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Abstract 

Let p(n) denote the number of partitions of  𝑛 where 𝑛 is a positive integer. In this paper, we 

study Ramanujan’s congruences for the Partition function 𝑝(𝑛) , especially 𝑝(5𝑚 + 4),

𝑝(7𝑚 + 5)  and 𝑝(11𝑚 + 6) ≡ 0(𝑚𝑜𝑑 5,7 𝑎𝑛𝑑 11)  respectively and explore the different 

types of partition congruences along with proof of some partition congruences. 
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1 Introduction :  In 1919, Ramanujan [1], [2, pp.210-213] announced that he had found 

three simple congruences satisfied by 𝑝(𝑛) namely, 

𝑝(5𝑛 + 4) ≡ 0(𝑚𝑜𝑑 5) 1.1 

𝑝(7𝑛 + 5) ≡ 0(𝑚𝑜𝑑 7) 1.2 

𝑝(11𝑛 + 6) ≡ 0(𝑚𝑜𝑑 11) 1.3 

In their most general form they can be stated as follows 

𝑝(5𝑛𝑚 + 𝑙𝑛) ≡ 0(𝑚𝑜𝑑 5𝑛) 1.4 

𝑝(7𝑛𝑚 + 𝑘𝑛) ≡ 0 (𝑚𝑜𝑑 7⌊
𝑛+2

2
⌋) 1.5 

𝑝(11𝑛𝑚 + 𝑡𝑛) ≡ 0(𝑚𝑜𝑑 11𝑛) 1.6 

where for 𝑝 = 5,7  and 11 , the numbers 𝑙𝑛, 𝑘𝑛  and 𝑡𝑛  are the least positive solutions of 

24 𝑥 ≡ 1 (𝑚𝑜𝑑 𝑝𝑛) respectively.

He provided the proofs for the first two (1.1) and (1.2) of the aforementioned congruences in 

[1] and [2]. The congruence (1.3) was stated for the first time by Ramanujan in [2] and

[3].After Ramanujan died in 1920, G.H. Hardy [3], [2] extracted proofs of (1.1)—(1.3) from

an unpublished manuscript of Ramanujan on 𝑝(𝑛) and 𝜏(𝑛). This manuscript was published

for the first time in handwritten form in a volume [5] containing Ramanujan’s Lost notebook.

An expanded and annotated version was prepared by Bruce C. Berndt and K. Ono [6]. The

proofs in [4] employ Eisenstein series. The simplest of the proofs provided for the third

identity above is credited to L. Winquist [7] and makes use of Winquist's Identity. A new

identity for (𝑞; 𝑞)∞
10  has been established by Berndt, S. H. Chan, Z.-G. Liu, and H. Yesilyurt

[8], who also developed a simple method of establishing the third identity. . Hirschhorn [9] 

has developed a method for demonstrating all three of them. 

Ramanujan also sketched proofs of (1.4) and (1.5) with 𝑛 = 2. In 1938, G. N. Watson [10] 

proved (1.4) and (1.5). Ramanujan’s original formulation of (1.5) was in fact incorrect. The 

congruence (1.6) has remained unproven until A.O.L. Atkin [11] gave a proof in 1967. The 

works of Newman [12], and of Atkin and J. N. O'Brien [13], and of Atkin and H. P. F. 
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Swinnerton-Dyer [14] have shown that there are many other congruences for the partition 

function. For example, Atkin and O'Brien [13] found that 

𝑝(594.13𝑛 + 111247) ≡ 0 (𝑚𝑜𝑑 13) 

In 2000, K. Ono [15] proved that if 𝑚 ≥ 5  is a prime, then there are infinitely many integers 

𝑎 and 𝑏 such that 𝑝(𝑎𝑛 + 𝑏) ≡ 0 (𝑚𝑜𝑑 𝑚)  for all 𝑛. Ramanujan stated that other than those 

he found there seemed to be no other congruence in the form 𝑝(𝑎𝑛 + 𝑏) ≡ 0 (𝑚𝑜𝑑 𝑛)  with 

𝑛 prime. His guess was proven to be correct by M. Boylan and Ahlgren [16] in 2003. 

In 1944, F. J. Dyson [17] gave the first combinatorial interpretation of Ramanujan's partition 

congruences for the modulus 5 and 7. He also conjectured another partition statistic which he 

called “crank" that would divide partitions of 11𝑛 +  6 into 11 equinumerous classes. His 

conjectures about the rank was proven by Atkin and Swinnerton-Dyer in 1958 [18]. The 

existence of a “crank" was first proved by F. G. Garvan [19] in terms of vector partitions.  

Later in the same year G. E. Andrews and Garvan [20] discovered another “crank" in terms 

of regular partitions. The methods of Garvan and of Atkin and Swinnerton-Dyer were purely 

analytical but in 2003 Garvan, D. Kim and D. Stanton [21] found yet another crank along 

with explicit bijections between equinumerous classes. Several identities stated in 

Ramanujan's “Lost Notebook" were very influential in Garvan's discovery of crank. These 

identities and their relation to the works of Atkin and Swinnerton-Dyer on Dyson's rank 

together with further contributions of Ramanujan to partition congruences with numerous 

references can be found in [22]. 

Our objective in this paper is to explore the different types of partition congruences 

along with proof of some partition congruences introduced by S. Ramanujan. To do so, we 

have to mention some preliminaries whose proof can be found in [23]. 

2 Preliminaries  

2.1 Partition of an integer: The partition function 𝑝(𝑛) is defined as follows. For a positive 

integer 𝑛 , 𝑝(𝑛)  is the number of partitions of 𝑛  into positive integral parts. Here, in a 

partition, the parts are not necessarily distinct and the order in which the parts are arranged is 

irrelevant. 

2.2 Some basic Definitions: 

𝑝(𝑛): It is the number of partition of a positive integer n in which each summand is positive. 

𝑝𝑑(𝑛) : It denotes the number of distinct partitions of n.

𝑝𝑜(𝑛) : It denotes the number of odd partitions of n.

𝜎𝑘(𝑛): It denotes the sum of the k-th powers of the positive divisors of n.

2.3 Euler’s identity: The number of distinct partitions of a positive integer n is equal to the 

number of odd partitions of that integer. 

2.4 Generating function for 𝒑(𝒏):   Define, 

(𝑎)𝑛 ≔  (𝑎; 𝑞)𝑛 ≔ ∏(1 − 𝑎𝑞𝑘)

𝑛−1

𝑘=0

,  𝑛 ≥ 1, 

(𝑎)∞ ≔  (𝑎; 𝑞)∞ ≔ ∏(1 − 𝑎𝑞𝑘)

∞

𝑘=0

,  |𝑞| < 1, 

The generating function of 𝑝(𝑛) is given by, 
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∑ 𝑝(𝑛)𝑞𝑛 =
1

(𝑞, 𝑞)∞

∞

𝑛=0

,  |𝑞| < 1 

2.5 Ramanujan’s general theta function:  Ramanujan’s general theta function 𝑓(𝑎, 𝑏) is 

defined by, 

 𝑓(𝑎, 𝑏) ≔ ∑ 𝑎
𝑛(𝑛+1)

2 𝑏
𝑛(𝑛−1)

2

∞

𝑛=−∞

,  |𝑎𝑏| < 1 

Three special cases are defined by in Ramanujan’s notation, 

𝜑(𝑞) ≔ 𝑓(𝑞, 𝑞) = ∑ 𝑞𝑛2

∞

𝑛=−∞

𝜓(𝑞) ≔ 𝑓(𝑞, 𝑞3) = ∑ 𝑞
𝑛(𝑛+1)

2

∞

𝑛=0

, 

𝑓(−𝑞) ≔ 𝑓(−𝑞, −𝑞2) = ∑ (−1)𝑛

∞

𝑛=−∞

𝑞
𝑛(3𝑛−1)

2 . 

2.6 Jacobi’s identity: 

∑(−1)𝑛

∞

𝑛=0

(2𝑛 + 1)𝑞
𝑛(𝑛+1)

2 = (𝑞; 𝑞)∞ 
3 ,  |𝑞| < 1 

2.7 Euler’s pentagonal number theorem: 

∑(−1)𝑘𝑞
𝑘(3𝑘−1)

2 = ∑ (−1)𝑘

∞

𝑘=−∞

∞

𝑘=0

𝑞
𝑘(3𝑘+1)

2 = (𝑞; 𝑞)∞ ,  |𝑞| < 1 

2.8 Pentagonal numbers:  The formula for the 𝑛-th pentagonal number 𝑃𝑛 is given by,

𝑃𝑛 =
𝑛(3𝑛 − 1)

2
On counting the number of dots in and inside 

the pentagons we get the 

pentagonal numbers for positive 

value of 𝑛. 

Values of 𝑝(𝑛) upto 𝑛 = 80 

1

1 

17

297 

33

10143 

49          

173525 

65        

2012558 

2

2 

18

385 

34

12310 

50          

204226 

66        

2323520 

3

3 

19

490 

35

14883 

51          

239943 

67        

2679689 

Turkish Journal of Computer and Mathematics Education Vol.11 No.01 (2020), 759-767 
Research Article

761



4

5 

20

627 

36

17977 

52          

281589 

68        

3087735 

5

7 

21

792 

37

21637 

53          

329931 

69        

3554345 

6

11 

22

1002 

38

26015 

54          

386155 

70        

4087968 

7

15 

23

1255 

39

31185 

55          

451276 

71        

4697205 

8

22 

24

1575 

40

37338 

56          

526823 

72        

5392783 

9

30 

25

1958 

41

44583 

57          

614154 

73        

6185689 

10

42 

26

2436 

42

53174 

58          

715220 

74        

7089500 

11

56 

27

3010 

43

63261 

59          

831820 

75        

8118264 

12

77 

28

3718 

44

75175 

60          

966467 

76        

9289091 

13

101 

29

4565 

45

89134 

61        

1121505 

77     10619863 

14

135 

30

5604 

46          

105558 

62        

1300156 

78     12132164 

15

176 

31

6842 

47          

124754 

63        

1505499 

79     13848650 

16

231 

32

8349 

48          

147273 

64        

1741630 

80     15796476 

A similar table was constructed by MacMohan, who found and listed the values for 𝑝(𝑛) upto 

𝑝(200). From MacMahon's table for 𝑝(𝑛) for 1 ≤  𝑛 ≤  200, Ramanujan conjectured his 

three famous congruences (1.1)—(1.3) for the partition function 𝑝(𝑛). In the later part of his 

stay in England, Ramanujan wrote his famous papers on congruences for 𝑝(𝑛). 

We begin with some elementary definitions and results that will be required in proving the 

congruences. 

2.9 Classical Eisenstein Series: For positive integer 𝑛, 

𝐸2𝑛(𝑞) ≔ 1 −
4𝑛

𝐵2𝑛
∑

𝑘2𝑛−1

1 − 𝑞𝑘
= −

4𝑛

𝐵2𝑛
𝑆2𝑛−1

∞

𝑘=1

, 𝑛 ≥ 1  (1.1.1) 

Let 

𝑃: = 1 − 24 (
𝑞

1 − 𝑞
+

2𝑞2

1 − 𝑞2
+

3𝑞3

1 − 𝑞3
+ ⋯ )  (1.1.2) 

𝑄: = 1 + 240 (
𝑞

1 − 𝑞
+

23𝑞2

1 − 𝑞2
+

33𝑞3

1 − 𝑞3
+ ⋯ )  (1.1.3) 
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𝑅: = 1 − 504 (
𝑞

1 − 𝑞
+

25𝑞2

1 − 𝑞2
+

35𝑞3

1 − 𝑞3
+ ⋯ )  (1.1.4) 

Let       𝑓(𝑞) = (1 − 𝑞)(1 − 𝑞2)(1 − 𝑞3) …  (1.1.5) 

Then it is well known that 

𝑓(𝑞) = 1 − 𝑞 − 𝑞2 + 𝑞5 + 𝑞7 − ⋯ = 1 + ∑(−1)𝑛 (𝑞
1
2

𝑛(3𝑛−1)
+ 𝑞

1
2

𝑛(3𝑛+1)
)

∞

𝑛=1

 (1.1.6) 

Φ𝑟,𝑠(𝑞) = ∑ ∑ 𝑚𝑟𝑛𝑠𝑞𝑚𝑛

∞

𝑛=1

∞

𝑚=1

= ∑ 𝑛𝑟

∞

𝑛=1

𝜎𝑠−𝑟(𝑛)𝑞𝑛  (1.1.7) 

Then  

Φ0,𝑠(𝑞) =
𝑞

1 − 𝑞
+

2𝑠𝑞2

1 − 𝑞2
+

3𝑠𝑞3

1 − 𝑞3
+ ⋯  (1.1.8) 

And in particular 

𝑃 = 1 − 24Φ0,1(𝑞),  𝑄 = 1 + 240Φ0,3(𝑞),  𝑅 = 1 − 504Φ0,5(𝑞) 

Some other basic results are: 

𝑄2 = 1 + 480Φ0,7(𝑞) = 1 + 480 (
𝑞

1 − 𝑞
+

27𝑞2

1 − 𝑞2
+ ⋯ )  (1.1.9) 

𝑄𝑅 = 1 − 264Φ0,9(𝑞) = 1 − 264 (
𝑞

1 − 𝑞
+

29𝑞2

1 − 𝑞2
+ ⋯ )  (1.1.10) 

441𝑄3 + 250𝑅2 = 691 + 65520Φ0,11(𝑞)

 = 691 + 65520 (
𝑞

1 − 𝑞
+

211𝑞2

1 − 𝑞2
+ ⋯ )  (1.1.11) 

𝑄3 − 𝑅2 = 1728𝑞(𝑓(𝑞))
24

 (1.1.12) 

𝑄 − 𝑃2 = 288Φ1,2(𝑞)  (1.1.13) 

𝑃𝑄 − 𝑅 = 720Φ1,4(𝑞)        (1.1.14) 

𝑄2 − 𝑃𝑅 = 1008Φ1,6(𝑞)  (1.1.15) 

𝑄(𝑃𝑄 − 𝑅) = 720Φ1,8(𝑞)         (1.1.16) 

3𝑃𝑄 − 2𝑅 − 𝑃3 = 1728Φ2,3(𝑞)  (1.1.17) 

𝑃2𝑄 − 2𝑃𝑅 + 𝑄2 = 1728Φ2,5(𝑞)  (1.1.18) 

2𝑃𝑄2 − 𝑃2𝑅 − 𝑄𝑅 = 1728Φ2,7(𝑞)  (1.1.19) 

6𝑃2𝑄 − 8𝑃𝑅 + 3𝑄2 − 𝑃4 = 6912Φ3,4(𝑞)  (1.1.20) 

𝑃3𝑄 − 3𝑃2𝑅 + 3𝑃𝑄2 − 𝑄𝑅 = 3456Φ3,6(𝑞)  (1.1.21) 

15𝑃𝑄2 − 20𝑃2𝑅 + 10𝑃3𝑅 − 4𝑄𝑅 − 𝑃5 = 20736Φ4,5(𝑞)  (1.1.22) 

Theorem 3.1: For each non negative integer  𝑛, 
       𝑝(5𝑛 + 4) ≡ 0(𝑚𝑜𝑑 5)  (1.2.1) 

Proof: We begin by writing, 

𝑞(𝑞; 𝑞)∞
4

(𝑞5; 𝑞5)∞

(𝑞; 𝑞)∞
5

= 𝑞
(𝑞5; 𝑞5 )∞

(𝑞; 𝑞)∞
= (𝑞5; 𝑞5)∞ ∑ 𝑝(𝑚)𝑞𝑚+1

∞

𝑚=0

 (1.2.2) 

By the binomial theorem,      (𝑞; 𝑞)∞
5 ≡ (𝑞5; 𝑞5)∞(𝑚𝑜𝑑 5)
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𝑜𝑟, 
(𝑞5; 𝑞5)∞

(𝑞; 𝑞)∞
5

≡ 1(𝑚𝑜𝑑 5)  (1.2.3) 

Hence by equation (1.2.2) and (1.2.3) we have 

𝑞(𝑞; 𝑞)∞
4 ≡ (𝑞5; 𝑞5)∞ ∑ 𝑝(𝑚)𝑞𝑚+1

∞

𝑚=0

(𝑚𝑜𝑑 5)  (1.2.4) 

We now see from (1.2.4) that in order to show that 𝑝(5𝑛 + 4) is divisible by 5 we must 

show that the coefficients of 𝑞5𝑛+5 on the left side of (1.2.4) are multiples of 5.

By the pentagonal number theorem and Jacobi’s identity we have, 

𝑞(𝑞; 𝑞)∞
4 = 𝑞(𝑞; 𝑞)∞(𝑞; 𝑞)∞

3  

⇒ 𝑞(𝑞; 𝑞)∞
4 = 𝑞 ∑ (−1)𝑗𝑞

𝑗(3𝑗+1)
2

∞

𝑗=−∞

∑(−1)𝑘

∞

𝑘=0

(2𝑘 + 1)𝑞
𝑘(𝑘+1)

2

⇒ 𝑞(𝑞; 𝑞)∞
4 = ∑ ∑(−1)𝑗+𝑘

∞

𝑘=0

∞

𝑗=−∞

(2𝑘 + 1)𝑞1+
𝑗(3𝑗+1)

2
+

𝑘(𝑘+1)
2  (1.2.5) 

Our objective is to determine when the exponents on the right side of (1.2.5) are multiples 

of 5. We have 

2(𝑗 + 1)2 + (2𝑘 + 1)2 = 8 {1 +
1

2
𝑗(3𝑗 + 1) +

1

2
(𝑘 + 1)𝑘} − 10𝑗2 − 5. 

Thus, 1 +
1

2
𝑗(3𝑗 + 1) +

1

2
𝑘(𝑘 + 1) is a multiple of 5 if and only if, 

2(𝑗 + 1)2 + (2𝑘 + 1)2 ≡ 0(𝑚𝑜𝑑 5). 

We have,  2(𝑗 + 1)2 ≡ 0, 2, 𝑜𝑟 3 𝑚𝑜𝑑𝑢𝑙𝑜 5  and, (2𝑘 + 1)2 ≡ 0, 1  𝑜𝑟 4 𝑚𝑜𝑑𝑢𝑙𝑜 5 , and

none of the combinations lead to 0 𝑚𝑜𝑑𝑢𝑙𝑜 5 , except when both are congruent to 

0 𝑚𝑜𝑑𝑢𝑙𝑜 5. 

In particular, 2𝑘 + 1 ≡ 0(𝑚𝑜𝑑 5), which by (1.2.5) implies that the coefficient of 𝑞5𝑛+5 ,

𝑛 ≥ 0 in 𝑞(𝑞; 𝑞)∞
4  is a multiple of 5. The co-efficient of 𝑞5𝑛+5 on the right side of (1.2.4) is

also a multiple of 5, i.e., 𝑝(5𝑛 + 4) is a multiple of 5. 

Theorem 𝟑. 𝟐: For each non-negative integer 𝑛,  

       𝑝(7𝑛 + 5) ≡ 0(𝑚𝑜𝑑 7)        (1.3.1) 

Proof: First by the binomial theorem  (𝑞; 𝑞)∞
7 ≡ (𝑞7; 𝑞7)∞(𝑚𝑜𝑑 7),

So,              𝑞2(𝑞7; 𝑞7)∞ ∑ 𝑝(𝑛)𝑞𝑛∞
𝑛=0 = 𝑞2

(𝑞7;𝑞7)
∞

(𝑞;𝑞)∞
= 𝑞2(𝑞; 𝑞)∞

6
(𝑞7;𝑞7)

∞

(𝑞;𝑞)∞
7

≡ 𝑞2(𝑞; 𝑞6)∞(𝑚𝑜𝑑 7)  (1.3.2) 

We now see from (1.3.2) that in order to show that 𝑝(7𝑛 + 5) is divisible by 7, we must 

show that the coefficients of 𝑞7𝑛+7 on the left side of  (1.3.2) are multiples of 7.

Applying Jacobi’s identity, we find that 

𝑞2(𝑞; 𝑞)∞
6 = 𝑞2{(𝑞; 𝑞)∞

3 }2

 = ∑ ∑(−1)𝑗+𝑘(2𝑗 + 1)(2𝑘 + 1)

∞

𝑘=0

∞

𝑗=0

𝑞2+
1
2

𝑗(𝑗+1)+
1
2

𝑘(𝑘+1)
 (1.3.3) 

We have          (2𝑗 + 1)2 + (2𝑘 + 1)2 = 8 {2 +
1

2
𝑗(𝑗 + 1) +

1

2
𝑘(𝑘 + 1)} − 14 

⇒ (2𝑗 + 1)2 + (2𝑘 + 1)2 ≡ {2 +
1

2
𝑗(𝑗 + 1) +

1

2
𝑘(𝑘 + 1)} (𝑚𝑜𝑑 7) 
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So, 2 +
1

2
𝑗(𝑗 + 1) +

1

2
𝑘(𝑘 + 1) is a multiple of 7 if and only if 

 (2𝑗 + 1)2 + (2𝑘 + 1)2 ≡ 0(𝑚𝑜𝑑 7)  (1.3.4) 

We easily see that (2𝑗 + 1)2 ≡ 0, 1, 2, 𝑜𝑟  4(𝑚𝑜𝑑 7) and (2𝑘 + 1)2 ≡ 0, 1,

2, 𝑜𝑟  4(𝑚𝑜𝑑 7), and so the only way (1.3.4) can hold is if both (2𝑗 + 1)2,   (2𝑘 + 1)2 ≡

0(𝑚𝑜𝑑 7) .  

So the coefficients on the right side of (1.3.3) are multiples of 7. Hence, the coefficient of 

𝑞7𝑛+7, 𝑛 ≥ 1, on the left side of (1.3.3) is a multiple of 7.

So,    𝑝(7𝑛 + 5) ≡ 0(𝑚𝑜𝑑 7). 

Theorem 3.3: For each non-negative integer 𝑛, 

 𝑝(11𝑛 + 6) ≡ 0(𝑚𝑜𝑑 11)  (1.4.1) 

Proof: Let us denote by 𝐽 an integral power series in 𝑥 whose coefficients are integers. 

It is obvious from (1.1.10) that 

 𝑄𝑅 = 1 + 11𝐽  (1.4.2) 

Also 𝑛11 − 𝑛 ≡ 0(𝑚𝑜𝑑 11), and so from (1.1.2) and (1.1.11),

𝑄3 − 3𝑅2 = 441𝑄3 + 250𝑅2 + 11𝐽 = 691 + 65520 (
𝑥

1 − 𝑥
+

211𝑥2

1 − 𝑥2
+ ⋯ ) + 11𝐽

 = −2 + 48 (
𝑥

1 − 𝑥
+

2𝑥2

1 − 𝑥2
+ ⋯ ) + 11𝐽 = −2𝑃 + 11𝐽  (1.4.3) 

It can be deduced that 

(𝑄3 − 𝑅2)5 = (𝑄3 − 3𝑅2)5 − 𝑄(𝑄3 − 3𝑅2)3 − 𝑅(𝑄3 − 3𝑅2)2 + 6𝑄𝑅 + 11𝐽 

       = 𝑃5 − 3𝑃3𝑄 − 4𝑃2𝑅 + 6𝑄𝑅 + 11𝑗                                                                  (1.4.4) 

On multiplying (1.1.16), (1.1.19), (1.1.21) , and (1.1.22)  by −1, 3, −4,  and −1,  and 

adding, we obtain, on rejecting multiples of 11, 

𝑃5 − 3𝑃3𝑄 − 4𝑃2𝑅 + 6𝑄𝑅 = −5Φ1,8 + 3Φ2,7 + 3Φ3,6 − Φ4,5 + 11𝑗

and from this and (1.4.4) follows 

(𝑄3 − 𝑅2)5 = − ∑(5𝑛𝜎7(𝑛) − 3𝑛2𝜎3(𝑛) − 3𝑛3𝜎5(𝑛) + 𝑛4𝜎1(𝑛))𝑥𝑛 + 11𝐽  (1.4.5)

∞

𝑛=1

 

Again we have 

(𝑓(𝑥))
120

=
𝑓(𝑥121)

𝑓(𝑥)
+ 11𝐽  (1.4.6) 

From (1.4.5) and (1.4.6) 

𝑥5
𝑓(𝑥121)

𝑓(𝑥)
= 𝑥5(𝑓(𝑥))

120
+ 11𝐽 = 17285𝑥5(𝑓(𝑥))

120
+ 11𝐽 = (𝑄3 − 𝑅2)5 + 11𝐽

= − ∑(5𝑛𝜎7(𝑛) − 3𝑛2𝜎5(𝑛) − 3𝑛3𝜎3(𝑛) + 𝑛4𝜎1(𝑛))𝑥𝑛 + 11𝐽

∞

𝑛=1

So 

𝑝(𝑛 − 5) − 𝑝(𝑛 − 126) − 𝑝(𝑛 − 247) + 𝑝(𝑛 − 610) + 𝑝(𝑛 − 852) − 𝑝(𝑛 − 1457) − ⋯ 

≡ −𝑛4𝜎1(𝑛) + 3𝑛3𝜎3(𝑛) + 3𝑛2𝜎5(𝑛) − 5𝑛𝜎7(𝑛)(𝑚𝑜𝑑 11)

5, 126, 247, … being the numbers of the forms 
1

2
(11𝑛 − 2)(33𝑛 − 5),

1

2
(11𝑛 + 2)(33𝑛 + 5); 
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And in particular that    𝑝(11𝑛 − 5) ≡ 0(𝑚𝑜𝑑 11), 

So, 𝑝(11𝑛 + 6) ≡ 0(𝑚𝑜𝑑 11). 

Theorem 3.4: For each non- negative integer n,      𝑝(25𝑛 + 24) ≡ 0(𝑚𝑜𝑑 25). 

Proof: We have, 

∑ 𝑝(5𝑛 + 4)𝑞𝑛 = 5
(𝑞5; 𝑞5)∞

4

(𝑞; 𝑞)∞

∞

𝑛=0

= 5(𝑞5; 𝑞5)∞
4 ∑ 𝑝(𝑛)𝑞𝑛(𝑚𝑜𝑑 25).

∞

𝑛=0

 (1.5.1) 

From theorem 3.1, we know that the coefficients of 𝑞4, 𝑞9, 𝑞14, … 𝑞5𝑛+4, … on the far right

side of (1.5.1) are all multiple of 25. It follows that the coefficients of 𝑞5𝑛+4, 𝑛 ≥ 0, on the far

left side of (1.5.1) are also multiples of 25, i.e,    𝑝(25𝑛 + 24) = 0(𝑚𝑜𝑑 25). 

This completes the proof. 
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