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ABSTRACT 

In this paper we prove  common fixed point theorems satisfying contractive conditions involving 

rational expressions and product for four mappings that satisfy property (E.A) along with weak 

compatibility of pairs are proved property are obtained in complex valued metric spaces which 

generalize various results of ordinary metric spaces.  

 

1. Introduction : 

Fixed point theory is one of the fundamental theories in nonlinear analysis which has various 

applications in different branches of mathematics. In this theory, to prove the existence and the 

uniqueness of a fixed point of operators or mappings has been a valuable research area by using 

the Banach contraction principle. There are many generalizations of the Banach contraction 

principle particularly in metric spaces. Generalizations of the concept of metric spaces such as 2-

metric spaces, D-metric spaces, G-metric spaces, K-metric spaces, cone metric spaces, and 

probabilistic metric space.  

Recently, Huang and Zhang [1] generalized the concept of metric spaces, replacing the set of real 

numbers by an ordered Banach space; hence they have defined the cone metric spaces. They 

have proved some fixed point theorems of contractive mappings on complete cone metric space 

with the assumption of normality condition of a cone. Azam et al. [2] introduced and studied the 

notion of complex valued metric space and established some common fixed point theorems for 

mappings involving rational expressions which are not meaningful in cone metric spaces.  

In 2002, Aamri and Moutawakil [3] introduced the property (E.A) and pointed out that this 

property buys containment of ranges without any continuity requirements besides minimizing the 

commutativity conditions of the maps to the commutativity at their points of coincidence. 

Further, property (E.A) allows replacing the completeness condition of the space with a natural 

condition of closeness of the range.. 

The aim of this paper is to establish common fixed point theorems for two pairs of weakly 

compatible self-mappings of a complex valued metric space satisfying contractive condition 

involving product and rational expressions Moreover, we give some results using the property 

common limit in the range of one of the mappings.  
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2. Basic Facts and Definitions : 

Let ℂ be the set of all complex numbers and 𝑧1, 𝑧2 ∈ ℂ . Define a partial order relation ≾ on ℂ as 

follows:  

𝑧1 ≾ 𝑧2 if and only if 𝑅(𝑧1 ) ≤ 𝑅𝑒(𝑧2 ) and 𝐼𝑚(𝑧1 ) ≤ 𝐼𝑚(𝑧2 ).                     (2.1) 

Thus 𝑧1 ≾ 𝑧2 if one of the followings holds:  

(1) 𝑅(𝑧1 ) = 𝑅𝑒(𝑧2 ) and 𝐼𝑚(𝑧1 ) = 𝐼𝑚(𝑧2 ),  

(2) 𝑅(𝑧1 ) < 𝑅𝑒(𝑧2 ) and 𝐼𝑚(𝑧1 ) = 𝐼𝑚(𝑧2 ),  

(3) 𝑅(𝑧1 ) = 𝑅𝑒(𝑧2 ) and 𝐼𝑚(𝑧1 ) < 𝐼𝑚(𝑧2 ) and  

(4) 𝑅(𝑧1 ) < 𝑅𝑒(𝑧2 ) and 𝐼𝑚(𝑧1 ) < 𝐼𝑚(𝑧2 ).  

We write 𝑧1 ⋨ 𝑧2 if 𝑧1 ≾ 𝑧2 and 𝑧1 ≠ 𝑧2 i.e., one of (2), (3) and (4) is satisfied and we will write 𝑧1 

≺ 𝑧2 if only (4) is satisfied.  

Remark 2.1: We can easily check the followings:  

(i) 𝑎, 𝑏 ∈ ℝ, 𝑎 ≤ 𝑏 ⇒ 𝑎𝑧 ≾ 𝑏𝑧, ∀ 𝑧 ∈ ℂ.  

(ii) 0 ≾ 𝑧1 ⋨ 𝑧2 ⇒ |𝑧1 | < |𝑧2 |.  

(iii) 𝑧1 ≾ 𝑧2 and 𝑧2 ≺ 𝑧3 ⇒ 𝑧1 ≺ 𝑧3. Azam et al. [4] defined the complex valued metric 

space in the following way:  

Definition 2.2 ([12]):  

Let 𝑋 be a nonempty set. Suppose that the mapping 𝑑 ∶ 𝑋 × 𝑋 → ℂ satisfies the following 

conditions:  

(C1) 0 ≾ d(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;  

(C2) d(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋;  

(C3) d(𝑥, 𝑦) ≾ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then 𝑑 is called a complex valued metric on 

X and (𝑋, 𝑑) is called a complex valued metric space.  

Definition 2.3.([9]): Let (𝑋, 𝑑) be a complex valued b-metric space. Then  

(i) A sequence {𝑥𝑛} in 𝑋 is said to converge to 𝑥 ∈ 𝑋 if for every 0 ≺ 𝑟 ∈ ℂ there exists 

𝑁 ∈ ℕ such that (𝑥𝑛 , 𝑥 ) ≺ 𝑟, ∀ 𝑛 > 𝑁. We denote this by lim𝑛→∞ 𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥 

as 𝑛 → ∞.  
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(ii) If for every 0 ≺ 𝑟 ∈ ℂ there exists 𝑁 ∈ ℕ such that (𝑥𝑛 , 𝑥𝑛+𝑚) ≺ 𝑟 for all 𝑛 > 𝑁, 𝑚 ∈ 

ℕ, then {𝑥𝑛} is called a Cauchy sequence in (𝑋, 𝑑).  

(iii) If every Cauchy sequence in 𝑋 is convergent in 𝑋 then (𝑋, 𝑑) is called a complete 

complex valued b-metric space.  

Lemma 2.4. Let 𝑋 be a complex valued metric space and {𝑥𝑛} a sequence in 𝑋. Then  

(i) {𝑥𝑛} converges to 𝑥∈𝑋 if and only if |𝑑(𝑥n,𝑥)| → 0 as 𝑛→∞;  

(ii) {𝑥𝑛} is a Cauchy sequence if and only if |𝑑(𝑥𝑛, 𝑥𝑚)| → 0 as 𝑛, 𝑚 → ∞.  

Lemma 2.5. Let  X be a complex valued b- metric space  and sequences {xn}, {yn} such that 

limn→∞ xn = x and limn→∞ yn = y, then limn→∞ |𝑑 𝑥  𝑦 |= |𝑑 𝑥 𝑦  | 

Lemma 2.6.Let  X be a complex valued b- metric space  then |      |  |𝑑 𝑥 𝑦   𝑑 𝑦 𝑧 | 

And |      |  |𝑑 𝑥 𝑦   𝑑 𝑧 𝑦 | 

For all x,y,z ∈ X . Also d(x,y) = d(y,x) for all x,y∈ X. 

Lemma 2.7. Let  X be a complex valued b- metric space  and sequences {xn}, {yn} such that 

limn→∞ xn = x and limn→∞ yn = y, then limn→∞ |𝑑 𝑥  𝑦 |= 0. Whenever xn is a sequence in X such 

that limn→∞ xn = t and limn→∞ yn = y for some t∈ X  

Definition 2.8. The ‘max’ function for the partial order ≾ is defined as follows:  

(1) max{𝑧1, 𝑧2 } = 𝑧2 ⟺ 𝑧1 ≾ 𝑧2.  

(2) 𝑧1 ≾ max{𝑧2, 𝑧3 } ⇒ 𝑧1 ≾ 𝑧2 or 𝑧1 ≾ 𝑧3 .  

(3) max{𝑧1, 𝑧2 } = 𝑧2 ⟺ 𝑧1 ≾ 𝑧2 or |𝑧1 |≤ |𝑧2 |.  

Lemma 2.9 (see [12]).  

Let 𝑧1, 𝑧2, 𝑧3,... ∈ ℂ and the partial order relation ⪯ is defined on ℂ. Then the following 

statements are easy to prove.  

(i) If 𝑧1 ⪯ max{𝑧2, 𝑧3}, then 𝑧1 ⪯ 𝑧2 if 𝑧3 ⪯ 𝑧2.  

(ii) If 𝑧1 ⪯ max{𝑧2, 𝑧3, 𝑧4}, then 𝑧1 ≤ 𝑧2 if max{𝑧3, 𝑧4} ⪯ 𝑧2.  

(iii) If 𝑧1 ⪯ max{𝑧2, 𝑧3, 𝑧4, 𝑧5}, then 𝑧1 ≤ 𝑧2 if max{𝑧3, 𝑧4, 𝑧5}⪯𝑧2.  

Now we give the definition of complex valued metric space which has been introduced by Azam 

et al. [2].  
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Definition 2.10 (see [14]).  

A pair of self-mappings 𝑆, 𝑇 : 𝑋 → 𝑋 is called weakly compatible if they commute at their 

coincidence point; that is, if there is a point 𝑧∈𝑋 such that 𝑆𝑧 = 𝑇𝑧, then 𝑆𝑇𝑧 = 𝑇𝑆𝑧, for each 

𝑧∈𝑋. The definition of property (E.A) has been introduced by Aamri and Moutawakil in [3] and 

redefined by Verma and Pathak [12] in complex valued metric spaces.  

Definition 2.11.  

Let 𝑆, 𝑇 : 𝑋 → 𝑋 be two self-mappings of a complex valued metric space (𝑋, 𝑑). The pair (𝑆, 𝑇) 

is said to satisfy property (E.A), if there exists a sequence {𝑥𝑛}in 𝑋 such that  

lim𝑛→∞𝑑 (𝑆𝑥𝑛, 𝑢) = lim𝑛→∞𝑑 (𝑇𝑥𝑛, 𝑢) = 0,                                         (2.2)  

for some 𝑢∈𝑋.  

Example 2.12. Let 𝑋 = C be endowed with the complex valued metric 𝑑 : C × C → C as  

𝑑 (𝑧1, 𝑧2) = |𝑥   𝑥 |+ i|𝑦   𝑦 | , (2.3) 

where 𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑥2 + 𝑖𝑦2. Then (C, 𝑑) is a complete complex valued metric space. Define 

the mappings 𝑇, 𝑆 : 𝑋→𝑋 as 𝑇𝑧 = 2𝑧 − 1, 𝑆𝑧 = 𝑧2
 for all 𝑧∈𝑋 and consider the sequence  

{𝑧𝑛} = {1 + 𝑖/2𝑛 }. Thus we obtain  

lim𝑛→∞𝑑 (𝑇𝑧𝑛, 𝑧) = lim𝑛→∞𝑑 (𝑆𝑧𝑛, 𝑧) ,  

lim𝑛→∞𝑑 (2 (1 + 𝑖 
 

  ) − 1, 1) = lim𝑛→∞𝑑 (          
 

    
 , 1) = 0,             (2.4)  

where 𝑧=1 is the limit of sequence {𝑧𝑛}. Hence the pair(𝑆, 𝑇) satisfies property (E.A).  

Definition 2.12 (see [15]). Let 𝑆 and 𝑇 be two self-mappings of complex valued metric space 𝑋. 

𝑆 and 𝑇 are said to satisfy the common limit in the range of 𝑆 property if  

lim𝑛→∞𝑑 (𝑆𝑥𝑛, 𝑆𝑥) = lim𝑛→∞𝑑 (𝑇𝑥𝑛, 𝑆𝑥) = 0, (2.5) for some 𝑥∈𝑋.  

Note: some common fixed point in a complex valued metric space . let   :𝑅  𝑅 such that    

Is non decreasing condition and ∑    
   (t)     for all t > 0 . it is clear that   (t)  0 as n  

 for all t >0 and hence we have     < t  for all t > 0. 

3. Main Results  

In this section, initially, some common fixed point results for the pairs, which are weakly 

compatible and satisfy property (E.A), have been proved, by reconstructing the contractive 

conditions given in [16].  
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Theorem 3.1.  

Let (X, d) be a complex valued metric space and let A, B, U, T : X → X be four self-mappings 

satisfying the following conditions:  

(i) A(X) ⊆ U(X), B(X) ⊆ T(X);  

(ii) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2, k3 < 1 such that  

S(Ax, Bz) ≤  (max{d(T x,Uz), k1d(Ax,T x), k2d(Bz,Uz), k3S(Ay,Bz)}). (3.1)  

(iii) the pair (B, U) and (A, T) are weaklycompatible 

(iv) one of the pairs (B, U) and (A, T) satisfies property (E.A) 

if the range of one of the mapping U(X), T(X) is complete subspace of X;Then the maps A, B, 

U and T have a unique common fixed point in X.  

Proof: Let x0 ∈ X be arbitrary point of X. From condition (i) we can construct a sequence {yn} 

in X as follows:  

y2n = Ax2n = Ux2n+1, y2n+1 = Bx2n+1 = Tx2n+2, n ≥ 0.  

Now, we show that {yn} is a Cauchy sequence. Let dn+1 = S(yn, yn+1). Then we have  

𝑑    = d(𝑦   𝑦    )  

= d( 𝑦    𝑦    ))  

≤   (max{ d(𝑇𝑥         )  

k1 d( 𝑥   𝑇𝑥  ) k2 d( 𝑥      𝑥   ) k3d( 𝑥      𝑥    )}  

= ϕ(max{{ d(𝑦     𝑦  )  

k1 d(𝑦   𝑦    ) k2 d(𝑦     𝑦  ) k3d(𝑦   𝑦    )}  

= ϕ(max{d2n, k1d2n, k2d2n+1, k3d2n+1}).  

Thus d2n+1 ≤ ϕ(d2n). By comparable point of view we have,  

d2n = d(y2n−1, y2n) =d(y2n, y2n−1) = d(Ax2n, Bx2n−1)  

≤ ϕ(max{d(Tx2n, Ux2n−1), k1d(Ax2n, Tx2n), k2d(Bx2n−1, Ux2n−1), k3d(Ax2n,Bx2n−1)})  

= ϕ(max{{ d(𝑦     𝑦    ) k1 d(𝑦   𝑦    ) k2 d(𝑦     𝑦    ) k3d(𝑦   𝑦    )}  

 = ϕ(max{d2n−1, k1d2n, k2d2n−1, k3d2n}).  

Thus d2n ≤ ϕ(d2n−1). Hence, for all n ≥ 2, we have,  
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d(yn,yn+1) ≤ ϕ(d(yn-1,yn)  

≤ ϕ 
2
 d(yn-2,yn-1) · · · · · · 

 ≤ ϕ 
n−1

 (d(y1,y2)).  

for m > n we have 

 d(𝑦  𝑦 ) ≤  d(𝑦  𝑦   ) + d(𝑦    𝑦 )  

≤  d(𝑦  𝑦   ) + d(𝑦    𝑦   ) d(𝑦   𝑦  ) · · · · · ·  

≤  ∑                            
     

≤ [ n−1
                            + · · · +               ]  

=  ∑             
   
     .  

Since  ∑          
    < ∞ for all t > 0,  

so d(yn, ym) → 0 as n → ∞. Therefore, for each ε > 0, there exists n0 ∈ N such that for each n, m 

≥ n0, d(yn, ym) < ε. Hence, {yn} is a Cauchy sequence in X.  

Since X is a complete metric space, there exists u ∈ X such that        𝑥   =        𝑥     

=        𝑥     =       𝑇𝑥     = u.  

Since T is continuous, so we have  

      𝑇 𝑥     = u and       𝑇 𝑥   = Tu., then  

      𝑑  𝑇𝑥   𝑇 𝑥    = 0. So we have        𝑇𝑥   = Tu.  

by condition (3.1), we obtain 𝑑  𝑇𝑥    𝑥       

≤ ϕ(max{d(𝑇 𝑥    𝑥     k1d(ATx2n, 𝑇 𝑥  ),k2d( 𝑥    , 𝑥    ), k3d(ATx2n,  𝑥    ,)}). 

(3.2) Taking the upper limit as n → ∞ in                                        (3.2),  

we get  

d(Tu, u) ≤ ϕ(max{d(Tu, u), 0, 0, k3d(Tu,u)})  

= ϕ(d(Tu,u)).  

Hence, d(Tu, u) ≤ ϕ(d(Tu, u)) < d(T u, u), which is a contradiction. So, T u = u. simarlary since 

U is contionous we obtain that  

that         𝑥     = Uu and         𝑥     = Uu.  
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then       𝑑  𝑥       𝑥      = 0 

So we have        𝑥     = u.  

by condition (2), we obtain  

𝑑  𝑥    𝑥       

≤ ϕ(max{d(𝑇𝑥    
 𝑥     k1d(Ax2n, 𝑇𝑥  ),k2d(  𝑥    ,  𝑥    ), k3d(Ax2n,   𝑥    ,)}). 

(3.3) Taking the upper limit as n → ∞ in (4), we get  

d(u, Ru) ≤ ϕ(max{d(u, Uu), 0, 0, k3d(u, Uu)}) = ϕ(d(u, Uu)).  

Consequently, d(u, Uu) ≤ ϕ(d(u, Uu)) < d(u, Uu) which is a contradiction. Uu=u Also, we can 

apply condition (3.1) to obtain we have Tu=Uu=u 

d(Au,Bx2n+1) ≤ ϕ(max{d(Tu, Ux2n+1), k1d(Au, Tu), k2d(Bx2n+1, Ux2n+1), k3d(Au, Bx2n+1)}). (3.4) 

Taking the upper limit as n → ∞ in (3.4),  

we have  

d(Au, u) ≤ ϕ(max{d(Tu, u), k1d(Au, Tu), k2d(u,u), k3d(Au,u)}) ≤ max{k1, k3}d(Au,u). if Au u, 

then this implies that max{k1, k3} ≥ 1, which is a contradiction. Hence, from ϕ(t) < t for all t > 0, 

we have Au = u.  

Finally, by using of condition (3.1), we get  

d(u,Bu) = S(Au,Bu)  

≤ ϕ(max{S(Tu, Uu), k1d(Au, Tu), k2d(Bu, Uu), k3S(Au,Bu)})  

≤ max{k2, k3}d(u,Bu). 

 if Bu u, then this implies that max{k2, k3} ≥ 1, which is a contradiction. Hence, from ϕ(t) < t 

for all t > 0, we have Bu = u.  

Thus, we have Tu=Uu=Au = Bu = u, that is, u is a common fixed point of A, B. U and T 

Suppose that p is another common fixed point of A, B,U and T  that is, p = Ap = Bp=Up=Tp. If 

u p, then by condition (3.1), we have that  

d(u, p) = d(Au, Bp) ≤ ϕ(max{d(Tu, Up), k1S(Au, Tu), k2S(Bp, Up), k3S(Au, Bp)})  

= ϕ(max{d(u,p), k1d(u,u), k2d(p,p), k3d(u,p)})  

≤ ϕ(d(u,p)).  
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Hence, S(u,p) ≤   (d(u, p)) which is a contradiction. Hence, u = p. Therefore, u is a unique 

common fixed point of A, B, U and T. This completes the proof.  

Corollary 3.1. Let (X, d) be a complex valued metric space and let A, U: X → X be mappings 

satisfying the following conditions S(Ax,Bz) ≤  (max{d(Ux,Uz), k1d(Ax,T x), k2d(Az, Uz), 

k3S(Ay, Bz)}).for all x,y in X where  ∈ (0,1)  

(1) A(x)   𝑥  

(2) the pair (A, U) and (A, T) are complete and weaklycompatible and also satisfies property 

(E.A) 

Then the maps A and U have a unique common fixed point in X 

Corollary 3.2. Let (X, d) be a complex valued metric space and let A, B,: X → X be mappings 

satisfying the following conditions  

S(Ax,Bz) ≤ ϕ(max{d(x,Uz), k1d(Ax, x), k2d(Bz, z), k3S(Ay,Bz)}).then A and B have a unique 

common fixed point in X.  

(1)A(x)   𝑥  

(2) the pair (A, B) are complete and weaklycompatible and also satisfies property (E.A) 

Then the maps B and A have a unique common fixed point in X 

Theorem 3.3.  

Let (X, d) be a complex valued metric space and let A, B, U, T : X → X be mappings satisfying 

the following conditions:  

(i) A(X) ⊆ U(X), B(X) ⊆ T(X);  

(ii) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2, k3 < 1 and p, q ∈ N 

such that d(A
p
x,B

q
 z) ≤ ϕ(max{d(Tx,Uz), k1d(A

p
x,T x), k2d(B

q
z, Uz), k3d(A

p
y,B

q
z)}). 

the pair (B, U) and (A, T) are weakly compatible 

(i) one of the pairs (B, U) and (A, T) satisfies property (E.A) 

if the range of one of the mapping U(X), T(X) is complete subspace of  X 

Then the maps A, B, U and T have a unique common fixed point. 

 Proof. (i) When p = q = 1, we have Au = Bu = Uu = T u = u, u is a unique common fixed 

point of A, B, U and T.  

(ii). If one of p and q is not equal to 1. Similar to Theorem 3.1, we can prove that A
p
 , B

q
 , U 

and T have a unique common fixed point u, that is, A
p
u = B

q
u = Uu = T u = u. Now, we 
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should prove u is unique common fixed point of A, B, U and T. Indeed, A
p 

(Au) = A
p+1

u = 

A(A
p
u) = Au = A(T u) = T(Au). So, Au is a common fixed point of A

p
 and T.  

   Suppose that Au  = u, and  

S(Au, u) = S(Au, B
q
u)  

= S(A
p
 (Au), B

q
u)  

≤ ϕ(max{S(T(Au), Uu), k1S(A
p
 (Au), T(Au)), k2S(B

q
u, Uu), k3S(A

p
(Au), B

q
u)})  

= ϕ(max{S(Au, u), k1S(Au,Au), k2S(u,u), k3S(Au,u)}) 

 ≤ ϕ(S(Au,u)). Hence, S(Au,u)  

≤ ϕ(S(Au,u)) < S(Au,u), which is a contradiction. It means that Au = u. And, B
q
 (Bu) = B

q+1
u = 

B(B
q
u) = Bu = B(Uu) = U(Bu).  

Thus, Bu is a common fixed point of B
q 

and U.  

Suppose that Bu  = u, and  

S(u,Bu) = S(A
p
u, B

q
(Bu))  

≤ ϕ(max{S(T u,U(Bu)),k1S(A
p
u, T u), k2S(B

q
 (Bu),U(Bu)), k3S(A

p
u, B

q 
(Bu))})  

= ϕ(max{S(u, u, Bu), k1S(u, u), k2S(Bu,Bu), k3S(u,Bu)}) ≤ ϕ(S(u,Bu)).  

Hence, S(u,Bu) ≤ ϕ(S(u,Bu)) < S(u,Bu), which is a contradiction. It means that Bu = u. 

Therefore, Au = Bu = Uu = T u = u. Thus, u is a unique common fixed point of A, B, U and T. 

This completes the proof.  

Corollary 3.4.  

Let (X, d) be a complex valued metric space and let A, B, U, T : X → X be mappings satisfying 

the following conditions  

(i) A(X) ⊆ U(X), B(X) ⊆ T(X);  

(ii) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2, k3 < 1 and p ∈ Nsuch 

that S(A
p
x, B

p
 z) ≤ ϕ(max{S(T x, Uz), k1S(A

p
x, , T x), k2S(B

p
z, Uz), k3S(A

p
y, B

p
 

z)}). the pair (B, U) and (A, T) are complete and weaklycompatible 

(iii) one of the pairs (B, U) and (A, T) satisfies property (E.A) 

if the range of one of the mapping U(X), T(X) is complete of X .Then the maps A, B, U and 

T have a unique common fixed point.  

Proof. Let p = q and the process of proof is similar to the proof of Theorem 2.6.  
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Theorem 3.5.  

Let (X, d) be a complex valued metric space and let A, B, U, T : X → X be mappings satisfying 

the following conditions  

(i) A(X) ⊆ U(X), B(X) ⊆ T(X);  

(ii) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2 < 1 such that  

d(Ax, Bz) ≤ ϕ(max{d(T x,Uz), k1d(Ax,T x), k2S(Bz,Uz)}) 

(iii) the pair (B, U) and (A, T) are weaklycompatible 

(iv) one of the pairs (B, U) and (A, T) satisfies property (E.A) 

if the range of one of the mapping U(X), T(X) is complete of X 

Then the maps A, B, U and T have a unique common fixed point.  

Proof. Let x0 ∈ X be arbitrary point of X. From condition (i) we can construct a sequence 

{yn} in X as follows:  

        y2n = Ax2n = Ux2n+1, y2n+1 = Bx2n+1 = Tx2n+2, n ≥ 0.  

Now, we show that {yn} is a Cauchy sequence.  

Let dn+1 = S(yn,yn+1). Then we have  

d2n+1 = S(y2n,y2n+1) = S(Ax2n, Bx2n+1)  

≤ ϕ(max{S(T x2n, Ux2n+1), k1S(Ax2n,Tx2n), k2S(Bx2n+1, Ux2n+1)})  

= k1 d(𝑦   𝑦    ) k2 d(𝑦     𝑦  ) k3d(𝑦   𝑦    )}  

= ϕ(max{d2n, k1d2n, k2d2n+1, k3d2n+1}).  

Thus d2n+1 ≤ ϕ(d2n). By similar arguments we have,  

d2n = d(y2n−1, y2n) =d(y2n, y2n−1) = d(Ax2n, Bx2n−1)  

≤ ϕ(max{d(x2n, x2n−1), k1d(Ax2n, x2n), k2d(Bx2n−1, x2n−1), k3d(Ax2n,Bx2n−1)})  

= ϕ(max{{ d(𝑦   𝑦  ) k1 d(𝑦   𝑦    ) k2 d(𝑦     𝑦  ) k3d(𝑦   𝑦    )}  

 = ϕ(max{d2n−1, k1d2n, k2d2n−1, k3d2n}).  

Thus d2n+1 ≤ ϕ(d2n). By similar arguments we have, 

d2n = d(y2n−1, y2n) =d(y2n, y2n−1) = d(Ax2n, Bx2n−1)  

≤ ϕ(max{d(x2n, x2n−1), k1d(Ax2n, x2n), k2d(Bx2n−1, x2n−1), k3d(Ax2n,Bx2n−1)})  
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= ϕ(max{{ d(𝑦   𝑦  ) k1 d(𝑦   𝑦    ) k2 d(𝑦     𝑦  ) k3d(𝑦   𝑦    )}  

 = ϕ(max{d2n−1, k1d2n, k2d2n−1, k3d2n}).  

Thus d2n ≤ ϕ(d2n−1). The process of next proof is similar to the proof of Theorem 2.1.  

Theorem 3.6. 

 Let (X, d) be a complex valued metric space and let A, B, U, T : X → X be mappings satisfying 

the following conditions  

(i) A(X) ⊆ U(X), B(X) ⊆ T(X);  

(ii) for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2 < 1 and p, q ∈ N such 

that  

S(A
p
x, B

q
 z) ≤ ϕ(max{S(T x,Uz), k1S(A

p
x,T x), k2S(B

q
 z,Uz)})  

(iii).the pair (B, U) and (A, T) are weaklycompatible 

(iv).one of the pairs (B, U) and (A, T) satisfies property (E.A) 

if the range of one of the mapping U(X), T(X) is complete subspace of xX Then the maps A, 

B, U and T have a unique common fixed point.  

Corollary 3.7.  

Let (X, d) be a complex valued metric space and let A, B, U, T : X → X be mappings satisfying 

the following conditions  

(i) A(X) ⊆ U(X), B(X) ⊆ T(X);  

(ii). for all x, y, z ∈ X, there exists a function ϕ ∈ Φ and 0 < k1, k2 < 1 and p ∈ N such that 

S(A
p
x,B

p
 z) ≤ ϕ(max{S(T x, Uz), k1S(A

p
x, T x), k2S(B

p
z, Uz)}) 

(iii). the pair (B, U) and (A, T) are weaklycompatible 

(iv)one of the pairs (B, U) and (A, T) satisfies property (E.A) 

if the range of one of the mapping U(X), T(X) is complete subspace of xX Then the maps A, 

B, U and T have a unique common fixed point.  
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