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INTRODUCTION: The q-analysis theory has recently been utilized in numerous disciplines of science 

and engineering. In q-theory, the fractional q-calculus is an extension of the regular fractional calculus. A 

great work with q-calculus and fractional q-calculus operators has been investigated by Srivastava [4].In a 

previous paper Purohit and Raina [8], Investigated applications of fractional q-calculus operators to defined 

certain new classes of functions which are analytic in the open disk U={ξ∈C||ξ |<1}.Several others have 

previously released new classes of analytical functions with the help ofq-calculus operators. Purohit [7], 

Purohit and Raina [9]-[11] gived related work and added various classes of univalent and multi valently 

analytic functions in open unit disk U.  

For any more inquiries on the analytic classes, we refer to [1], [5]-[6] and [12][16]for functions described by 

applying q-calculus operators and subject related to the this work. In the current inquiry, we are planning to 

develop few new classes of analytic functions applying the Saigo integral operator in q calculus.  The results 

 obtained must also provide the coefficient in equalities. First we use the main notations and definitions intheq-

calculus which are relevant to grasp the object of the study. 

The q-shifted factorials for any complex number σ, are delimited y 
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And with regard to the basic analog of the gamma function 
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In which the q-gamma function is set by 
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The recurrence relationship specified by Gaspar and Rahman[3] for the q-gamma function is 
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If|q|<1, equation (1.1) shall continue to play a role m=∞ as an infinite product of convergence 
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The Fractional q-calculus operators 

 

Definition2.1. For 0)R(  , σ and J be real or complex, the Saigo fractional integral operators inq-calculus 

is defined by Garg and Chanchlani [2] as 
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and 
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For q→ 1, the operators (2.1) and (2.2) reduce to Saigo’s fractional integral operators
J,,I 

and
J,,K 

respectively 

which are defined by Saigo [17]. 
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                                                                                                                                                               (2.0) 
Now we define fractional integral operators for a function of complex variable z in 

q- Calculus as 

 

Definition2.2. For R ( k ) > 0 ,σ and J be real or complex, the fractional q-integral operators for a function of 

complex variable z define by 
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Remark 2.1.(i) If we put  -  in (2.5) the n integral operator 
J,,

qI 
reduce in to Integral operator



qI

defined by Purohit and Raina in[8],that is 
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(ii) If we put σ=0    in (2.5) then integral operator
J,,

qI 
reduce in to integral operator

,
qI J

. 
Recently defined 

by  Purohit etal. That is 
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Now, we introduce the image of the power function under fractional q– Integral operators
J,,

qI 
and

J,,

qK 
 

 

Remark 2.2. (i) If R(µ+1)>0 and R(µ−σ+ J+1)>0, then 
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(ii) If R  (σ−µ)>0 and R (J−µ)>0, then 
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Where R (k)>0, σ and J be real or complex. 

 

New classes of functions Let Am  represents the function class of the form 
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Which are analytic and univalent in open unit disk U. Above, let A−
m highlights the sub class of Am imposing of 

analytical and univalent functions particulate in the form 
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We announce here the alike classes of functions connecting the operator (2.5): 
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Where U. and 1 < q < 1,0{0},0\C,0)(  R    

 

We now attain the subsequent coefficient bounds for functions of the form (3.2) to belong to the classes

q),,(G ,,

m  J
and q),,(H ,,

m  J
(marked above).

 

Theorem2.1. A function 
--

mAf  lies in the class q),,(G ,,

m  J
if 
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Where Ak and Bk are given by 
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               The result is sharp. 

 

Proof.  Let q),,(G)f( ,,

m   J then on using (3.3),we have 
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Now on making use of above relations, we get 
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On putting ξ=r with noting that the denominator is positive for r=0 and also remains positive for 0<r<1 so 

that on letting r→1
−
,we get 
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On simplifying above inequality, we have 
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Which is desired in equality (2.6)? 

 

Conversely suppose that inequality (3.6) holds and letting |ξ |=1,we have 
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Hence , by the maximum modulus principle and the condition,we can say that 
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Where A(σ,γ,k,q) and B(λ,J,k,q) are given by(2.7) and (2.8)respectively. 

 

Theorem2.2.A function f∈Am
—
belongs to the class q),,(H ,,

m  J
iff 
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Where Ak i s  g i v e n  b y  ( 3 . 7 )  and E k  i s  given by 
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The result is sharp. 

 

Proof. First suppose that q),,(H)f( ,,
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Now we obtain 
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Further on making use of above inequalities in (3.15), we get 
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On putting ξ=r and lettingr→1,weget 
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Which is desired inequality (3.13).Conversely suppose that inequality (3.6) holds and letting| ξ |=1,wehave 
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Hence, by the maximum modulus principle and the condition (3.7),we can say that 
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Where Ak and Ek are given by  respectively. 
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