k} \odot C_{n, m}^{3}$, we let v_{i} and e_{i} (for $i=0,1$) be the numbers of vertices and edges, respectively, that are labeled by i of the corona $P_{k} \odot C_{n, m}^{3}$, and let x_{i} and a_{i} be the corresponding quantities for P_{k}, and we let y_{i} and b_{i} be those for $C_{n, m}^{3}$. It is easy to verify that $v_{0}=x_{0}+k y_{0}, v_{1}=x_{1}+k y_{1}, e_{0}=a_{0}+k b_{0}+x_{0} y_{0}+x_{1} y_{1}$ and $e_{1}=a_{1}+k b_{1}+x_{0} y_{1}+x_{1} y_{0}$. Thus, $v_{0}-v_{1}=\left(x_{0}-x_{1}\right)+k\left(y_{0}-y_{1}\right)+$ and $e_{0}-e_{1}=\left(a_{0}-a_{1}\right)+$ $k\left(b_{0}-b_{1}\right)++\left(x_{0}-x_{1}\right)\left(y_{0}-y_{1}\right)$. When it comes to the proof, we only need to show that, for each specified combination of labeling, $\left|v_{0}-v_{1}\right| \leq 1$ and $\left|e_{0}-e_{1}\right| \leq 1$.

3. Main result

In this section we study the necessary and sufficient condition of the cordial labeling of a corona between paths and a third power of Cone graphs denoted by $P_{k} \odot C_{n, m}^{3}$ for all k, m, n.
the next table illustrate the vertex and edges of the path P_{k} where $k=1,2,3$

P_{k} $k=1,2,3$	x_{0}	x_{1}	a_{0}	a_{1}
$P_{1}=0$	1	0	0	0
$P_{1}^{\prime}=1$	0	1	0	0
$P_{2}=01$	1	1	0	1
$P_{2}^{\prime}=0_{2}$	2	0	1	0
$P_{2}^{\prime \prime}=1_{2}$	0	2	1	0
$P_{3}=010$	2	1	0	2
$P_{3}^{\prime}=0_{3}$	3	0	2	0
$P_{3}^{\prime \prime}=1_{3}$	0	3	2	0
$P_{3}^{\prime \prime}=0_{2} 1$	2	1	1	1
$P_{3}^{\prime \prime \prime}=1_{2} 0$	1	2	1	1

Table 2. Vertex labeling and edges of a path. P_{k}
the next table illustrate the vertex and edges of a path P_{k} where $k \equiv i(\bmod 4)$ i.e. $k=4 s+i, \forall i=$ 0,1,2,3.

$\begin{gathered} P_{k} \\ k \equiv i(\bmod 4) \\ i=0,1,2,3 \end{gathered}$	x_{0}	x_{1}	a_{0}	a_{1}
$\begin{aligned} & A_{0}=0_{4 s} \\ & A_{0}^{\prime}=F_{4 s}^{\prime} \\ & A_{0}^{\prime \prime}=1_{4 s} \\ & A_{0}^{\prime \prime \prime}=N_{4 s} \end{aligned}$	$\begin{aligned} & 4 s \\ & 2 s \\ & 0 \\ & 2 s \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 2 s \\ & 4 s \\ & 2 s \end{aligned}$	$\begin{aligned} & 4 s-1 \\ & 0 \\ & 4 s-1 \\ & 2 s \end{aligned}$	$\begin{aligned} & 0 \\ & 4 s-1 \\ & 0 \\ & 2 s-1 \end{aligned}$
$\begin{aligned} & A_{1}=0_{4 s} 0 \\ & A_{1}^{\prime}=F_{4 s}^{\prime} 0 \\ & A_{1}^{\prime \prime}=1_{4 s} 1 \\ & A_{1}^{\prime \prime \prime}={ }_{4 s} 0 \end{aligned}$	$\begin{aligned} & 4 s+1 \\ & 2 s+1 \\ & 0 \\ & 2 s+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 s \\ & 4 s+1 \\ & 2 s \end{aligned}$	$\begin{aligned} & 4 s \\ & 0 \\ & 4 s \\ & 2 s \end{aligned}$	0 $4 s$ 0 $2 s$
$\begin{aligned} & A_{2}=0_{4 s} 0_{2} \\ & A_{2}^{\prime}=F_{4 s}^{\prime} 01 \\ & A_{2}^{\prime \prime}=1_{4 s} 1_{2} \\ & A_{2}^{\prime \prime \prime}=N_{4 s} 10 \end{aligned}$	$\begin{aligned} & 4 s+2 \\ & 2 s+1 \\ & 0 \\ & 2 s+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 s+1 \\ & 4 s+2 \\ & 2 s+1 \end{aligned}$	$\begin{aligned} & 4 s+1 \\ & 0 \\ & 4 s+1 \\ & 2 s \end{aligned}$	$\begin{aligned} & 0 \\ & 4 s+1 \\ & 0 \\ & 4 s \end{aligned}$
$\begin{aligned} & A_{3}=0_{4 s} 0_{3} \\ & A_{3}^{\prime}=F_{4 s}^{\prime} 010 \\ & A_{3}^{\prime \prime}=1_{4 s} 1_{3} \\ & A_{3}^{\prime \prime \prime}=N_{4 s} 0_{2} 1 \end{aligned}$	$\begin{aligned} & 4 s+3 \\ & 2 s+2 \\ & 0 \\ & 2 s+2 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 s+1 \\ & 4 s+3 \\ & 2 s+1 \end{aligned}$	$\begin{aligned} & 4 s+2 \\ & 0 \\ & 4 s+2 \\ & 2 s+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 4 s+2 \\ & 0 \\ & 2 s+1 \end{aligned}$

Taple 3. Vertex labeling and edge of a path. P_{k} where $k \equiv i(\bmod 4) \forall i=0,1,2,3$

Lemma 3.1 $P_{k} \odot C_{n, 4 r}^{3}, m \equiv 0(\bmod 4)$ is cordial , for all $r>1$.
The next table (4) illustrate the labeling of the Cone $C_{n, 4 r}^{3}, n=1,2,3$.

n	labeling of cone $C_{n, 4 r}^{3}$	y_{0}	y_{1}	b_{0}	b_{1}
1	$\begin{aligned} & B_{e}=0 ; L_{8 r}^{\prime} \\ & B_{e}^{\prime}=0 ; 1 L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 1 \\ & B_{o}=0 ; S_{8 r} Q_{4}^{\prime} \\ & B_{O}^{\prime}=0 ; 101_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 10 \end{aligned}$	$\begin{aligned} & 4 r \\ & 4 r+1 \\ & 4 r+2 \\ & 4 r+3 \end{aligned}$	$\begin{aligned} & 4 r+1 \\ & 4 r \\ & 4 r+3 \\ & 4 r+2 \end{aligned}$	$\begin{aligned} & 16 r-3 \\ & 16 r-2 \\ & 16 r+5 \\ & 16 r+6 \end{aligned}$	$\begin{aligned} & 16 r-2 \\ & 16 r-3 \\ & 16 r+6 \\ & 16 r+5 \end{aligned}$
2	$\begin{aligned} & B_{e}=01 ; L_{8 r}^{\prime} \\ & B_{e}^{\prime}=01 ; 1 L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 1 \\ & B_{o}=01 ; S_{8 r} Q_{4}^{\prime} \\ & B_{o}^{\prime}=01 ; 101_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 10 \end{aligned}$	$\begin{aligned} & 4 r+1 \\ & 4 r+1 \\ & 4 r+3 \\ & 4 r+3 \end{aligned}$	$\begin{aligned} & 4 r+1 \\ & 4 r+1 \\ & 4 r+3 \\ & 4 r+3 \end{aligned}$	$\begin{aligned} & 20 r-3 \\ & 20 r-2 \\ & 20 r+7 \\ & 20 r+8 \end{aligned}$	$\begin{aligned} & 20 r-2 \\ & 20 r-3 \\ & 20 r+8 \\ & 20 r+7 \end{aligned}$
3	$\begin{aligned} B_{e} & =010 ; L_{8 r}^{\prime} \\ B_{e}^{\prime} & =010 ; 1 L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 1 \\ B_{o} & =010 ; S_{8 r} Q_{4}^{\prime} \\ B_{o}^{\prime} & =010 ; 101_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 10 \end{aligned}$	$\begin{aligned} & 4 r+2 \\ & 4 r+1 \\ & 4 r+3 \\ & 4 r+4 \end{aligned}$	$\begin{aligned} & 4 r+1 \\ & 4 r+2 \\ & 4 r+4 \\ & 4 r+3 \end{aligned}$	$\begin{aligned} & 24 r-3 \\ & 24 r-2 \\ & 24 r+9 \\ & 24 r+10 \end{aligned}$	$\begin{aligned} & 24 r-2 \\ & 24 r-3 \\ & 24 r+10 \\ & 24 r+9 \end{aligned}$

Table 4. Vertex labeling and edge of a cone $C_{n, 4 r}^{3}, n=1,2,3$.

By using table (2), we study the cordiality of $P_{k} \odot C_{n, 4 r}^{3}$, where $k=1,2,3$.

n	p_{k}	$C_{n, 4 r}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
1	P_{1}^{\prime}	B_{o}^{\prime} B_{e}^{\prime}	0	0
2	P_{1}	B_{o}^{\prime} B_{e}^{\prime}	1	1
3	P_{1}^{\prime}	B_{o}^{\prime} B_{e}^{\prime}	0	0
1	$P^{\prime \prime}{ }_{2}$	$B_{o}^{\prime}, B_{o}^{\prime}$ $B_{e}^{\prime}, B_{e}^{\prime}$	0	-1
2	P_{2}	$B_{o}^{\prime}, B_{o}^{\prime}$ $B_{e}^{\prime}, B_{e}^{\prime}$	0	1
3	$P_{2}^{\prime \prime}$	$B_{o}^{\prime}, B_{o}^{\prime}$ $B_{e}^{\prime}, B_{e}^{\prime}$	0	-1
1	$P_{3}^{\prime \prime \prime \prime}$	$B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}$ $B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}$	0	0
2	P_{3}	$B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}$ $B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}$	1	1
3	$B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}$ $B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}$	0	0	

Table 5. Vertex labeling and edge of $P_{k} \odot C_{n, 4 r}^{3}, n=1,2,3$.

By using table (3), we study the cordiality of $P_{k} \odot C_{n, 4 r}^{3}$ when $k=i(\operatorname{mode}) 4 \forall i=0,1,2,3$.

n	P_{k}	$C_{n, 4 s}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
1	$A_{0}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots \end{aligned}$	0	1
2	A_{0}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots \end{aligned}$	0	1
3	$A_{0}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots \end{aligned}$	0	1
1	$A_{1}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots, B_{o} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots, B_{e} \end{aligned}$	0	0
2	A_{1}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots, B_{e}^{\prime} \end{aligned}$	1	1
3	$A_{1}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots, B_{o} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots, B_{e} \end{aligned}$	0	0
1	$A_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots, B_{o}^{\prime}, B_{o} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots, B_{e}^{\prime}, B_{e} \end{aligned}$	0	-1
2	A_{2}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots, B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots, B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	0	-1
3	$A_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots, B_{o}^{\prime}, B_{o} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots, B_{e}^{\prime}, B_{e} \end{aligned}$	0	-1
1	$A_{3}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots, B_{o}^{\prime}, B_{o}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots, B_{e}^{\prime}, B_{e}, B_{e}^{\prime} \end{aligned}$	0	-1
2	A_{3}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}, B_{o}^{\prime}, B_{o} \ldots, B_{o}^{\prime}, B_{o}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}, B_{e}^{\prime}, B_{e} \ldots, B_{e}^{\prime}, B_{e}, B_{e}^{\prime} \end{aligned}$	1	1
3	$A_{3}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}, B_{o}^{\prime}, B_{o} \ldots, B_{o}^{\prime}, B_{o}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}, B_{e}^{\prime}, B_{e} \ldots, B_{e}^{\prime}, B_{e}, B_{e}^{\prime} \\ & \hline \end{aligned}$	0	1

Table 6. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{n, 4 r}^{3}$
subcase (3-1): if $n=i(\bmod 4)$, where $i=0,1,2,3$.
The next table (7) illustrate the labeling of the Cone $C_{n, 4 r}^{3}$.

i	labeling of cone $C_{n, 4 r}^{3}$	y_{0}	y_{1}	b_{0}	b_{1}
0	$B_{e}=F_{4 t}^{\prime} ; L_{8 r}^{\prime}$	$4 r+2 t$	$4 r+2 t$	$12 r+16 r t-3$	$12 r+16 r t-2$
	$B_{e}^{\prime}=F_{4 t}^{\prime} ; 1 L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 1$	$4 r+2 t$	$4 r+2 t$	$12+16 t-2$	$12 r+16 t-3$
	$B_{o}=F_{4 t}^{\prime} ; S_{8 r} Q_{4}^{\prime}$	$4 r+2 t+2$	$4 r+2 t+2$	$12 r+16 r t+8 t+3$	$12 r+16 r t+8 t+4$
	$B_{O}^{\prime}=F_{4 t}^{\prime} ; 101_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 10$	$4 r+2 t+2$	$4 r+2 t+2$	$12 r+16 r t+8 t+4$	$12 r+16 r t+8 t+3$
1	$B_{e}=F_{4 t}^{\prime} 0 ; L_{8 r}^{\prime}$	$4 r+2 t+1$	$4 r+2 t$	$16 r+16 r t-3$	$16 r+16 r t-2$
	$B_{e}^{\prime}=F_{4 t}^{\prime} 0 ; 1 L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 1$	$4 r+2 t+1$	$4 r+2 t$	$16 r+16 r t-2$	$16 r+16 r t-3$
	$B_{o}=F_{4 t}^{\prime} 0 ; S_{8 r} Q_{4}^{\prime}$	$4 r+2 t+3$	$4 r+2 t+2$	$16 r+16 r t+8 t+5$	$16 r+16 r t+8 t+6$
	$B_{o}^{\prime}=F_{4 t}^{\prime} 0 ; 101_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 10$	$4 r+2 t+3$	$4 r+2 t+2$	$16 r+16 r t+8 t+6$	$16 r+16 r t+8 t+5$
2	$B_{e}=F_{4 t}^{\prime} 01 ; L_{8 r}^{\prime}$	$4 r+2 t+1$	$4 r+2 t+1$	$20 r+16 r t-3$	$20 r+16 r t-2$
	$B_{e}^{\prime}=F_{4 t}^{\prime} 01 ; 1 L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 1$	$4 r+2 t+1$	$4 r+2 t+1$	$20 r+16 r t-2$	$20 r+16 r t-3$
	$B_{o}=F_{4 t}^{\prime} 01 ; S_{8 r} Q_{4}^{\prime}$	$4 r+2 t+3$	$4 r+2 t+3$	$20 r+16 r t+8 t+7$	$20 r+16 r t+8 t+8$
	$B_{o}^{\prime}=F_{4 t}^{\prime} 01 ; 101_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 10$	$4 r+2 t+3$	$4 r+2 t+3$	$20 r+16 r t+8 t+8$	$20 r+16 r t+8 t+7$
3	$B_{e}=F_{4 t}^{\prime} 010 ; L_{8 r}^{\prime}$	$4 r+2 t+2$	$4 r+2 t+1$	$24 r+16 r t-3$	$24 r+16 r t-2$
	$B_{e}^{\prime}=F_{4 t}^{\prime} 010 ; 1 L_{8 r-8}^{\prime} N_{4}^{\prime} 0_{2} 1$	$4 r+2 t+2$	$4 r+2 t+1$	$24 r+16 r t-2$	$24 r+16 r t-3$
	$B_{o}=F_{4 t}^{\prime} 010 ; S_{8 r} Q_{4}^{\prime}$	$4 r+2 t+4$	$4 r+2 t+3$	$24 r+16 r t+8 t+9$	$24 r+16 r t+8 t+10$
	$B_{o}^{\prime}=F_{4 t}^{\prime} 010 ; 101_{2} L_{8 r-8} N_{4}^{\prime} 0_{2} 10$	$4 r+2 t+4$	$4 r+2 t+3$	$24 r+16 r t+8 t+10$	$24 r+16 r t+8 t+9$

Table 7. Vertex labeling and edge of a cone $C_{n, 4 r}^{3}$.
By using table (2), we study the cordiality of $P_{3} \odot C_{n, 4 r}^{3}$.

i	P_{k}	$C_{n, 4 s}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
0	P_{1}	B_{o}^{\prime} B_{e}^{\prime}	1	1
1	P_{1}^{\prime}	$\begin{gathered} B_{o}^{\prime} \\ B_{e}^{\prime} \\ \hline \end{gathered}$	0	0
2	P_{1}	B_{o}^{\prime} B_{e}^{\prime}	1	1
3	P_{1}^{\prime}	$\begin{aligned} & B_{o}^{\prime} \\ & B_{e}^{\prime} \\ & \hline \end{aligned}$	0	0
0	P_{2}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	0	1
1	$P_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	0	1
2	P_{2}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	0	1
3	$P_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	0	1
0	P_{3}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \\ & \hline \end{aligned}$	1	1
1	$P_{3}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \\ & \hline \end{aligned}$	0	0
2	P_{3}		1	1

$\left.\begin{array}{|l|l|l|l|l|}\hline & & \begin{array}{c}B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \\ B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}\end{array} & & \\ \hline 3 & P_{3}^{\prime \prime \prime} & & 0 & 0 \\ B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} & 0 & \\ B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}\end{array}\right]$

Table 8. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{n, 4 r}^{3}$.

By using table (3), we study the cordiality of $P_{k} \odot C_{n, 4 r+j}^{3}$ when $k=i(\operatorname{mode}) 4$ where $i=0,1,2,3$.

i	P_{k}	$C_{n, 4 s}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
0	A_{0}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots \end{aligned}$	0	1
1	$A_{0}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots \end{aligned}$	0	1
2	A_{0}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots \end{aligned}$	0	1
3	$A_{0}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots \end{aligned}$	0	1
0	A_{1}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots, B_{e}^{\prime} \end{aligned}$	1	1
1	$A_{1}^{\prime \prime}$	$\begin{aligned} & B_{o}, B_{o}^{\prime}, B_{o}, B_{o}^{\prime} \ldots, B_{o} \\ & B_{e}, B_{e}^{\prime}, B_{e}, B_{e}^{\prime} \ldots, B_{e} \\ & \hline \end{aligned}$	0	0
2	A_{1}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots, B_{e}^{\prime} \end{aligned}$	1	1
3	$A_{1}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots, B_{o} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots, B_{e} \end{aligned}$	0	0
0	A_{2}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots, B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots, B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	0	1
1	$A_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots, B_{o}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots, B_{e}, B_{e}^{\prime} \end{aligned}$	0	-1
2	A_{2}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots, B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots, B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	0	1
3	$A_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}, B_{o} \ldots, B_{o}^{\prime}, B_{o} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}, B_{e} \ldots, B_{e}^{\prime}, B_{e} \end{aligned}$	0	-1
0	A_{3}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	1	1
1	$A_{3}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}, B_{o}^{\prime}, B_{o} \ldots, B_{o}^{\prime}, B_{o}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}, B_{e}^{\prime}, B_{e} \ldots, B_{e}^{\prime}, B_{e}, B_{e}^{\prime} \\ & \hline \end{aligned}$	0	1
2	A_{3}^{\prime}	$\begin{aligned} & B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \ldots, B_{o}^{\prime}, B_{o}^{\prime}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \ldots, B_{e}^{\prime}, B_{e}^{\prime}, B_{e}^{\prime} \end{aligned}$	1	1
3	$A_{3}^{\prime \prime}$	$\begin{aligned} & B_{o}^{\prime}, B_{o}, B_{o}^{\prime}, B_{o} \ldots, B_{o}^{\prime}, B_{o}, B_{o}^{\prime} \\ & B_{e}^{\prime}, B_{e}, B_{e}^{\prime}, B_{e} \ldots, B_{e}^{\prime}, B_{e}, B_{e}^{\prime} \end{aligned}$	0	1

Table 9. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{n, 4 r}^{3}$

Lemma 3.2 $P_{k} \odot C_{n, m}^{3}$ is cordial , $m \equiv 1(\bmod 4)$, i.e. $m=4 r+1$, except at $r=1$.
subcase (3-2-1): if $n=1,2,3$.
The next table (10) illustrate the labeling of the Cone $C_{n, 4 r+1}^{3}$.

n	labeling of cone $C_{n, 4 r+1}^{3}$	y_{0}	y_{1}	b_{0}	b_{1}
1	$\begin{aligned} & B_{e}^{1}=0 ; L_{8 r}^{\prime} 1 \\ & B_{e}^{1 \prime}=0 ; L_{8 r-8} N_{4} 1 N_{4}^{\prime} \\ & B_{o}^{1}=0 ; 1_{2} L_{8 r}^{\prime} 0_{2} 1 \\ & B_{O}^{1 \prime}=0 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0 N_{4} 10 \end{aligned}$	$\begin{aligned} & 4 r+1 \\ & 4 r+1 \\ & 4 r+3 \\ & 4 r+3 \end{aligned}$	$\begin{aligned} & 4 r+1 \\ & 4 r+1 \\ & 4 r+3 \\ & 4 r+3 \end{aligned}$	$\begin{aligned} & 16 r-1 \\ & 16 r \\ & 16 r+7 \\ & 16 r+8 \end{aligned}$	$\begin{aligned} & 16 r \\ & 16 r-1 \\ & 16 r+8 \\ & 16 r+7 \end{aligned}$
2	$\begin{aligned} & B_{e}^{1}=01 ; L_{8 r} 1 \\ & B_{o}^{1}=01 ; 1_{2} L_{8 r} 0_{2} 1 \end{aligned}$	$\begin{aligned} & 4 r+1 \\ & 4 r+3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 r+2 \\ & 4 r+4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 20 r \\ 20 r+10 \\ \hline \end{array}$	$\begin{aligned} & 20 r \\ & 20 r+10 \\ & \hline \end{aligned}$
3	$\begin{aligned} & B_{e}^{1}=010 ; L_{8 r}^{\prime} 1 \\ & B_{e}^{1 \prime}=010 ; L_{8 r-8} N_{4} 1 N_{4}^{\prime} \\ & B_{o}^{1}=010 ; 1_{2} L_{8 r}^{\prime} 0_{2} 1 \\ & B_{o}^{1 \prime}=010 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0 N_{4} 10 \end{aligned}$	$\begin{aligned} & 4 r+2 \\ & 4 r+2 \\ & 4 r+4 \\ & 4 r+4 \end{aligned}$	$\begin{aligned} & 4 s+2 \\ & 4 s+2 \\ & 4 s+4 \\ & 4 s+4 \end{aligned}$	$\begin{aligned} & 24 r \\ & 24 r+1 \\ & 24 r+12 \\ & 24 r+13 \end{aligned}$	$\begin{aligned} & 24 r+1 \\ & 24 r \\ & 24 r+13 \\ & 24 r+12 \end{aligned}$

Table 10. Vertex labeling and edge of a cone $C_{n, 4 r+1}^{3}$.
By using table (2), we study the cordiality of $P_{k} \odot C_{n, 4 r+1}^{3}$, where $k=1,2,3$.

n	p_{k}	$C_{n, 4 r+1}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
1	P_{1}	$B_{o}^{1 \prime}$ $B_{e}^{1 \prime}$	1	1
2	P_{1}	$B_{o}^{1 \prime}$ $B_{e}^{1 \prime}$	0	1
3	P_{1}	$B_{o}^{1 \prime}$ $B_{e}^{1 \prime}$	1	1
1	P_{2}	$B_{o}^{1 \prime}, B_{o}^{1 \prime}$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}$	0	1
2	P_{2}^{\prime}	$B_{o}^{1 \prime}, B_{o}^{1 \prime}$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}$	0	1
3	P_{2}	$B_{o}^{1 \prime}, B_{o}^{1 \prime}$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}$	0	1
1	P_{3}	$B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime}$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}$	1	1
2	$B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime}$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}$	0	1	
3	$B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime}$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}$	1	1	
	P_{3}^{\prime}		1	

Table 11. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{\boldsymbol{n}, 4 \boldsymbol{r}+\boldsymbol{1}}^{3}$.
By using table (3), we study the cordiality of $P_{k} \odot C_{n, 4 r+1}^{3}$ when $k=i(\operatorname{mode}) 4 \forall i=0,1,2,3$.

n	P_{k}	$C_{n, 4 s+1}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
1	A_{0}^{\prime}	$B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \ldots$	0	1
2	A_{0}	$B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots$ $B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots$	0	-1
3	A_{0}^{\prime}	$B_{o}^{11^{\prime}}, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \ldots$	0	1

1	A_{1}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots, B_{o}^{1 \prime} \\ & B_{e}^{1^{\prime}}, B_{e}^{1 \prime^{\prime}}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \ldots, B_{e}^{1 \prime} \end{aligned}$	1	1
2	A_{1}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1} \end{aligned}$	0	-1
3	A_{1}^{\prime}	$\begin{aligned} & B_{o}^{1^{1}}, B_{o}^{1}, B_{o}^{1{ }^{\prime}}, B_{o}^{1 \prime} \ldots, B_{o}^{1^{\prime \prime}} \\ & B_{e}^{1 \prime}, B_{e}^{1}, B_{e}^{1{ }^{\prime}}, B_{e}^{1 \prime} \ldots, B_{e}^{1 \prime} \end{aligned}$	1	1
1	A_{2}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{11} \ldots, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime \prime}} \\ & B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{11^{\prime}} \ldots, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}} \end{aligned}$	0	1
2	A_{2}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1}, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1}, B_{e}^{1} \end{aligned}$	0	-1
3	A_{2}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{11} \ldots, B_{o}^{1 \prime}, B_{o}^{1 \prime} \\ & B_{e}^{1^{\prime}}, B_{e}^{1^{\prime \prime}}, B_{e}^{1^{\prime}}, B_{e}^{11^{\prime}} \ldots, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}} \end{aligned}$	0	1
1	A_{3}^{\prime}	$\begin{aligned} & B_{o}^{11^{\prime}}, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots, B_{o}^{1 \prime^{\prime}}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \\ & B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \ldots, B_{e}^{1 \prime}, B_{e}^{11^{\prime}}, B_{e}^{1 \prime} \end{aligned}$	1	1
2	A_{3}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \end{aligned}$	0	-1
3	A_{3}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}} \ldots, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}} \\ & B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{1 \prime} \ldots, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{1_{\prime}} \end{aligned}$	1	1

Table 12. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot C_{n, 4 r+1}^{3}$
subcase (3-2-2): if $n=i(\bmod 4)$, where $i=0,1,2,3$.
The next table (2.4) illustrate the labeling of the Cone $C_{n, 4 r+1}^{3}$.

n	labeling of cone $C_{n, 4 r+1}^{3}$	y_{0}	y_{1}	b_{0}	b_{1}
0	$\begin{aligned} & B_{e}^{1}=F_{44}^{\prime} ; L_{8 r}^{\prime} 1 \\ & B_{o}^{1}=F_{4 t}^{\prime} ; 1_{2} L_{8 r}^{\prime} 0_{2} 1 \end{aligned}$	$\begin{aligned} & 4 r+2 t \\ & 4 r+2 t+2 \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+3 \end{aligned}$	$\begin{aligned} & 12 r+16 r t+2 t+1 \\ & 12 r+16 r t+10 t+5 \end{aligned}$	$\begin{aligned} & 12 r+16 r t+2 t+1 \\ & 12 r+16 r t+10 t+5 \end{aligned}$
1	$\begin{aligned} & B_{e}^{1}=F_{4 t}^{\prime} 0 ; L_{8 r}^{\prime} 1 \\ & B_{e}^{1 \prime}=F_{4 t}^{\prime} 0 ; L_{8 r-8} N_{4} 1 N_{4}^{\prime} \\ & B_{o}^{1}=F_{4 t}^{\prime} 0 ; 1_{2} L_{8 r}^{\prime} 0_{2} 1 \\ & B_{o}^{1 \prime}=F_{4 t}^{\prime} 0 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0 N_{4} 10 \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+1 \\ & 4 r+2 t+3 \\ & 4 r+2 t+3 \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+1 \\ & 4 r+2 t+3 \\ & 4 r+2 t+3 \end{aligned}$	$\begin{aligned} & 16 r+16 r t+2 t-1 \\ & 16 r+16 r t+2 t \\ & 16 r+16 r t+10 t+7 \\ & 16 r+16 r t+10 t+8 \end{aligned}$	$\begin{aligned} & 16 r+16 r t+2 t \\ & 16 r+16 r t+2 t-1 \\ & 16 r+16 r t+10 t+8 \\ & 16 r+16 r t+10 t+7 \end{aligned}$
2	$\begin{aligned} & B_{e}^{1}=F_{4 t}^{\prime} 10 ; L_{8 r}^{\prime} 1 \\ & B_{o}^{1}=F_{4 t}^{\prime} 10 ; 1_{2} L_{8 r}^{\prime} 0_{2} 1 \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 r+2 t+2 \\ & 4 r+2 t+4 \end{aligned}$	$\begin{aligned} & 20 r+16 r t+2 t \\ & 20 r+16 r t+10 t+10 \end{aligned}$	$\begin{array}{\|l\|} \hline 20 r+16 r t+2 t \\ 20 r+16 r t++10 t+10 \\ \hline \end{array}$
3	$\begin{aligned} & B_{e}^{1}=F_{4 t}^{\prime} 010 ; L_{8 r}^{\prime} 1 \\ & B_{e}^{1 \prime}=F_{4 t}^{\prime} 010 ; L_{8 r-8} N_{4} 1 N_{4}^{\prime} \\ & B_{o}^{1}=F_{4 t}^{\prime} 010 ; 1_{2} L_{8 r}^{\prime} 0_{2} 1 \\ & B_{o}^{1 \prime}=F_{4 t}^{\prime} 010 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 0 N_{4} 1 \end{aligned}$	$\begin{aligned} & 4 r+2 t+2 \\ & 4 r+2 t+2 \\ & 4 r+2 t+4 \\ & 4 r+2 t+4 \end{aligned}$	$\begin{aligned} & 4 r+2 t+2 \\ & 4 r+2 t+2 \\ & 4 r+2 t+4 \\ & 4 r+2 t+4 \end{aligned}$	$\begin{aligned} & 24 r+16 r t+2 t \\ & 24 r+16 r t+2 t+1 \\ & 24 r+16 r t+10 t-1 \\ & 24 r+16 r t+10 t-12 \end{aligned}$	$\begin{aligned} & 24 r+16 r t+2 t+1 \\ & 24 r+16 r t+2 t \\ & 24 r+16 r t+10 t-12 \\ & 24 r+16 r t+10 t-13 \end{aligned}$

Table 13. Vertex labeling and edge of a cone $C_{n, 4 r+1}^{3}$.
By using table (2), we study the cordiality of $P_{k} \odot C_{n, 4 r+1}^{3}$, where $k=1,2,3$.

i	P_{k}	$C_{n, 4 r+1}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
0	p_{1}	$B_{o}^{1 \prime}$ $B_{e}^{1 \prime}$	0	1
1	P_{1}	$B_{o}^{1 \prime}$ $B_{e}^{1 \prime}$	1	1

2	P_{1}	$\begin{aligned} & B_{o}^{1 \prime} \\ & B_{e}^{1 \prime} \end{aligned}$	0	1
3	P_{1}	$\begin{aligned} & B_{o}^{1 \prime} \\ & B_{e}^{1 \prime} \end{aligned}$	1	1
0	P_{2}^{\prime}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1} \end{aligned}$	0	-1
1	P_{2}	$\begin{aligned} & B_{o}^{1 \prime}, B_{o}^{1 \prime} \\ & B_{e}^{1}, B_{e}^{1 \prime} \end{aligned}$	0	1
2	P_{2}^{\prime}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1} \end{aligned}$	0	-1
3	P_{2}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1 \prime} \\ & B_{e}^{1 \prime}, B_{e}^{1 \prime} \end{aligned}$	0	-1
0	P_{3}^{\prime}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \\ & \hline \end{aligned}$	0	1
1	P_{3}	$\begin{aligned} & B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \\ & B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \end{aligned}$	1	1
2	P_{3}^{\prime}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \\ & \hline \end{aligned}$	0	1
3	P_{3}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \\ & B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \\ & \hline \end{aligned}$	1	1

Table 14. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{\boldsymbol{n}, 4 r+1}^{3}$.
By using table (3), we study the cordiality of $P_{k} \odot C_{n, 4 r+1}^{3}$ when $k=i(\operatorname{mode}) 4$ where $i=0,1,2,3$.

i	P_{k}	$C_{n, 4 s+1}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
0	A_{0}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots \\ & \hline \end{aligned}$	0	-1
1	A_{0}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots \\ & B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{11^{\prime}} \ldots \end{aligned}$	0	1
2	A_{0}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots \end{aligned}$	0	-1
3	A_{0}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime \prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}} \ldots \\ & B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}} \ldots \end{aligned}$	0	1
0	A_{1}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1} \end{aligned}$	0	1
1	A_{1}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}} \ldots, B_{o}^{1^{\prime}} \\ & B_{e}^{1^{\prime}}, B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \ldots, B_{e}^{1 \prime} \end{aligned}$	1	1
2	A_{1}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1} \\ & \hline \end{aligned}$	0	-1
3	A_{1}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime \prime}}, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}}, B_{o}^{1 \prime} \ldots, B_{o}^{1 \prime} \\ & B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \ldots, B_{e}^{1 \prime} \\ & \hline \end{aligned}$	1	1
0	A_{2}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1}, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1}, B_{e}^{1} \end{aligned}$	0	-1
1	A_{2}^{\prime}	$\begin{aligned} & B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots, B_{o}^{1 \prime}, B_{o}^{1 \prime} \\ & B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{11^{\prime \prime}} \ldots, B_{e}^{1 \prime}, B_{e}^{1 \prime} \end{aligned}$	0	1
2	A_{2}	$\begin{aligned} & B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1}, B_{o}^{1} \\ & B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1}, B_{e}^{1} \end{aligned}$	0	-1
3	A_{2}^{\prime}	$\begin{aligned} & B_{o}^{1^{\prime}}, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots, B_{o}^{1^{\prime}}, B_{o}^{1^{\prime}} \\ & B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}}, B_{e}^{11^{\prime}} \ldots, B_{e}^{1^{\prime}}, B_{e}^{1^{\prime}} \end{aligned}$	0	1

0	A_{3}	$B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1}, B_{o}^{1}, B_{o}^{1}$ $B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1}, B_{e}^{1}, B_{e}^{1}$	0	-1
1	A_{3}^{\prime}	$B_{o}^{1 \prime}, B_{o}^{1}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime}$ $B_{e}^{1 \prime}, B_{e}^{1}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \ldots, B_{e}^{1 \prime}, B_{e}^{1 \prime^{\prime}}, B_{e}^{1 \prime}$	1	1
2	A_{3}	$B_{o}^{1}, B_{o}^{1}, B_{o}^{1}, B_{o}^{1} \ldots, B_{o}^{1}, B_{o}^{1}, B_{o}^{1}$	0	-1
3	$B_{e}^{1}, B_{e}^{1}, B_{e}^{1}, B_{e}^{1} \ldots, B_{e}^{1}, B_{e}^{1}, B_{e}^{1}$			
2	A_{3}^{\prime}	$B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime} \ldots, B_{o}^{1 \prime}, B_{o}^{1 \prime}, B_{o}^{1 \prime}$ $B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime} \ldots, B_{e}^{1 \prime}, B_{e}^{1 \prime}, B_{e}^{1 \prime}$	1	1

Table 15. Vertex labeling and edge of $P_{k} \odot C_{n, 4 r+1}^{3}$
Lemma 3.3 $P_{k} \odot C_{n, m}^{3}, m \equiv 2(\bmod 4)$,i.e. $m=4 r+2$ then is cordial, except at $r=1$.
subcase (3-3-1): if $n=1,2,3$.
The next table (16) illustrate the labeling of the Cone $C_{n, 4 r+2}^{3}$.

n	labeling of cone $C_{n, 4 r+2}^{3}$	y_{0}	y_{1}	b_{0}	b_{1}
1	$\begin{aligned} & B_{e}^{2}=0 ; L_{8 r}^{\prime} 01 \\ & B_{e}^{2 \prime}=0 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 010_{2} \\ & B_{o}^{2}=0 ; 1 L_{8 r}^{\prime} N_{4}^{\prime} 0 \\ & B_{o}^{2 \prime}=0 ; 1 L_{8 r-8} 0 N_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 4 r+2 \\ & 4 r+2 \\ & 4 r+4 \\ & 4 r+4 \end{aligned}$	$\begin{aligned} & 4 r+1 \\ & 4 r+1 \\ & 4 r+3 \\ & 4 r+3 \end{aligned}$	$\begin{aligned} & 16 r+1 \\ & 16 r+2 \\ & 16 r+9 \\ & 16 r+10 \end{aligned}$	$\begin{aligned} & 16 r+2 \\ & 16 r+1 \\ & 16 r+10 \\ & 16 r+9 \end{aligned}$
2	$\begin{aligned} & B_{e}^{2}=01 ; L_{8 r}^{\prime} 01 \\ & B_{e}^{2 \prime}=01 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 010_{2} \\ & B_{o}^{2}=01 ; 1 L_{8 r}^{\prime} N_{4}^{\prime} 0 \\ & B_{O}^{2 \prime}=01 ; 1 L_{8 r-8} 0 N_{4} \end{aligned}$	$\begin{aligned} & 4 r+2 \\ & 4 r+2 \\ & 4 r+4 \\ & 4 r+4 \end{aligned}$	$\begin{aligned} & 4 r+2 \\ & 4 r+2 \\ & 4 r+4 \\ & 4 r+4 \end{aligned}$	$\begin{aligned} & 20 r+2 \\ & 20 r+3 \\ & 20 r+12 \\ & 20 r+13 \end{aligned}$	$\begin{aligned} & 20 r+3 \\ & 20 r+2 \\ & 20 r+13 \\ & 20 r+12 \end{aligned}$
3	$\begin{aligned} & B_{e}^{2}=010 ; L_{8 r}^{\prime} 01 \\ & B_{e}^{2 \prime}=010 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 010_{2} \\ & B_{o}^{2}=010 ; 1 L_{8 r}^{\prime} N_{4}^{\prime} 0 \\ & B_{O}^{2 \prime}=010 ; 1 L_{8 r-8} 0 N_{4} \end{aligned}$	$\begin{aligned} & 4 r+3 \\ & 4 r+3 \\ & 4 r+5 \\ & 4 r+5 \end{aligned}$	$\begin{aligned} & 4 r+2 \\ & 4 r+2 \\ & 4 r+4 \\ & 4 r+4 \end{aligned}$	$\begin{aligned} & 24 r+3 \\ & 24 r+4 \\ & 24 r+15 \\ & 24 r+16 \end{aligned}$	$\begin{aligned} & 24 r+4 \\ & 24 r+3 \\ & 24 r+16 \\ & 24 r+15 \end{aligned}$

By using table (2), we study the cordiality of $P_{k} \odot C_{n, 4 r+2}^{3}$, where $k=1,2,3$.

n	P_{k}	$C_{n, 4 r+2}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
1	P_{1}^{\prime}	$B_{o}^{2 \prime}$ $B_{e}^{2 \prime}$	0	0
2	P_{1}	$B_{o}^{2 \prime}$ $B_{e}^{2 \prime}$	1	1
3	P_{1}^{\prime}	$B_{o}^{2 \prime}$ $B_{e}^{2 \prime}$	0	0
1	$P_{2}^{\prime \prime}$	$B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}$	0	1

2	P_{2}	$B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}$	0	1
3	$P_{2}^{\prime \prime}$	$B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}$	0	1
1	$P_{3}^{\prime \prime}$	$B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}$	0	0
2	P_{3}	$B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime}$	1	1
3	$P_{3}^{\prime \prime}$	$B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}$	0	0

Table 17. Vertex labeling and edge of $P_{3} \odot C_{n, 4 r+2}^{3}$.

By using table (3), we study the cordiality of $P_{k} \odot C_{n, 4 r+2}^{3}$ when $k=i(\operatorname{mode}) 4 \forall i=0,1,2,3$.

n	P_{k}	$C_{n, 4 s+2}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
1	$A_{0}^{\prime \prime}$	$\begin{aligned} & \hline B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots \end{aligned}$	0	-1
2	A_{0}^{\prime}	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime} \ldots \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime} \ldots \end{aligned}$	0	1
3	$A_{0}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots \end{aligned}$	0	-1
1	$A_{1}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime} \end{aligned}$	0	0
2	$A_{1}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2} \ldots, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2} \ldots, B_{e}^{2 \prime} \end{aligned}$	1	1
3	$A_{1}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2} \ldots, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2} \ldots, B_{e}^{2 \prime} \end{aligned}$	0	0
1	$A_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2}, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2}, B_{e}^{2 \prime} \end{aligned}$	0	-1
2	$A_{2}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2}, B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2 \prime} \ldots, B_{o}^{2 \prime}, B_{o}^{2} \\ & B_{e}^{2}, B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2 \prime} \ldots, B_{e}^{2 \prime}, B_{e}^{2} \end{aligned}$	0	1
3	$A_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2} \end{aligned}$	0	-1
1	$A_{3}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime} \end{aligned}$	0	0
2	$A_{3}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime} \\ & \hline \end{aligned}$	1	1
3	$A_{3}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime} \end{aligned}$	0	0

Table 18. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot C_{n, 4 r+2}^{3}$
subcase (3-3-2): if $n=i(\bmod 4)$, where $i=0,1,2,3$.

The next table (19) illustrate the labeling of the Cone $C_{n, 4 r+2}^{3}$.

n	labeling of cone $C_{n, 4 r+2}^{3}$	y_{0}	y_{1}	b_{0}	b_{1}
0	$\begin{aligned} & B_{e}^{2}=F_{4 t}^{\prime} ; L_{8 r}^{\prime} 01 \\ & B_{e}^{2 \prime}=F_{4 t}^{\prime} ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 010_{2} \\ & B_{o}^{2}=F_{4 t}^{\prime} ; 1 L_{8 r}^{\prime} N_{4}^{\prime} 0 \\ & B_{0}^{2 \prime}=F_{4 t}^{\prime} ; 1 L_{8 r-8} 0 N_{4} \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+1 \\ & 4 r+2 t+3 \\ & 4 r+2 t+3 \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+1 \\ & 4 r+2 t+3 \\ & 4 r+2 t+3 \end{aligned}$	$\begin{aligned} & 12 r+16 r t+4 t \\ & 12 r+16 r t+4 t+1 \\ & 12 r+16 r t+12 t+6 \\ & 12 r+16 r t+12 t+7 \end{aligned}$	$\begin{aligned} & 12 r+16 r t+4 t+1 \\ & 12 r+16 r t+4 t \\ & 12 r+16 r t+12 t+7 \\ & 12 r+16 r t+12 t+6 \end{aligned}$
1	$\begin{aligned} & B_{e}^{2}=F_{4 t}^{\prime} 0 ; L_{80}^{\prime} 01 \\ & B_{e}^{2 \prime}=F_{4 t}^{\prime} 0 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 010_{2} \\ & B_{o}^{2}=F_{4 t}^{\prime} 0 ; 1 L_{8 r}^{\prime} N_{4}^{\prime} 0 \\ & B_{0}^{2 \prime}=F_{4 t}^{\prime} 0 ; 1 L_{8 r-8} 0 N_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 4 r+2 t+ \\ & 4 r+2 t+ \\ & 4 r+2 t+ \\ & 4 r+2 t+ \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+1 \\ & 4 r+2 t+3 \\ & 4 r+2 t+3 \end{aligned}$	$\begin{aligned} & 16 r+16 r t+4 t+1 \\ & 16 r+16 r t+4 t+2 \\ & 16 r+16 r t+12 t+9 \\ & 16 r+16 r t+12 t+10 \end{aligned}$	$\begin{aligned} & 16 r+16 r t+4 t+2 \\ & 16 r+16 r t+4 t+1 \\ & 16 r+16 r t+12 t+10 \\ & 16 r+16 r t+12 t+9 \end{aligned}$
2	$\begin{aligned} & B_{e}^{2}=F_{4 t}^{\prime} 01 ; L_{8 r}^{\prime} 01 \\ & B_{e}^{2 \prime}=F_{4 t}^{\prime} 01 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 010_{2} \\ & B_{o}^{2}=F_{4 t}^{\prime} 01 ; 1 L_{8 r} N_{4}^{\prime} 0 \\ & B_{0}^{2 \prime}=F_{4 t}^{\prime} 01 ; 1 L_{8 r-8} 0 N_{4} \end{aligned}$	$\begin{aligned} & 4 r+2 t+2 \\ & 4 r+2 t+4 \\ & 4 r+2 t+4 \end{aligned}$	$\begin{aligned} & 4 r+2 t+2 \\ & 4 r+2 t+2 \\ & 4 r+2 t+4 \\ & 4 r+2 t+4 \end{aligned}$	$\begin{aligned} & 20 r+16 r t+4 t+2 \\ & 20 r+16 r t+4 t+3 \\ & 20 r+16 r t+12 t+12 \\ & 20 r+16 r t+12 t+13 \end{aligned}$	$\begin{aligned} & 20 r+16 r t+4 t+3 \\ & 20 r+16 r t+4 t+2 \\ & 20 r+16 r t+12 t+13 \\ & 20 r+16 r t+12 t+12 \end{aligned}$
3	$\begin{aligned} & B_{e}^{2}=F_{4 t}^{\prime} 010 ; L_{8 r}^{\prime} 01 \\ & B_{e}^{2 \prime}=F_{4 t}^{\prime} 010 ; 1_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} 010_{2} \\ & B_{o}^{2}=F_{4 t}^{\prime} 010 ; 1 L_{8 r}^{\prime} N_{4}^{\prime} 0 \\ & B_{o}^{2 \prime}=F_{4 t}^{\prime} 010 ; 1 L_{8 r-8} 0 N_{4} \end{aligned}$	$\begin{aligned} & 4 r+2 t+3 \\ & 4 r+2 t+3 \\ & 4 r+2 t+5 \\ & 4 r+2 t+5 \end{aligned}$	$\begin{aligned} & 4 r+2 t+2 \\ & 4 r+2 t+2 \\ & 4 r+2 t+4 \\ & 4 r+2 t+4 \end{aligned}$	$\begin{aligned} & 24 r+16 r t+4 t+3 \\ & 24 r+16 r t+4 t+4 \\ & 24 r+16 r t+12 t+15 \\ & 24 r+16 r t+12 t+16 \end{aligned}$	$\begin{aligned} & 24 r+16 r t+4 t+4 \\ & 24 r+16 r t+4 t+3 \\ & 24 r+16 r t+12 t+16^{s} \\ & 24 r+16 r t+12 t+15 \end{aligned}$

Table 19. Vertex labeling and edge of a cone $C_{n, 4 r+2}^{3}$.
By using table (2), we study the cordiality of $P_{k} \odot C_{n, 4 r+2}^{3}$.

i	p_{k}	$C_{n, 4 r+2}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
0	P_{1}	$B_{o}^{2 \prime}$ $B_{e}^{2 \prime}$	1	1
1	P_{1}^{\prime}	$B_{o}^{2 \prime}$ $B_{e}^{2 \prime}$	0	0
2	P_{1}	$B_{o}^{2 \prime}$ $B_{e}^{2 \prime}$	1	1
3	P_{1}^{\prime}	$B_{o}^{2 \prime}$ $B_{e}^{2 \prime}$	0	0
0	P_{2}	$B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}$	0	1
1	$P_{2}^{\prime \prime}$	$B_{o}^{2 \prime}, B_{o}^{2 \prime}$	0	1
2	$B_{e}^{2 \prime}, B_{e}^{2 \prime}$	$B_{o}^{2 \prime}, B_{o}^{2 \prime}$	0	1
2	P_{2}	$B_{e}^{2 \prime}, B_{e}^{2 \prime}$		
3	$P_{2}^{\prime \prime}$	$B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}$	0	1
0	P_{3}	$B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime}$	1	1
1	$P_{3}^{\prime \prime}$	$B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2 \prime}$	0	0
2	P_{3}	$B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime}$ $B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime}$	1	1
			0	0

Table 20. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{\boldsymbol{n}, 4 r+2}^{3}$.

By using table (3), we study the cordiality of $p_{k} \odot C_{n, 4 r+2}^{3}$ when $k=i(\operatorname{mode}) 4$ where $i=0,1,2,3$.

i	p_{k}	$C_{n, 4 r+2}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
0	A_{0}^{\prime}	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime} \ldots \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime} \ldots \\ & \hline \end{aligned}$	0	1
1	$A_{0}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots \end{aligned}$	0	-1
2	A_{0}^{\prime}	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2 \prime} \ldots \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2 \prime} \ldots \end{aligned}$	0	1
3	$A_{0}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots \end{aligned}$	0	-1
0	$A_{1}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime} \end{aligned}$	1	1
1	$A_{1}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime} \end{aligned}$	0	0
2	$A_{1}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime} \end{aligned}$	1	1
3	$A_{1}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime} \end{aligned}$	0	0
0	$A_{2}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2} \\ & B_{e}^{2}, B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2} \end{aligned}$	0	1
1	$A_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2} \end{aligned}$	0	-1
2	$A_{2}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime} \ldots, B_{o}^{2 \prime}, B_{o}^{2} \\ & B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime} \ldots, B_{e}^{2 \prime}, B_{e}^{2} \end{aligned}$	0	1
3	$A_{2}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2} \end{aligned}$	0	-1
0	$A_{3}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime} \end{aligned}$	1	1
1	$A_{3}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime} \end{aligned}$	0	0
2	$A_{3}^{\prime \prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2}, B_{o}^{2 \prime} \ldots, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2}, B_{e}^{2 \prime} \ldots, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime} \end{aligned}$	1	1
3	$A_{3}^{\prime \prime}$	$\begin{aligned} & B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime}, B_{o}^{2} \ldots, B_{o}^{2 \prime}, B_{o}^{2}, B_{o}^{2 \prime} \\ & B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime}, B_{e}^{2} \ldots, B_{e}^{2 \prime}, B_{e}^{2}, B_{e}^{2 \prime} \end{aligned}$	0	0

Table 21. Vertex labeling and edge of $\boldsymbol{p}_{\boldsymbol{k}} \odot \boldsymbol{C}_{\boldsymbol{n}, 4 r+2}^{3}$
Lemma 3.4 $P_{k} \odot C_{n, 4 s+3}^{3}, m \equiv 3(\bmod 4)$, i.e $m=4 r+3$ is cordial.
subcase (3-4-1): if $n=1,2,3$.
The next table (22) illustrate the labeling of the Cone $C_{n, 4 r+3}^{3}$.

n	labeling of cone $C_{n, 4 r+3}^{3}$	y_{0}	y_{1}	b_{0}	b_{1}

1	$B_{o}^{3}=0 ; 01_{2} L_{8 r-8}^{\prime} N_{4}^{\prime}$ $B_{o}^{3 \prime}=0 ; 0 L_{8 r-8} N_{4} 1_{2}$	$4 r$ $4 r$	$4 r$ $4 r$	$16 r-5$ $16 r-4$	$16 r-4$ $16 r-5$
2	$B_{o}^{3}=01 ; 01_{2} L_{8 r-8}^{\prime} N_{4}^{\prime}$	$4 r$	$4 r+1$	$20 r-5$	$20 r-5$
	$B_{e}^{3}=01 ; 1_{2} L_{8 r}^{\prime} 0$	$4 r+2$	$4 r+3$	$20 r+5$	$20 r+5$
3	$B_{o}^{3}=010 ; 01_{2} L_{8 r-8}^{\prime} N_{4}^{\prime}$	$4 r+1$	$4 r+1$	$24 r-6$	$24 r-5$
	$B_{o}^{3 \prime}=010 ; 0 L_{8 r-8} N_{4} 1_{2}$	$4 r+1$	$4 r+1$	$24 r-5$	$24 r-6$

Table 22. Vertex labeling and edge of a cone $C_{n, 4 r+3}^{3}$.
By using table (2), we study the cordiality of $P_{k} \odot C_{n, 4 r+3}^{3}$, where $k=1,2,3$.

n	P_{k}	$C_{n, 4 r+3}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
1	P_{1}	B_{o}^{3} B_{e}^{3}	1	-1
2	P_{1}	B_{o}^{3} B_{e}^{3}	0	-1
3	P_{1}	B_{o}^{3} B_{e}^{3}	1	-1
1	P_{2}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}$	0	1
2	P_{2}^{\prime}	B_{o}^{3}, B_{o}^{3} B_{e}^{3}, B_{e}^{3}	0	-1
3	P_{2}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}$	0	1
1	P_{3}	$B_{o}^{3{ }^{\prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}}$	1	1
2	P_{3}^{\prime}	$B_{o}^{3}, B_{o}^{3}, B_{o}^{3}$ $B_{e}^{3}, B_{e}^{3}, B_{e}^{3}$	0	-1
3	P_{3}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	1	1

Table 23. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{\boldsymbol{n}, 4 r+3}^{3}$.
By using table (3), we study the cordiality of $P_{k} \odot C_{n, 4 r+3}^{3}$ when $k=i($ mode $) 4 \forall i=0,1,2,3$.

n	P_{k}	$C_{n, 4 s+3}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
1	A_{0}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots$	0	1
2	A_{0}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots \end{aligned}$	0	-1
3	A_{0}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots$	0	1
1	A_{1}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}$	1	1
2	A_{1}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3} \end{aligned}$	0	-1
3	A_{1}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}$	1	1
1	A_{2}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	0	1
2	A_{2}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3}, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3}, B_{e}^{3} \end{aligned}$	0	-1
3	A_{2}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	0	1
1	A_{3}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3 \prime}, B_{o}^{3}, B_{o}^{3 \prime}$	1	1

2	A_{3}	$B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3}, B_{o}^{3}, B_{o}^{3}$ $B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3}, B_{e}^{3}, B_{e}^{3}$	0	-1
3	A_{3}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	1	1

Table 24. Vertex labeling and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{\boldsymbol{n}, 4 \mathrm{~s}+3}^{3}$
subcase (3-4-2): if $n=i(\bmod 4)$, where $i=0,1,2,3$.
The next table (25) illustrate the labeling of the Cone $C_{n, 4 r+3}^{3}$.

n	labeling of cone $C_{n, 4 r+3}^{3}$	y_{0}	y_{1}	b_{0}	b_{1}
0	$\begin{aligned} & B_{o}^{3}=F_{4 t}^{\prime} ; 01_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} \\ & B_{e}^{3}=F_{4 t}^{\prime} ; 1_{2} L_{8 r}^{\prime} 0 \end{aligned}$	$\begin{aligned} & 4 r+2 t-1 \\ & 4 r+2 t+1 \end{aligned}$	$\begin{aligned} & 4 r+2 t \\ & 4 r+2 t+2 \end{aligned}$	$\begin{aligned} & 12 r+16 r t-2 t-4 \\ & 12 r+16 r t+6 t+2 \end{aligned}$	$\begin{array}{\|l\|} \hline 12 r+16 r t-2 t-4 \\ 12 r+16 r t+6 t+2 \end{array}$
1	$\begin{aligned} & B_{o}^{3}=F_{4 t}^{\prime} 0 ; 01_{2} L_{8 r-8}^{\prime} N_{4}^{\prime} \\ & B_{o}^{3 \prime}=F_{4 t} 0 ; 0 L_{8 r-8} N_{4} 1_{2} \end{aligned}$	$\begin{aligned} & 4 r+2 t \\ & 4 r+2 t \end{aligned}$	$\begin{aligned} & 4 r+2 t \\ & 4 r+2 t \end{aligned}$	$\begin{aligned} & 16 r+16 r t-2 t-5 \\ & 16 r+16 r t-2 t-4 \end{aligned}$	$\begin{array}{\|l\|} \hline 16 r+16 r t-2 t-4 \\ 16 r+16 r t-2 t-5 \end{array}$
2	$\begin{aligned} & B_{o}^{3}=F_{4 t}^{\prime} 01 ; 01_{2} L_{8 r-8}^{\prime} N_{4} \\ & B_{e}^{3}=F_{4 t}^{\prime} 01 ; 1_{2} L_{8 r}^{\prime} 0 \end{aligned}$	$\begin{aligned} & 4 r+2 t \\ & 4 r+2 t+2 \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+3 \end{aligned}$	$\begin{aligned} & 20 r+16 r t-2 t-5 \\ & 20 r+16 r t+6 t+5 \end{aligned}$	$\begin{array}{\|l\|} \hline 20 r+16 r t-2 t-5 \\ 20 r+16 r t+6 t+5 \end{array}$
3	$\begin{aligned} & B_{o}^{3}=F_{4 t}^{\prime} 010 ; 01_{2} L_{8 r-8}^{\prime} N_{4} \\ & B_{o}^{3 \prime}=F_{4 t}^{\prime} 010 ; 0 L_{8 r-8} N_{4} 1_{2} \end{aligned}$	$\begin{aligned} & 4 r+2 t+1 \\ & 4 r+2 t+1 \end{aligned}$	$\begin{array}{\|l\|} \hline 4 r+2 t+1 \\ 4 r+2 t+1 \end{array}$	$\begin{gathered} 24 r+16 r t-2 t-6 \\ 24 r+16 r t-2 t-5 \end{gathered}$	$\left\|\begin{array}{\|c} 24 r+16 r t-2 t-5 \\ 24 r+16 r t-2 t-6 \end{array}\right\|$

Table 25. Vertex labeling and edge of a cone $C_{n, 4 r+3}^{3}$.

By using table (2), we study the cordiality of $P_{k} \odot C_{n, 4 r+3}^{3}$, where $k=1,2,3$.

i	P_{k}	$C_{n, 4 r+3}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
0	P_{1}	$\begin{aligned} & B_{o}^{3} \\ & B_{e}^{3} \end{aligned}$	0	-1
1	P_{1}	$\begin{aligned} & B_{o}^{3} \\ & B_{e}^{3} \end{aligned}$	1	-1
2	P_{1}	$\begin{aligned} & B_{o}^{3} \\ & B_{e}^{3} \end{aligned}$	0	-1
3	P_{1}	$\begin{aligned} & B_{o}^{3} \\ & B_{o}^{3} \end{aligned}$	1	-1
0	P_{2}^{\prime}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3} \end{aligned}$	0	-1
1	P_{3}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}$	0	1
2	P_{2}^{\prime}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3} \end{aligned}$	0	-1
3	P_{2}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}$	0	1
0	P_{3}^{\prime}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \end{aligned}$	0	-1
1	P_{3}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	1	1

2	P_{3}^{\prime}	$B_{o}^{3}, B_{o}^{3}, B_{o}^{3}$ $B_{e}^{3}, B_{e}^{3}, B_{e}^{3}$	0	-1
3	P_{3}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	1	1

Table 26. Vertex and edge of $\boldsymbol{P}_{\boldsymbol{k}} \odot \boldsymbol{C}_{\boldsymbol{n}, 4 r+3}^{3}$.
By using table (3), we study the cordiality of $P_{k} \odot C_{n, 4 r+3}^{3}$ when $k=i(\operatorname{mode}) 4$ where $i=0,1,2,3$.

i	P_{k}	$C_{n, 4 r+3}^{3}$	$v_{0}-v_{1}$	$e_{0}-e_{1}$
0	A_{0}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots \end{aligned}$	0	-1
1	A_{0}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots$	0	1
2	A_{0}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots \end{aligned}$	0	-1
3	A_{0}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots$	0	1
0	A_{1}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3} \end{aligned}$	0	-1
1	A_{1}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}$	1	1
2	A_{1}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3} \end{aligned}$	0	-1
3	A_{1}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}$	1	1
0	A_{2}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3}, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3}, B_{e}^{3} \end{aligned}$	0	-1
1	A_{2}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	0	1
2	A_{2}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3}, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3}, B_{e}^{3} \end{aligned}$	0	-1
3	A_{2}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}, B_{o}^{3}$	0	1
0	A_{3}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \end{aligned}$	0	-1
1	A_{3}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	1	1
2	A_{3}	$\begin{aligned} & B_{o}^{3}, B_{o}^{3}, B_{o}^{3}, B_{o}^{3} \ldots, B_{o}^{2}, B_{o}^{3}, B_{o}^{3} \\ & B_{e}^{3}, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \ldots, B_{e}^{3}, B_{e}^{3}, B_{e}^{3} \end{aligned}$	0	-1
3	A_{3}^{\prime}	$B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime} \ldots, B_{o}^{3 \prime}, B_{o}^{3 \prime}, B_{o}^{3 \prime}$	1	1

As As a consequence of the previous Lemmasss one can establish the following theorem.

Theorem 3.1. The corona Product between paths and a third power of Cone graphs denoted by $P_{k} \odot C_{n, m}^{3}$ for all k, m, n are cordial.

4. Conclusion

This article is evidence for the presence of labeling for the corona Product between paths and a third power of Cone graphs. It was inspiring to investigate the cordiality of the corona Product between paths and a third power of Cone graphs. This labeling can be extended to various types of graphs and examined in the future.

References

[1]] A.Rosa, On certain valuations of the vertices of a graph, Theory of Graphs(Internat Symposium, Rome, July 1966),Gordon and Breach, N.Y.and Dunod Paris, (1967), pp. 349-355.
[2] B.D. Acharya, S.M.Hegde, Arithmetic Graphs, J. Graph Theory, 14, (3), (1990),pp. 275-299.
[3] I.Cahit, Cordial Graphs: A weaker version of graceful and harmonious Graphs, Ars Combinatoria, 23, (1987), pp. 201-207.
[4] I.Cahit, On cordial and 3-eqtitable labeling of graphs, Utiliuies Math, 37, (1990).
[5] I.Cahit, On cordial labeling of the second power of paths with other graphs, ARS Combinatoria, 97A, (2010), pp.327-343.
[6] Josephm.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, DS6, (2017).
[7] S.Freeda, S.R.Chellathurai, H_1 and H_2 cordial labeling of some graphs, Open J. Discrete Math, 2, (2012), pp $149-155$.
[8] S.I.Nada, A.T,Diab, A.Elrokh, and D.E.Sabra, The corona between paths and cycles, Ars Combin, 139 (2018)269-281.
[9] V.Yegnanarayanan and P.Vaidhyanathan, "Some interesting applications of graph labellings, Journal of Mathematical and Computational Science, 2, no. 5, (2012), pp. 1522-1531..
[10]ELrokh, A., Ali Al-Shamiri, M. M., Nada, S., \& El-hay, A. A. (2022). Cordial and Total Cordial Labeling of Corona Product of Paths and Second Order of Lemniscate Graphs. Journal of Mathematics, 2022.
[11]Badr, E., Nada, S., Ali Al-Shamiri, M. M., Abdel-Hay, A., \& ELrokh, A. (2022). A novel mathematical model for radio mean square labeling problem. Journal of Mathematics, 2022.
[12]ELrokh, A., Ali Al-Shamiri, M. M., \& El-hay, A. (2022). A Novel Problem to Solve the Logically Labeling of Corona between Paths and Cycles. Journal of Mathematics, 2022.
[13]Badr, E., Abd El-hay, A., Ahmed, H., \& Moussa, M. (2021). Polynomial, exponential and approximate algorithms for metric dimension problem. Mathematical Combinatorics, 2, 51-67.

