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Abstract: The idea of this work is to find the approximate solutions to the Fredholm and Volterra integral equations of the 

second kind using the Touchard and Bernstein polynomials. The approximate solutions were compared with the exact solutions 

to see the accuracy of the method and how effective it is, and to compare the solutions obtained using many terms used among 

them and in the last they can be compared also with the previously studied works. 
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1. Introduction 

Integral equations play an important role in many theoretical and applied researches due to the possibility of 

expressing the integral equation as a continuous or discontinuous integral operator. This work deals with the two 

types of integral equations Volterra and Fredholm. Here we will show how to find their solutions using 

polynomials of two different types, namely, Touchard and Bernstein with the collocation method and the 

comparison of the approximate solutions obtained with the exact solutions, in addition to comparing them also 

with some of the works carried out by ( Yalcinbas,  Aynigul, 2011; Yalcinbas, Aynigul, and Akkaya, 2010; Peter 

Alpha, 2021; Shoukralla, Ahmed, 2020). Which were previously accomplished in different methods. 

2. Problem Formulation 

Now consider the following linear integral equations of the second kind. 

 ( )   ( )   ∫  (   ) ( )  
 

                                                                                                                        (1) 

 

Where the functions ( ), and  (   ) are given and continuous functions in   and     respectively, the 

function  ( ) is to be determined as continuous function in  . Depending on the domain         or       the 

equation (1) describes the Volterra integral equation or Fredholm integral equation, respectively.  

The equation (1) can be put in the form of a linear functional equation 

 ( )    ( )   ( )                                                                                                                                       
 

With the linear mapping   given by 

  ( )  ∫  (   )

 

 ( )    

 

For the solution of the equation (1) in the complete function spaces, usually take it  ( ), we choose a 

sequence of finite dimensional subspaces       , having   basis functions                with dimension of 

    . 

Seeking the approximate function       of the function   given by 

  ( )  ∑   
 
     ( )                                                                                                                                          (2) 

 

Where the expression (2) describes the truncated Touchard series or Bernstein series of the solution of the 

equation (1), with the functions            represent the Touchard or Bernstein polynomials and           the 

coefficients to be determined. In other words, we can write 

  ( )    ( )     ( )   ( ) 

  ( )    ( )  ∫  (   )

 

  ( )    ( ) 
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 ∑   

 

   

  ( )   ∑   

 

   

 ∫  (   )

 

  ( )    ( ) 

 ∑   

 

   

[  ( )    ∫  (   )

 

  ( )  ]   ( )     

 

And     are coefficients to be determined. 

3. Solution with collocation-Polynomials methods 

Choose a selection of distinct points                  and require 

  (  )                                                                                                                                                        (3) 

 

The condition (3) leads us to determine the coefficients                solution of the linear system 

∑   
 
   [  (  )    ∫  (    ) 

  ( )  ]   (  )                                                                                (4) 

 

Define the matrices 

  (   )    (  ) 

 

And 

  (   )  ∫  (    )

 

  ( )   

 

    If the    (   )   , we can ensure that, there exists a solution of the linear system (4) and consequently 

the approximate solution   ( ) as a linear combination 

  ( )  ∑     ( )

 

   

 

 

    For which 

 

  (  )  ∫  (    )

 

  ( )    (  )           

 

In fact, the linear system may be written in matrix 

(   )                                                                                                                                                  (5) 

 

    Where   (            )   and    ( (  )  (  )      (  ))    For the determinant of the system (5) 

is different from zero    (   )   , then it has a unique solution 

  (            )   (   )    
 

The corresponding approximate solution 

  ( )  ∑     ( )

 

   

 

 

Has the property that its residual   ( ) vanishes at the selected nodes   . 

4. Touchard polynomials 

  The Touchard polynomials   ( ) is defined by   ( )    and the following recursion 

  ( )  ∑   
 ( ) 

 

   

 

The Touchard polynomial   ( ) is polynomials with rational coefficients 
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0   

1     

2         
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10                                                        

 

5. Bernstein polynomials 

The Bernstein polynomials of degree   over the interval       are defined by 

    ( )  (
 
 
)
(   ) (   )   

(   ) 
                             

 

The Bernstein polynomials having degree    satisfies the following properties 

{
 
 

 
 

 )     ( )                      

 ) ∑     ( )                                           

 

   

 )     ( )      ( )           

  

 

Noting that, the Bernstein polynomial     ( ) is polynomials with rational coefficients 
 

i       

0 (   )   (   )   

1   (   ) (   ) (   )   

2   (   ) (   )  (   )   

3    (   ) (   )  (   )   

4    (   ) (   )  (   )   

5    (   ) (   )  (   )   

6    (   ) (   )  (   )   

7    (   ) (   )  (   )   

8   (   ) (   )  (   )   

9   (   )(   )  (   )   

10 (   )   (   )   

 

5. Existence and uniqueness theorems 

Here we present the following two theorems which confirm the existence and the uniqueness of the solution 

for the work we are going to study. 

Consider the linear integral equation (1).                                                                

Where the conditions 

1-    ( )    ( )    (   ) 

2-      (   )      (   )  
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5.1 Theorem    

    Let        be compact and the equation 

(   )                                                                                                                                                   (6) 

 

Admit a unique solution. That the projections         satisfy to                 Then, for 

sufficiently large  , the approximate equation 

                                                                                                                                                  (7) 

 

Has a unique solution for all     and there holds an error estimate 

                                                                                                                                          (8) 

 

With some positive constant   depending on  . 

     

Proof 

As it is known for all sufficiently large n the inverse operators (     )   exist and are uniformly bounded. 

To verify the error bound, we apply the projection operator    to the equation (6) and get 

                 

 

Or again 

                  

 

Subtracting this from (7) we find 

(     )(    )  (    )  
 

Hence the estimate (8) follows. 

 

5.2 Theorem 

Under the above continuity conditions (1) and (2), suppose there is a constant     such that 
 

 
    ( (   ))    

 

Then equation (1) has a unique solution     ( ) 

 

Proof. Let   and   be two solutions of equation (1) 

Let the integral operator 

  ( )   ( )  ∫  (   )

 

 ( )   

We have 

   ( )    ( )  |∫  (   )

 

( ( )   ( ))  | 

  ∫   (   ) 

 

 ( ( )   ( ))    

   ∫  ( ( )   ( )) 

 

   (  (   ))   ( (   ))   

       (
 

 
)    ( (   ))         (   )      

       (
 

 
)   ( (       )) 

       (
 

 
)(   ( (   )      (   )) 

  (
 

 
)(   ( (   ))          (   ) 
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  (
 

 
)(   ( (   ))          (   ) 

 

It follows that for all       

   ( )    ( )    (  (   )   (
 

 
)          (   ) 

 

So 

        (
 

 
)     (   )      

 

We deduce that the operator   is Lipschitzian with constant    (
 

 
)     (   )   . Then   is a 

contraction, and   has a unique solution in  ( )  
 

The absolute error for this formulation is defined by      ( )    ( ) . 
 

6. Numerical Examples 

 

For numerical verification of the above method we consider the following examples 

 

Example 1 We consider the following Fredholm integral equation 

 ( )     (   )  
  

 
 ∫(   ) ( )  

 

 

 

 

Where the function  ( ) is chosen so that the exact solution is given by  ( )     (   ) 

 

 

Table.1. We present the exact and the approximate solutions of the equation in the example 1 in some 

arbitrary points, the error for     . 
 

x Sol ext Sol app    Sol app    er,    er,    

0 0.000E+00 0.000E+00 0.000E+00 1.876E-12 0.000E+00 

0.1 3.141E-02 3.141E-02 3.141E-02 1.059E-08 1.059E-08 

0.2 1.253E-01 1.253E-01 1.253E-01 4.235E-08 4.235E-08 

0.3 2.790E-01 2.790E-01 2.790E-01 9.529E-08 9.529E-08 

0.4 4.818E-01 4.818E-01 4.818E-01 1.694E-07 1.694E-07 

0.5 7.071E-01 7.071E-01 7.071E-01 2.647E-07 2.647E-07 

0.6 9.048E-01 9.048E-01 9.048E-01 3.812E-07 3.812E-07 

0.7 9.995E-01 9.995E-01 9.995E-01 5.190E-07 5.188E-07 

0.8 9.048E-01 9.048E-01 9.048E-01 6.777E-07 6.776E-07 

0.9 5.621E-01 5.621E-01 5.621E-01 8.576E-07 8.576E-07 

1 1.225E-16 1.059E-06 1.059E-06 1.059E-06 1.059E-06 

 

Example 2 Consider the following Fredholm integral equation 

 ( )         ∫      ( )  

 

 

 

 

Where the function  ( ) is chosen so that the exact solution is given by  ( )      
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Table.2. We present the exact and the approximate solutions of the equation in the example 2 in some 

arbitrary points, the error for      is calculated and compared with the example treated in (Yalcinbas, 

Aynigul, and Akkaya, 2010). 

 

 
 

x Sol ext Sol app    Sol app    er,    er,    er(Yalcinbas, Aynigul, and Akkaya, 2010) 

 

0 1.000 1.000 1.000 0.000E+00 0.000E+00 0.000 

0.1 1.221 1.221 1.221 2.501E-12 2.501E-12 2.68139265e-6 

0.2 1.492 1.492 1.492 5.002E-12 5.002E-12 5.362784215e-6 

0.3 1.822 1.822 1.822 7.504E-12 7.505E-12 8.044082301e-6 

0.4 2.226 2.226 2.226 1.001E-11 1.001E-11 1.072326582e-5 

0.5 2.718 2.718 2.718 1.251E-11 1.251E-11 1.337965059e-5 

0.6 3.320 3.320 3.320 1.501E-11 1.501E-11 1.58817245e-5 

0.7 4.055 4.055 4.055 1.751E-11 1.751E-11 1.762273736e-5 

0.8 4.953 4.953 4.953 2.002E-11 2.001E-11 1.637473125e-5 

0.9 6.050 6.050 6.050 2.252E-11 2.251E-11 5.233654626e-6 

1 7.389 7.389 7.389 2.503E-11 2.501E-11 3.457600943e-5 

 

Example 3 We consider the following Fredholm integral equation 

 ( )   (   )   ∫ (   ) ( )  

 

 

 

 

Where the function  ( ) is chosen so that the exact solution is given by  ( )     

 

 

Table.3. We present the exact and the approximate solutions in ( Ahmet, 2016; Peter Alpha, 2021) of the 

equation in the example 3 in some arbitrary points, the error for      is calculated and compared with the 

example treated in ( Ahmet, 2016; Peter Alpha, 2021). 

 

x Sol ext Sol app    Sol app    Sol ap ( Ahmet, 2016; Peter 

Alpha, 2021). 

er,    er,    

0 1.000 1.000 1.000 0.999999998 3.664E-15 0.000E+00 

0.1 1.105 1.105 1.105 1.105170916 4.885E-15 2.220E-15 

0.2 1.221 1.221 1.221 1.221402756 4.663E-15 2.887E-15 

0.3 1.350 1.350 1.350 1.349858803 7.550E-15 8.882E-15 

0.4 1.492 1.492 1.492 1.491824693 5.995E-15 5.995E-15 

0.5 1.649 1.649 1.649 1.648721264 6.217E-15 7.105E-15 

0.6 1.822 1.822 1.822 1.822118793 6.439E-15 8.438E-15 

0.7 2.014 2.014 2.014 2.013752696 5.773E-15 7.105E-15 

0.8 2.226 2.226 2.226 2.225540911 1.021E-14 1.199E-14 

0.9 2.460 2.460 2.460 2.459603079 1.155E-14 1.155E-14 

1 2.718 2.718 2.718 2.718281765 1.377E-14 1.066E-14 
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Example 4 We consider the following Fredholm integral equation 

 ( )       ∫  (  ) ( )  

 

 

 

 

Where the function  ( ) is chosen so that the exact solution is given by  ( )     

 

 

Table.4. We present the exact and the approximate solutions of the equation in the example 4 in some 

arbitrary points, the error for      is calculated and compared with the example treated in (Mustafa, Yalçın, 

2010). 
 

x Sol ext Sol app    Sol app    er,    er,    er, (Mustafa,Yalçın, 2010) 

0 1.000 1.000 1.000 1.255E-14 0.000E+00 0.210E-5 

0.1 1.105 1.105 1.105 1.243E-14 7.772E-15 0.200E-5 

0.2 1.221 1.221 1.221 1.266E-14 1.021E-14 0.200E-5 

0.3 1.350 1.350 1.350 1.288E-14 1.243E-14 0.300E-5 

0.4 1.492 1.492 1.492 1.266E-14 1.199E-14 0.300E-5 

0.5 1.649 1.649 1.649 1.288E-14 1.177E-14 0.200E-5 

0.6 1.822 1.822 1.822 1.266E-14 1.221E-14 0.200E-5 

0.7 2.014 2.014 2.014 1.288E-14 1.199E-14 0.200E-5 

0.8 2.226 2.226 2.226 1.243E-14 1.199E-14 0.100E-5 

0.9 2.460 2.460 2.460 1.243E-14 1.155E-14 0.100E-5 

1 2.718 2.718 2.718 1.155E-14 1.243E-14 0.00000 

 

Example 5 Consider the linear integral equation of Volterra 

 ( )      
  

 
 ∫(   ) ( )  

 

 

 

 

Where the function  ( ) is chosen so that the exact solution is given by  ( )         ( ) 

 

 

Table.5. We present the exact and the approximate solutions of the equation in the example 5 in some 

arbitrary points, the error for      is calculated and compared with the example treated in (Babolian, Davari 

2005). 
 

x Sol ext Sol app    Sol app    er,    er,    er, (Babolian, Davari 2005) 

0 1.000 1.000 1.000 0.000E+00 0.000E+00 0 

0.1 8.998E-01 8.998E-01 8.998E-01 4.441E-16 4.441E-16 0.563890E-5 

0.2 7.987E-01 7.987E-01 7.987E-01 1.332E-15 1.332E-15 0.00002202 

0.3 6.955E-01 6.955E-01 6.955E-01 1.887E-15 9.992E-16 0.00004821 

0.4 5.892E-01 5.892E-01 5.892E-01 2.220E-15 2.220E-15 0.00008333 

0.5 4.789E-01 4.789E-01 4.789E-01 4.552E-15 2.887E-15 0.00012656 
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0.6 3.633E-01 3.633E-01 3.633E-01 1.665E-15 3.497E-15 0.00017715 

0.7 2.414E-01 2.414E-01 2.414E-01 2.776E-15 4.191E-15 0.00023436 

0.8 1.119E-01 1.119E-01 1.119E-01 1.443E-15 4.802E-15 0.00029745 

0.9 -2.652E-02 -2.652E-02 -2.652E-02 8.882E-16 5.697E-15 0.00036566 

1 -1.752E-01 -1.752E-01 -1.752E-01 2.887E-15 6.273E-15 0.00043821 

 

 

 

Example 6 Consider the linear integral equation of Volterra 

 ( )     ( )        ( )  ∫   ( )  

 

 

 

 

Where the function  ( ) is chosen so that the exact solution is given by  ( )     ( ) 

 

Table.6. We present the exact and the approximate solutions of the equation in the example 4 in some 

arbitrary points, the error for      is calculated and compared with the example treated in (Shoukralla, Ahmed 

2020). 
 

x Sol ext Sol app    Sol app    er,    er,    er, (Shoukralla, Ahmed 2020) 

0 1.000 1.000 1.000 0.000E+00 0.000E+00 0 

0.1 9.950E-01 9.950E-01 9.950E-01 3.442E-15 2.998E-15 1.54654067330284e-13 

0.2 9.801E-01 9.801E-01 9.801E-01 3.664E-15 3.109E-15 1.50213175231784e-13 

0.3 9.553E-01 9.553E-01 9.553E-01 4.885E-15 4.996E-15 1.26765264951700e-12 

0.4 9.211E-01 9.211E-01 9.211E-01 5.773E-15 5.662E-15 3.47766260233584e-11 

0.5 8.776E-01 8.776E-01 8.776E-01 7.772E-15 7.438E-15 4.06040867595436e-10 

0.6 8.253E-01 8.253E-01 8.253E-01 9.881E-15 9.881E-15 3.00572522426990e-09 

0.7 7.648E-01 7.648E-01 7.648E-01 1.321E-14 1.310E-14 1.63047718659826e-08 

0.8 6.967E-01 6.967E-01 6.967E-01 1.721E-14 1.799E-14 7.04649298910454e-08 

0.9 6.216E-01 6.216E-01 6.216E-01 2.665E-14 2.587E-14 2.55996352449550e-07 

1 5.403E-01 5.403E-01 5.403E-01 2.376E-14 2.909E-14 8.10970208320327e-07 

 

Example 7 Consider the linear integral equation of Volterra 

 ( )      ( )  ∫ ( )  

 

 

 

 

Where the function  ( ) is chosen so that the exact solution is given by  ( )  (   )   ( ) 

 

Table.7. We present the exact and the approximate solutions of the equation in the example 7 in some 

arbitrary points, the error for      is calculated and compared with the example treated in (Mamadu, Njoseh, 

2016). 
 

x Sol ext Sol app    Sol app    er,    er,    er, (Mamadu, Njoseh, 2016) 

0 1.000E+00 1.000E+00 1.000E+00 0.000E+00 0.000E+00 5.4670E-03 

0.1 1.216E+00 1.216E+00 1.216E+00 1.306E-13 1.292E-13 1.1050E-03 

0.2 1.466E+00 1.466E+00 1.466E+00 1.252E-13 1.237E-13 2.2853E-03 

0.3 1.755E+00 1.755E+00 1.755E+00 1.439E-13 1.437E-13 8.4845E-04 
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0.4 2.089E+00 2.089E+00 2.089E+00 1.572E-13 1.550E-13 1.0669E-03 

0.5 2.473E+00 2.473E+00 2.473E+00 1.754E-13 1.736E-13 2.0398E-03 

0.6 2.915E+00 2.915E+00 2.915E+00 1.923E-13 1.905E-13 1.4560E-03 

0.7 3.423E+00 3.423E+00 3.423E+00 2.212E-13 2.136E-13 3.8930E-04 

0.8 4.006E+00 4.006E+00 4.006E+00 2.425E-13 2.309E-13 2.1784E-03 

0.9 4.673E+00 4.673E+00 4.673E+00 3.091E-13 2.718E-13 1.4434E-03 

1 5.437E+00 5.437E+00 5.437E+00 2.363E-13 1.723E-13 5.5777E-03 

 

4.Conclusion 

In this paper, we study comparing the solutions of the integral equations of the type Volterra and Fredholm of 

the second type, using the Touchard and Barnstein polynomials with the collocation method, and comparing the 

solutions between them and with the exact solutions as well. (Yalcinbas, Aynigul, 2011; Yalcinbas, Aynigul, and 

Akkaya, 2010; Peter Alpha, 2021; Mustafa, Yalçın, 2010). We also note that the higher the degree of the 

polynomial, the better the results. However, we noticed that the results obtained using Barenstein's polynomial 

were somewhat better than the results obtained using Touchard’s polynomial. Finally, we dealt with many 

examples that showed the effectiveness of the method for both. 
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