CERTAIN CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH SAIGO'Sq-NTEGRAL OPERATOR

M.M.GOUR, G.S.SHARMA and PINKYLATA
Vivekananda Global University, Jaipur
Department of Mathematics
Corresponding Author Email: govindhzl@yahoo.co.in

Abstract

In the present paper we investigate several classes of analytic functions by using Saigo's integral operator in q -calculus and also find some inequalities forfunctions of defined classes.

Key Words: - Analytic functions, Fractional q-calculus, operators (Saigo's) Coefficient bounds.
MSC 2020. 30C45, 26 A 33.
INTRODUCTION: The q-analysis theory has recently been utilized in numerous disciplines of science and engineering. In q-theory, the fractional q-calculus is an extension of the regular fractional calculus. A great work with q-calculus and fractional q-calculus operators has been investigated by Srivastava [4].In a previous paper Purohit and Raina [8], Investigated applications of fractional q-calculus operators to defined certain new classes of functions which are analytic in the open disk $U=\{\xi \in C|\xi|<1\}$. Several others have previously released new classes of analytical functions with the help ofq-calculus operators. Purohit [7], Purohit and Raina [9]-[11] gived related work and added various classes of univalent and multi valently analytic functions in open unit disk U.
For any more inquiries on the analytic classes, we refer to [1], [5]-[6] and [12][16]for functions described by applying q -calculus operators and subject related to the this work. In the current inquiry, we are planning to develop few new classes of analytic functions applying the Saigo integral operator in q calculus. The results
obtained must also provide the coefficient in equalities. First we use the main notations and definitions intheqcalculus which are relevant to grasp the object of the study.
The q-shifted factorials for any complex number σ, are delimited y

$$
\begin{equation*}
(\sigma ; q)_{m}=\prod_{j=0}^{m-1}\left(1-\mathrm{q}^{\mathrm{j}} \sigma\right) ; m \in N \text { and }(\sigma ; q)_{0}=1, \tag{1.1}
\end{equation*}
$$

And with regard to the basic analog of the gamma function
$\left(q^{\sigma} ; q\right)_{m}=\frac{\Gamma_{q}(\sigma+m)}{\Gamma_{q}(\sigma)}, \quad(m>0)$
In which the q-gamma function is set by
$\Gamma_{q}(\sigma)=\frac{(q ; q)_{\infty}(1-q)^{1-\sigma}}{\left(q^{\sigma} ; q\right)_{\infty}}, \quad(0<q<1)$
The recurrence relationship specified by Gaspar and Rahman[3] for the q-gamma function is

$$
\begin{equation*}
\Gamma_{q}(1+\sigma)=\frac{\left(1-q^{\sigma}\right) \Gamma_{q}(\sigma)}{(1-q)} \tag{1.4}
\end{equation*}
$$

If $|q|<1$, equation (1.1) shall continue to play a role $\mathrm{m}=\infty$ as an infinite product of convergence

$$
(\sigma ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-\sigma q^{\mathrm{j}}\right),
$$

And we have

$$
(\sigma ; q)_{m}=\frac{(\sigma ; q)_{\infty}}{\left(\sigma q^{m} ; q\right)_{\infty}} ;(m \in N \bigcup\{\infty\})
$$

$$
\begin{align*}
& \int_{0}^{\xi} f(y) d_{q} y=\xi(1-q) \sum_{k=0}^{\infty} q^{k} f\left(\xi q^{k}\right) \tag{1.5}\\
& \int_{0}^{\xi} f(y) d_{q} y=\xi(1-q) \sum_{k=1}^{\infty} q^{-k} f\left(\xi q^{-k}\right) \tag{1.6}
\end{align*}
$$

The Fractional q-calculus operators
Definition2.1. For $\mathrm{R}(\kappa)>0, \sigma$ and J be real or complex, the Saigo fractional integral operators inq-calculus is defined by Garg and Chanchlani [2] as
$\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{-\sigma-1}}{\Gamma_{q}(\kappa)} \int_{0}^{x}(t q / x ; q)_{\kappa-1} \sum_{m=0}^{\infty} \frac{\left(q^{\kappa+\sigma} ; q\right)_{m}\left(q^{-J} ; q\right)_{m}}{\left(q^{\kappa} ; q\right)_{m}(q ; q)_{m}} q^{(J-\sigma) m}(-1)^{m} q^{-\left(\frac{m(m-1)}{2}\right)}\left(\frac{t}{x}-1\right)_{m} f(t) d_{q} t$,
and
$\mathrm{K}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\mathrm{x})=\frac{\mathrm{q}^{\left(\frac{\kappa(\kappa+1)}{2-\sigma}\right)}}{\Gamma_{q}(\kappa)} \int_{0}^{x}(x / t ; q)_{\kappa-1} t^{-\sigma-1} \sum_{m=0}^{\infty} \frac{\left(q^{\kappa+\sigma} ; q\right)_{m}\left(q^{-J} ; q\right)_{m}}{\left(q^{\kappa} ; q\right)_{m}(q ; q)_{m}} q^{(J-\sigma) m}(-1)^{m} q^{-\left(\frac{m(m-1)}{2}\right)}\left(\frac{x}{q t}-1\right)_{m} f\left(t q^{1-\kappa}\right) d_{q} t$,

For $\mathrm{q} \rightarrow 1$, the operators (2.1) and (2.2) reduce to Saigo's fractional integral operators $\mathrm{I}^{\kappa, \sigma, J}$ and $\mathrm{K}^{\kappa, \sigma, J}$ respectively which are defined by Saigo [17].

$$
\begin{equation*}
\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\mathrm{x})=\mathrm{x}^{-\sigma}(1-q)^{\kappa} \sum_{m=0}^{\infty} \frac{\left(q^{\kappa+\sigma} ; q\right)_{m}\left(q^{-J} ; q\right)_{m}}{(q ; q)_{m}} q^{(J-\sigma+1) m} \sum_{n=0}^{\infty} q^{n} \frac{\left(q^{\kappa+m} ; q\right)_{n}\left(q^{-J} ; q\right)_{m}}{(q ; q)_{n}} f\left(x q^{n+m}\right), \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\mathrm{x})=\mathrm{x}^{-\sigma} q^{-\kappa(\kappa+1) / 2}(1-q)^{\kappa} \sum_{m=0}^{\infty} \frac{\left(q^{\kappa+\sigma} ; q\right)_{m}\left(q^{-J} ; q\right)_{m}}{(q ; q)_{m}} q^{J m} \sum_{n=0}^{\infty} q^{n \sigma} \frac{\left(q^{\kappa+m} ; q\right)_{n}}{(q ; q)_{n}} f\left(x q^{-\kappa-n-m}\right), \tag{2.0}
\end{equation*}
$$

Now we define fractional integral operators for a function of complex variable z in q- Calculus as

Definition2.2. For $\mathrm{R}(\mathrm{k})>0, \sigma$ and J be real or complex, the fractional q -integral operators for a function of complex variable z define by
$\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\mathrm{z})=\frac{\mathrm{z}^{-\sigma-1}}{\Gamma_{q}(\kappa)} \int_{0}^{z}(t q / z ; q)_{\kappa-1} \sum_{m=0}^{\infty} \frac{\left(q^{\kappa+\sigma} ; q\right)_{m}\left(q^{-J} ; q\right)_{m}}{\left(q^{\kappa} ; q\right)_{m}(q ; q)_{m}} q^{(J-\sigma) m}(-1)^{m} q^{-\left(\frac{m(m-1)}{2}\right)}\left(\frac{t}{z}-1\right)_{m} f(t) d_{q} t$,
and
$\mathrm{K}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\mathrm{z})=\frac{\mathrm{q}^{\left(\frac{\kappa(\kappa+1)}{2-\sigma}\right)}}{\Gamma_{q}(\kappa)} \int_{0}^{z}(z / t ; q)_{\kappa-1} t^{-\sigma-1} \sum_{m=0}^{\infty} \frac{\left(q^{\kappa+\sigma} ; q\right)_{m}\left(q^{-J} ; q\right)_{m}}{\left(q^{\kappa} ; q\right)_{m}(q ; q)_{m}} q^{(J-\sigma) m}(-1)^{m} q^{-\left(\frac{m(m-1)}{2}\right)}\left(\frac{z}{q t}-1\right)_{m} f\left(t q^{1-\kappa}\right) d_{q} t$,
Remark 2.1.(i) If we put $\sigma=-\kappa$ in (2.5) the n integral operator $\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J}$ reduce in to Integral operator $\mathrm{I}_{\mathrm{q}}^{\kappa}$ defined by Purohit and Raina in[8],that is

$$
\mathrm{I}_{\mathrm{q}}^{\kappa,-\kappa, J} f(z)=\mathrm{I}_{\mathrm{q}}^{\kappa,} f(z)
$$

(ii) If we put $\sigma=0$ in (2.5) then integral operator $I_{q}^{\kappa, \sigma, J}$ reduce in to integral operator $I_{\mathrm{q}}^{J, \kappa}$. Recently defined by Purohit etal. That is

$$
\mathrm{I}_{\mathrm{q}}^{\kappa, 0, J} f(z)=\mathrm{I}_{\mathrm{q}}^{J, \kappa,} f(z)
$$

Now, we introduce the image of the power function under fractional q- Integral operators $\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J}$ and $\mathrm{K}_{\mathrm{q}}^{\kappa, \sigma, J}$
Remark 2.2. (i) If $\mathrm{R}(\mu+1)>0$ and $\mathrm{R}(\mu-\sigma+\mathrm{J}+1)>0$, then

$$
\begin{equation*}
\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J}\left(\mathrm{z}^{\mu}\right)=\frac{\Gamma_{q}(\mu+1) \Gamma_{q}(\mu-\sigma+J+1)}{\Gamma_{q}(\mu-\sigma+1) \Gamma_{q}(\mu+\kappa+J+1)} \mathrm{z}^{\mu-\sigma} \tag{2.2}
\end{equation*}
$$

(ii) If $R(\sigma-\mu)>0$ and $R(J-\mu)>0$, then

$$
\begin{equation*}
\mathrm{K}_{\mathrm{q}}^{\kappa, \sigma, J}\left(\mathrm{z}^{\mu}\right)=\frac{\Gamma_{q}(\sigma-\mu) \Gamma_{q}(J-\mu)}{\Gamma_{q}(-\mu) \Gamma_{q}(\sigma+\kappa+J-\mu)} \mathrm{z}^{\mu-\sigma} \mathrm{q}^{-\kappa \mu-\kappa(\kappa+1) / 2} \tag{2.3}
\end{equation*}
$$

Where $\mathrm{R}(\mathrm{k})>0, \sigma$ and J be real or complex.
New classes of functions Let A_{m} represents the function class of the form

$$
\begin{equation*}
\mathrm{f}(\xi)=\xi+\sum_{k=m+1}^{\infty} a_{k} \xi^{k},(m \in N) \tag{2.4}
\end{equation*}
$$

Which are analytic and univalent in open unit disk U. Above, let A_{m}^{-}highlights thesub class of A_{m} imposing of analytical and univalent functions particulate in the form

$$
\mathrm{f}(\xi)=\xi-\sum_{k=m+1}^{\infty} a_{k} \xi^{k},\left(a_{k} \geq 0, m \in N\right)
$$

We announce here the alike classes of functions connecting the operator (2.5):

$$
\begin{equation*}
\mathrm{G}_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})=\left\{f \in A_{m}^{-} ;\left|\frac{1}{\zeta}\left\{\frac{\xi D_{q, \xi} \mathrm{~F}_{\mathrm{q}}^{(\kappa, \sigma, J, \lambda)}(\xi)}{\mathrm{F}_{\mathrm{q}}^{(\kappa, \sigma, J, \lambda)}(\xi)}-1\right\}\right|<1\right\} \tag{2.5}
\end{equation*}
$$

Where $\quad \mathrm{F}_{\mathrm{q}}^{(\kappa, \sigma, J, \lambda)}(\xi)=\lambda \xi D_{q, \xi}\left(\mathrm{I}_{\mathrm{q}}^{(\kappa, \sigma, J)} \mathrm{f}(\xi)\right)+(1-\lambda) I_{\mathrm{q}}^{(\kappa, \sigma, J} \mathrm{f}(\xi)$,

$$
\text { And } R(\kappa)>0, \zeta \in \mathrm{C} \backslash\{0\}, 0 \leq \lambda<1,0<\mathrm{q}<1 \text { and } \xi \in \mathrm{U}
$$

Also

$$
\begin{equation*}
\mathrm{H}_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})=\left\{f \in A_{m}^{-} ;\left|\frac{1}{\zeta}\left\{D_{q, \xi}\left(\mathrm{I}_{\mathrm{q}}^{(\kappa, \sigma, J)}(\xi)\right)+\lambda \xi D_{q, \xi}^{2}\left(\mathrm{I}_{\mathrm{q}}^{(\kappa, \sigma, J)}(\xi)\right)-1\right\}\right|<1\right\} \tag{2.7}
\end{equation*}
$$

Where $R(\kappa)>0, \zeta \in \mathrm{C} \backslash\{0\}, 0 \leq \lambda<1,0<\mathrm{q}<1$ and $\xi \in \mathrm{U}$.
We now attain the subsequent coefficient bounds for functions of the form (3.2) to belong to the classes $\mathrm{G}_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})$ and $\mathrm{H}_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})$ (marked above).

Theorem2.1. A function $\mathrm{f} \in \mathrm{A}_{\mathrm{m}}^{--}$lies in the class $\mathrm{G}_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})$ if

$$
\frac{1}{\mathrm{~A}_{1} B_{1}} \sum_{k=m+1}^{\infty} A_{k} B_{k} a_{k} \leq 1,
$$

Where A_{k} and B_{k} are given by

$$
\mathrm{A}_{\mathrm{k}}=\frac{\Gamma_{q}(k+1) \Gamma_{q}(k-\sigma+J+1)}{\Gamma_{q}(k-\sigma+1) \Gamma_{q}(k+\kappa+J+1)},
$$

> And

$$
\mathrm{B}_{\mathrm{k}}=\frac{\left[\lambda_{q}\left(1-q^{k-\sigma-1}\right)+1-q\right]\left[q\left(1-q^{k-\sigma-1}\right)+|\varsigma|(1-q)\right]}{(1-q)^{2}},
$$

The result is sharp.
Proof. Let $\mathrm{f}(\xi) \in \mathrm{G}_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})$ then on using (3.3), we have

$$
\mathrm{R}\left\{\frac{\xi D_{q, \xi} F_{q}^{(\kappa, \sigma, J, \lambda)}(\xi)-F_{q}^{(\kappa, \sigma, J, \lambda)}(\xi)}{F_{q}^{(\kappa, \sigma, J, \lambda)}(\xi)}\right\}>-|\zeta|,
$$

Since

$$
\begin{aligned}
D_{q, \xi} \xi^{\mu} & =\left(\frac{1-\mathrm{q}^{\mu}}{1-\mathrm{q}}\right) \xi^{\mu-1}=[\mu]_{\mathrm{q}} \xi^{\mu-1} \\
\mathrm{~F}_{\mathrm{q}}^{(\kappa, \sigma, J, \lambda)} & (\xi)=\mathrm{A}_{1}\left[\frac{\lambda q\left(1-q^{-\sigma}\right)+1-q}{1-q}\right] \xi^{1-\sigma}-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{\lambda q\left(1-q^{k-\sigma-1}\right)+1-q}{1-q}\right] \xi^{k-\sigma},
\end{aligned}
$$

And

$$
\xi D_{q, \xi} F_{q}^{(\kappa, \sigma, J, \lambda)}(\xi)=\mathrm{A}_{1}\left[\frac{\lambda q\left(1-q^{-\sigma}\right)+1-q}{(1-q)^{2}}\right]\left(1-q^{1-\sigma}\right) \xi^{1-\sigma}-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{\lambda q\left(1-q^{k-\sigma-1}\right)+1-q}{(1-q)^{2}}\right] \xi^{k-\sigma}
$$

Now on making use of above relations, we get

$$
R\left\{\frac{\mathrm{~A}_{1}\left[\frac{q\left(\lambda q\left(1-q^{-\sigma}\right)+1-q\right)\left(1-q^{\sigma}\right)}{(1-q)^{2}}\right]-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{q\left(\lambda q\left(1-q^{k-\sigma-1}\right)+1-q\right)\left(1-q^{k-\sigma-1}\right)}{(1-q)^{2}}\right] \xi^{k-1}}{\mathrm{~A}_{1}\left[\frac{\left.\lambda q\left(1-q^{-\sigma}\right)+1-q\right)}{(1-q)}\right]-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{\lambda q\left(1-q^{k-\sigma-1}\right)+1-q}{(1-q)}\right] \xi^{k-1}}\right\}>|\zeta|
$$

On putting $\xi=\mathrm{r}$ with noting that the denominator is positive for $\mathrm{r}=0$ and also remains positive for $0<\mathrm{r}<1$ so that on letting $r \rightarrow 1^{-}$, we get

$$
\begin{align*}
& -\mathrm{A}_{1}\left[\frac{q\left(\lambda q\left(1-q^{-\sigma}\right)+1-q\right)\left(1-q^{-\sigma}\right)}{(1-q)^{2}}\right]+\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{q\left(\lambda q\left(1-q^{k-\sigma-1}\right)+1-q\right)\left(1-q^{k-\sigma-1}\right)}{(1-q)^{2}}\right] \\
< & |\zeta|\left(\mathrm{A}_{1}\left[\frac{\lambda q\left(1-q^{-\sigma}\right)+1-q}{(1-q)}\right]-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{\lambda q\left(1-q^{k-\sigma-1}\right)+1-q}{(1-q)}\right]\right) \tag{2.8}
\end{align*}
$$

On simplifying above inequality, we have

$$
\frac{1}{\mathrm{~A}_{1} B_{1}} \sum_{k=m+1}^{\infty} A_{k} B_{k} a_{k}<1,
$$

Which is desired in equality (2.6)?
Conversely suppose that inequality (3.6) holds and letting $|\xi|=1$, we have

$$
\begin{aligned}
& \left|\frac{\xi D_{q, \xi} F_{q}^{(\sigma, \gamma, \lambda)}(\xi)-F_{q}{ }^{(\sigma, \gamma, \lambda)}(\xi)}{F_{q}{ }^{(\sigma, \gamma, \lambda)}(\xi)}\right| \\
& =\left|\frac{\mathrm{A}_{1}\left[\frac{q\left(\lambda q\left(1-q^{-\sigma}\right)+1-q\right)\left(1-q^{-\sigma}\right)}{(1-q)^{2}}\right]-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{q\left(\lambda q\left(1-q^{k-\sigma-1}\right)+1-q\right)\left(1-q^{k-\sigma-1}\right)}{(1-q)^{2}}\right] \xi^{k-1}}{\mathrm{~A}_{1}\left[\frac{\lambda q\left(1-q^{-\sigma}\right)+1-q}{(1-q)}\right]-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{\lambda q\left(1-q^{k-\sigma-1}\right)+1-q}{(1-q)}\right] \xi^{k-1}}\right| \\
& <\frac{\left\lvert\, \zeta\left(\mathrm{A}_{1}\left[\frac{\lambda q\left(1-q^{-\sigma}\right)+1-q}{(1-q)}\right]-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{\lambda q\left(1-q^{k-\sigma-1}\right)+1-q}{(1-q)}\right]\right)\right.}{\mathrm{A}_{1}\left[\frac{\lambda q\left(1-q^{-\sigma}\right)+1-q}{(1-q)}\right]-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{\left.\lambda q\left(1-q^{k-\sigma-1}\right)+1-q\right]}{(1-q)}\right] \xi^{k-1}}|\zeta|
\end{aligned}
$$

Hence, by the maximum modulus principle and the condition, we can say that
$\mathrm{f}(\xi) \in \mathrm{G}_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})$ and the external function is assumed by
$\mathrm{f}(\xi)=\xi-\frac{A_{1} B_{1}}{A_{m+1} B_{m+1}} \xi^{m+1} ;(\mathrm{m} \in \mathrm{N})$

Where $\mathrm{A}(\sigma, \gamma, \mathrm{k}, \mathrm{q})$ and $\mathrm{B}(\lambda, \mathrm{J}, \mathrm{k}, \mathrm{q})$ are given $\mathrm{by}(2.7)$ and (2.8)respectively.

Theorem2.2.A function $f \in A_{m}$ belongs to the class $H_{m}^{\kappa, \sigma, J}(\lambda, \zeta, q)$ iff

$$
\sum_{k=m+1}^{\infty} A_{k} E_{k} a_{k} \leq|\zeta|+\mathrm{A}_{1} E_{1}-1
$$

Where A_{k} is given by (3.7) and E_{k} is given by
$\mathrm{E}_{\mathrm{k}}=\frac{\left(1-q^{k-\sigma-1}\right)\left[\lambda\left(1-q^{k-\sigma-1}\right)+(1-q)\right]}{(1-q)^{2}}$,

The result is sharp.

Proof. First suppose that $\mathrm{f}(\xi) \in \mathrm{H}_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})$ the non using (3.5), we get

$$
\mathrm{R}\left\{D_{q, \xi}\left(I_{q}{ }^{(\kappa, \sigma, J)} f(\xi)\right)+\lambda \xi D_{q, \xi}^{2}\left(I_{q}^{(\kappa, \sigma, J)} f(\xi)\right)-1\right\}>-|\zeta|,
$$

Now we obtain

$$
\mathrm{D}_{\mathrm{q}, \xi}\left(\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\xi)\right)=\mathrm{A}_{1}\left[\frac{1-q^{1-\sigma}}{1-q}\right] \xi^{-\sigma}-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{1-q^{k-\sigma}}{1-q}\right] \xi^{k-\sigma-1},
$$

And

$$
\lambda \xi \mathrm{D}_{\mathrm{q}, \xi}^{2}\left(\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\xi)\right)=\lambda\left[\mathrm{A}_{1} \frac{\left(1-q^{1-\sigma}\right)\left(1-q^{-\sigma}\right)}{(1-q)^{2}} \xi^{-\sigma}-\sum_{k=m+1}^{\infty} A_{k} a_{k} \frac{\left(1-q^{k-\sigma-1}\right)\left(1-q^{k-\sigma}\right)}{(1-q)^{2}} \xi^{k-\sigma-1}\right],
$$

Further on making use of above inequalities in (3.15), we get

$$
R\left\{\mathrm{~A}_{1}\left(\frac{1-q^{1-\sigma}}{1-q}\right)\left(1+\frac{\lambda\left(1-q^{-\sigma}\right)}{1-q}\right) \xi^{-\sigma}-\sum_{k=m+1}^{\infty} A_{k} a_{k}\left(\frac{1-q^{k-\sigma}}{1-q}\right)\left(1+\frac{\lambda\left(1-q^{k-\sigma-1}\right)}{1-q}\right) \xi^{k-\sigma-1}-1\right\}>-|\varsigma|
$$

On putting $\xi=$ r and lettingr $\rightarrow 1$, weget

$$
\sum_{k=m+1}^{\infty} A_{k} a_{k}\left[\frac{\left(1-q^{k-\sigma}\right)\left[\lambda\left(1-q^{k-\sigma-1}\right)+(1-q)\right]}{(1-q)^{2}}\right]<|\zeta|+\mathrm{A}_{1}\left[\frac{\left(1-q^{1-\sigma}\right)\left[\lambda\left(1-q^{-\sigma}\right)+1-q\right]}{(1-q)^{2}}\right]-1,
$$

that implies

$$
\sum_{k=m+1}^{\infty} A_{k} E_{k} a_{k}<|\zeta|+\mathrm{A}_{1} E_{1}-1 .
$$

Which is desired inequality (3.13).Conversely suppose that inequality (3.6) holds and letting $|\xi|=1$, wehave

$$
\begin{aligned}
& \left|\mathrm{D}_{\mathrm{q}, \xi}\left(\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\xi)\right)+\lambda \xi \mathrm{D}_{\mathrm{q}, \xi, \xi}^{2}\left(\mathrm{I}_{\mathrm{q}}^{\kappa, \sigma, J} \mathrm{f}(\xi)\right)-1\right|=\left\lvert\, \mathrm{A}_{1}\left(\frac{1-q^{1-\sigma}}{1-q}\right)\left(1+\frac{\lambda\left(1-q^{-\sigma}\right)}{1-q}\right) \xi^{-\sigma}\right. \\
& -\sum_{k=m+1}^{\infty} A_{k} a_{k}\left(\frac{1-q^{k-\sigma}}{1-q}\right)\left(1+\frac{\lambda\left(1-q^{k-\sigma-1}\right)}{1-q}\right) \xi^{k-\sigma-1}-1|\leq|J|
\end{aligned}
$$

Hence, by the maximum modulus principle and the condition (3.7), we can say that $\mathrm{f}(\xi) \in H_{\mathrm{m}}^{\kappa, \sigma, J}(\lambda, \zeta, \mathrm{q})$ and the external function is assumed by
$\mathrm{f}(\xi)=\xi-\frac{|\zeta|+A_{1} E_{1}-1}{A_{m+1} E_{m+1}} \xi^{m+1} ;(\mathrm{m} \in \mathrm{N})$,

Where A_{k} and E_{k} are given by respectively.

Data Availability: Data sharing not applicable to this article as no data-sets were generated or analyzed during the current study.

Conflicts of interest: The authors declare no conflict of interest.

Funding: This research received no external funding.
Author Contributions: All authors contributed equally and significantly to writing this article.

REFERENCES

[1] H.aldwe byandm. Darus, A sub class of harmonic univalent functions associated with q-analogue of dziok-Srivastava operator, isrnmath. Anal.,2013(2013), article id 382312.
[2] M.gargandl.Chanchalani, Kober fractional q-derivative operators,Matematiche, 16(2011),13-26.
[3] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia Math. Appl. 35, Cambridgeuniv.Press,Cambridge(1990).
[4] H.M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function Theorey of complex analysis, Iran. J. Sci. Technol., Trans. A, Sci.,2020(2020).
[5] Y.luchkoandj.J.Trujillo,Caputo-typemodificationoftheerdely-Kober fractional derivative, Fract.Calc.Appl. Anal., 10 (2007),249-267.
[6] G. Murugusundaramoorthy, C. Selvaraj and O.S. Babu, Subclasses of starlike functions Associated with fractional q-calculus operators, J.complexanal.,2013(2013), articleid572718.
[7] S.D. Purohit, A new class of multivalently analytic functions associated with fractional qcalculusoperators, Fract. Differ. Calc.,2(2) (2012),129-138.
[8] S.D.purohit andr .K.Raina, Certain subclasses of analytic functions associated with fractional qcalculus operators, Math.Scand.,109(2011),55-70.
[9] S.D.purohit and r.K.Raina ,Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica, 55(78)(2013), 62-74.
[10] S.D.purohit and r.K.Raina,Some classes of analytic and multivalent functions associatedwithqderivative operators,actauniv.Sapientiae,Math.,6(1)(2014),5-23.
[11] S.D.purohit and r.K.Raina, On a subclass of p-valent analytic functions involving fractional qcalculus operators,kuwaitj.Sci.,42(1)(2015),1-15.
[12] S.D.Purohit,M.M.Gour, S.joshiandd.L.Suthar, certain classes of analytic functions bound with kober operators inq-calculus, journal of mathematics, 2021(2021), articleid 3161275.
[13] R.K. Saxena, R.K. Yadav, S.D. Purohit and S.L. Kalla, Kober fractional q-integral operator ofthebasicanalogueoftheh-function,Rev.Tec.Fac.Ing.Univ.Zulia.,28(2)(2005),154-158.
[14] R.K. Saxena, S.D. Purohit and S.L. Kalla, On generalized Weyl fractional q-integral operator involving generalized basic hypergeometric functions, Fract.Calc.Appl.Anal.,2(2008),129—142.
[15] K.A. Selva kumaran, S.D. Purohit and A. Secer, Majorization for a class of analytic functions defined by q-differentiation, Math. Probl.Eng.,2014(2014), articleid 653917.
[16] K.A. Selva kumaran, S.D. Purohit, A. Secer and M. Bayram, Convexity of certain q-integral operators of p-valent functions, Abstr.Appl.Anal.,2014(2014), articleid 925902.
[17] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math.Rep.Coll.Gen.Educ.,kyushuuniv.,11(1978)135-143.
(M.M.Gour)

DEPARTMENTOFMATHEMATICS, VIVEKANANDAGLOBALUNIVERSITY,JAIPUR,INDIA
Email address: murlimanohar.gaur@vgu.ac.in
(G.S.Sharma)

DEPARTMENTOFMATHEMATICS,VIVEKANANDAGLOBALUNIVERSITY,JAIPUR,INDIA
Email address: govind.sharma@vgu.ac.in

```
(PinkyLata)
DEPARTMENTOFMATHEMATICS,VIVEKANANDAGLOBALUNIVERSITY,JAIPUR,INDIA
Email address: pinky.lata@vgu.ac.in
```

