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ABSTRACT: We will describe a subclass of p-valent analytic functions in this paper and will 

obtain sharp upper bounds of the functional            
   for the analytic function  ( )  

     ∑   
 
              belonging to this subclass. 
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MATHEMATICS SUBJECT CLASSIFICATION: 30C50 

1. Introduction : Let   denote the class of functions of the form 

 ( )      ∑   
 
                 (1.1) 

which are analytic in the unit disc             . Let   be the class of functions of the form 

(1.1), which are analytic univalent in  .  

 In 1916, Bieber Bach ([7], [8]) proved that        for the functions  ( )  . In 1923, 

Löwner [5] proved that        for the functions  ( )  ..  

         With the known estimates        and       , it was natural to seek some relation 

between    and   
  for the class  , Fekete and Szegö[9] used Löwner’s method to prove the 

following  well known result for the class  .  

         Let  ( )   , then 

       
   [

                                         

      (
   

   
)            

                                          

         (1.2) 
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         The inequality (1.2) plays a very important role in determining estimates of higher 

coefficients for some sub classes   (See Chhichra[1], Babalola[6]). 

Let us define some subclasses of  . 

         We denote by S*, the class of univalent starlike functions 
 

 ( )    ∑     

 

   

                                   

   (
  ( )

 ( )
)                          (1.3) 

         We denote by  , the class of univalent          convex functions 

 ( )     ∑     

 

   

                                     

  
((   ( ))

  ( )
                                  (1.4) 

         p-VALENT FUNCTION:  

           Multivalent functions and in particular p-valent functions, are a generalization of 

univalent functions. In the study of univalent functions, one of the fundamental problems is 

whether there exists a univalent mapping from a given domain   onto a given domain  . A 

necessary condition for the existence of such a mapping is that   and   have equal degrees of 

connectivity. If   and   are simply-connected domains whose boundaries contain more than one 

point, then this condition is also sufficient and the problem reduces to mapping a given domain 

onto a disc. In this connection, a special role is played in the theory of univalent functions on 

simply-connected domains by the  , class of functions   that are regular and univalent on the 

unit disc               , normalized by the conditions  ( )      ( )   , and having the 

expansion 

 ( )       
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In the case of multiply-connected domains, mappings of a given multiply-connected domain onto 

so-called canonical domains are studied. In particular, p-valent functions can be defined as 

follow:  

          Let    (p is a positive integer) denote the class of functions of the form 

 ( )      ∑       
   

 

   

 

which are analytic in the unit disc  . Clearly,     .  A function  ( )       is said to be p-

valent in   if it assumes no value more than p times in  . 

p-VALENT STARLIKE FUNCTION:  

          A function  ( )     is said to be a p-valent starlike function in E if there exists a 

positive real number ρ such that  

  (
   ( )

 ( )
)    

and 

∫ [  (
   ( )

 ( )
)]

 

 

                  

         

          We denote the class of p-valent starlike functions by   
 . By   

 ( ), we denote the class of 

functions  ( )     satisfying the condition 

  (
   ( )

 ( )
)              

Note: p-valent starlike functions are also called p-valently starlike functions. 

 ( )    
 ( ) is called p-valently starlike function of order  . 
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We introduce a new subclass as { ( )     
[ {   ( )}

 
]
 

     ( )  
  

    

    
    } and we will denote this 

class as  ( )    
    

Symbol   stands for subordination, which we define as follows: 

Principle of Subordination: Let  ( ) and  ( ) be two functions analytic in  . Then  ( ) is 

called subordinate to F(z) in   if there exists a function  ( ) analytic in   satisfying the 

conditions  ( )    and   ( )    such that  ( )   ( ( ))       and we write  ( )   

  ( )  

         By  , we denote the class of analytic bounded functions of the form   ( )  

 ∑      
     ( )      ( )          (1.5) 

It is known that                    
   (1.6) 

2.   PRELIMINARY LEMMAS:         For          , we write  ( )    (
   

    
) so that 

 
   ( )

   ( )
                 (      

  )                                                             (2.1) 

Here        ,       -     
                                                                                                    (2.2) 

3. MAIN RESULTS 

THEOREM 3.1: Let  ( )    
    then 

|          
 |  

{
 
 
 
 
 

 
 
 
 
 

(   )   (   )    

 (   ) 
  

(   )   

(   ) 

     
 (   )  (   ) (   ) 

 (   ) (   )  
                                                 (   )        

(   )  

 (   ) 

  
 (   )  (   ) (   ) 

 (   ) (   )      
     (   )  (   ) 

 (   ) (   )     (   )

 
(   )   

(   ) 
  

(   )   (   )    

 (   ) 

      
     (   )  (   ) 

 (   ) (   )                                               (   )

                   

The results are sharp. 
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Proof: By definition of  ( )    
  , we have 

[ {   ( )}
 
]
 

     ( )  
 

    

    
  ( )                  (3.4) 

 Expanding the series (3.4), we get      

           (   )         (   )              (      (   )  (   )(   

   
  )       )(             (   )           (   )           )                        (3.5) 

Identifying terms in (3.5), we get 

                          
  (   )  

(   ) 
                                                                                                   (3.6)   

      
  

 (   )    (   )(      
  )  

 (   ) 
                                                                                          (3.7) 

From (3.6) and (3.7), we obtain  

           
   

  
 (   )    (   )(      

  )  

 (   ) 
    

  
 (   )   

(   ) 
                  (3.8) 

Taking absolute value, (3.8) can be rewritten as  

           
   

    (   )  

 (   ) 
   |

(   )     (   )  

 (   ) 
    

(   )   

(   ) 
|     

                                 (3.9) 

Using (2.2) in (3.9), we get  

           
   

(       )(   )  

 (   ) 
   |

(   )     (   )  

 (   ) 
    

(   )   

(   ) 
|     

                       (3.10)  

Case I:    
 (   )    (   ) 

 (   ) (   )  
 

(3.10) can be rewritten as  

           
   

(       )(   )  

 (   ) 
   (

(   )     (   )  

 (   ) 
    

(   )   

(   ) 
)     

   



Turkish Journal of Computer and Mathematics Education   Vol.11 No.02 (2020), 1158-1164 

 

 

1163 

 

 
 

Research Article  

               
   

(   )  

 (   ) 
   (

(   )    (   )(   )  

 (   ) 
    

(   )   

(   ) 
)     

                        (3.11) 

Subcase I (a):    
 (   )  (   ) (   ) 

 (   ) (   )   

Using (2.2), (3.11) becomes 

                    
         

(   )   (   )    

 (   ) 
  

(   )   

(   ) 
                                                          (3.12) 

Subcase I (b):    
 (   )  (   ) (   ) 

 (   ) (   )  
  We obtain from (3.11) 

                     
    

(   )  

 (   ) 
                                                                                             (3.13) 

Case II: :     
 (   )    (   ) 

 (   ) (   )   

Preceding as in case I, we get  

|          
 |  

(   )  

 (   ) 
     (

(   )    (   )(   )  

 (   ) 
    

(   )   

(   ) )     
      (    ) 

  Subcase II (a):      
     (   )  (   ) 

 (   ) (   )                                                                                                                                                                                                                                                                                                                                                                  

(3.14) takes the form     

           
   |          

 |

 
(   )  

 (   ) 
     (

(   )    (   )(   )  

 (   ) 
    

(   )   

(   ) 
) 

 

           
         

(   )   

(   ) 
  

(   )   (   )    

 (   ) 
                                   (    ) 
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Subcase II (b):    
     (   )  (   ) 

 (   ) (   )   

Preceding as in subcase I (b), we get 

 

           
   

(   )  

 (   ) 
                                                                                                          (    ) 

Combining (3.12),(3.13), (3.15) and (3.16), the theorem is proved. 

Extremal function for (3.1) and (3.3) is defined by 

   ( )    (    )    where                        

        
(   )  (   )  (   ) ((   )   )

(   ) (   ) 
 

And 

  
(   )  (   ) 

(   )  (   )  (   ) ((   )   )
 

Extremal function for (3.2) is defined by  

  ( )   (   
   

 (   ) 
)

(   )

 

Corollary 3.2:  Putting          in the theorem, we get  

|          
 |  

{
 
 
 
 

 
 
 
 

  (     )

(   ) 
  

    

(   ) 
     

(     ) 

   (   ) 
 

  

(   ) 
    

(     ) 

   (   )
 
   

(   ) 

   (   ) 

    

(   )
 
   

  (     )

(   ) 
      

(   ) 

   (   )
 
 

 

Corollary 3.3:  Putting     in the theorem, we get  
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{
  
 

  
 
(   )(    )

  
  

(   ) 

  
      

 (      )

 (   )
(   )

  
    

 (      )

 (   )
   

 (      )

 (   )

 (   ) 

  
 

(   )(    )

  
     

 (      )

 (   )

 

 Corollary 3.4:  Putting              in the theorem, we get  

       
   

{
 
 

 
 

 

 
  

 

 
       

 

 
 

 
       

 

 
    

  

 

 
 

 
  

 

 
      

  

 

 

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent 

convex functions. 
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