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ABSTRACT. 

 

 

In this present article, we establish the concept of 𝜑-weakly commuting self-mappings pairs in S- 

metric space. with this idea we create a common fixed point theorem of Altman integral type for 

self-mappings in the context of S-metric space. Example is constructed to support our result. 
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1. Introduction 

 

Fixed point theory is one of the most dynamic research subject in nonlinear 

analysis. In the field of metric fixed point theory the first important and significant 

result was proved by Banach in 1922 for contraction mapping in complete metric 

space. The well known Banach contraction theorem may be stated as 

follows.”Every contraction mapping of a complete metric space X into itself has a 

unique fixed point”(Bonsall 1962). 
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In 1975 Altman [1] introduced generalized contractions proved a fixed point 

theorem for a single self-mapping in compact metric space satisfying the following 

contractive condition: Let (X,d) be a metric space and f : X  X be a function. 
 

Then f is called a generalized contraction if for all x,y  X 
 
 

d (T x, T y) ≤ Q(d(x, y)) ∀ x, y ∈ X 

 

where Q: [0,  ) → [0,  ) is an increasing function satisfies the following 

conditions: 

(1) 0 < Q(t) < t, t ∈ (0,  ); but Q is increasing if Q(0)=0 also Q(t)= t implies and 

implied by t = 0 

 

(2) ρ (t) = 
t 

 
 

t  Q(t) 
is a decreasing function; 

 

 

t1 

(3)  (t)dt  
0 

for some positive number t1. 

 

 

Remark 1.1:By(1) and that Q is increasing we have Q (0) = 0 also Q (t) = t  t = 0. 

2. REVIEW LITERATURE 

 

Common fixed point for Altman type mapping has been discussed by Garbone and 

Singh [2] and Li and Gu [3] in metric spaces. In 2006, Mustafa and Sims [4] 
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introduced a new structure of generalized metric space called G-metric space. Gu 

and Ye [5] obtained a common fixed point theorem for Altman integral type 

mapping in complete G-metric space. Recently, Sedghi et al. [6] initiated the idea 

of S-metric space as a generalization of G-metric space. While in [7] Sedghi 

proved fixed point theorems for implicit relation in complete S-metric space. In 

this paper, we derive a common fixed point Altman integral type mapping for two 

pairs of ϕ-weakly commuting self-mappings in complete S-metric space. We begin 

with the following definitions and results in the framework of S-metric space 

which can be found in [6, 7].common fixed points for non-continuous non self 

mappings on non-Metric space by G.Jungek [8]A Fixed point theorem for 

mappings satisfying contractive condition of Integral in (2002). 

2. PRELIMINARIES: 

 

Definition 2.1 Let X be a non-empty set. An S-metric is a function S: X × X × X 

 

→ [0,  ) satisfying the following conditions for all x, y, z, a ∈ X 

S1) S(x, y, z) = 0 if and only if x = y = z; 

S2) S(x, y, z) ≤ S(x, a, a) + S(y, a, a) + S(z, a, a). 

The pair (X, S) is called S-metric space. 

Example 2.2. Let X=[0,1],define S : X × X × X →R
+
 defined by 
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S(x, y, z) =( |x − y| + |x − z|+|y - z|)
2
 for all x, y, z ∈ X .Then (X, S) is a complete 

S-metric space. 

Definition 2.3. Let (X, S) be an S-metric space. A sequence {xn} in X is called 

(1) Converges to x ∈ X if S(xn, xn, x) → 0 as n →  . We write xn → x for brevity. 

(2)Cauchy sequence if for > 0, there exists n0 ∈ N such that for all n, m ≥ n0 we 

have S(xn, xn, xm) < . 

(3) to be complete if every Cauchy sequence in X converges in. 

Lemma 2.4. Let (X,S) be a S-Metric space then Limit of the convergent sequence 

in S-metric space is unique and S(x,x,y)=S(y,y,x) for all x, y ∈ X 

Now we introduce the concept of ϕ-weakly commuting pairs of self-mappings in 

S-metric space as follows: 

Definition 2.5. A pair of self-mappings (S, T) on S-metric space is called 𝜑 -weakly 

commuting. If there exist a continuous function ϕ : [0,  ) → [0,  ), 𝜑 (0) = 0 such 

that S(ST x, ST x, TSx) ≤ 𝜑 (S(Sx, Sx, Tx)) ∀ x ∈ X. 

 

Example 2.6. Let X = [0,  ), S(x, y, z) = |x − z| + |y − z| for all x, y, z ∈ X. Let S, T : X → X 
 

 

are defined by Sx = 
x 

and Tx = 
4 

x 
then 

2 
 

S(ST x, ST x, TSx) = S( 
x
 

8 

 

, 
x 

, 
x 

) ≤ 
1 

8   8 2 

3 
x = 

1 

4 2 

 
S(Sx, Sx, Tx) 

 

 

S(ST x, ST x, TSx) ≤ ϕ(S(Sx, Sx, Tx)). 
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 

Lemma 2.7. [5]. Let ρt be a Lebesgue integrable function and ρ(t) > 0 for all t > 0. 
x 

Let F(x) =  (t)dt , then F(x) is an increasing function in [0, +  ). 
0 

Definition2.8: [8]. Let S and T be two self-mappings on a set X. Any point x ∈ X is 

called coincidence point of S and T if Sx = Tx for some x ∈ X and we called u = 

Sx = Tx is a point of coincidence of S and T. 

Definition 2.9 : A function ∅ : [0,∞) →[0,∞) is called contractive modulus if it 

satisfy ∅(𝑡) ≤ t for all t ≥ 0. 

Therorem:2.10: Let (X, S) be a complete S-metric space and P, T, f, g : X → X be 

self-mappings. If there exists an increasing function Q : [0,  ) → [0,  ) satisfying 

conditions for Altman also the following conditions holds: 

(1) P(X) ⊆ g(X) and T(X) ⊆ f(X); 
 

s ( Px,Px,Ty )  ( s( fx, fx, gy)) 

(2)  P(t)dt   (t)dt 

0  0 


s( fx, fx,Ty )]S ( Px,Px,Ty ){S ( Px,Px,Tx ),S (Ty ,Ty ,gy),S ( Px,Px,gy),S (Ty ,Ty , fx)f{S(fx, fx, gy),S(Px,Px,fx), S(Ty,Ty,Ty),1/2(S(Ty,Ty,fx) +S(Px,Px,gy)} 

(3) (t)dt 
0 

 

holds for all x ∈ X. 

 

If (P,f) and (T,g) are two pair S of continuous  weakly commuting mappings then 

prove that P,T,f and g have a unique common fixed point in X: 
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0 0 

0 

0 

3. Main results 

 

We now state and prove our main theorem. 

 

Theorem 3.1. 

 

Let (X, S) be complete s – metric space and P, T,f,g : X→ 𝑋 be self-mappings if 

there exists an increasing function Q:[0,∞) → [0, ∞) satisfying the following 

conditions from (1)-(3) 

(3.1) P(X) ⊂ f(X), T(X) ⊂ g(X), 
 

 

(3.2) ∫
𝑠(𝑃𝑥,𝑝𝑥,𝐺𝑦) 

𝜓(𝑡)𝑑𝑡 + 𝜑
 

∫
𝑆(𝐹𝑥,𝐹𝑥,𝐺𝑦)𝑆(𝑃𝑥,𝑃𝑥,𝑇𝑦)    

𝜓(𝑡)𝑑𝑡
 

 

 
max{𝑆(𝐹𝑥,𝐹𝑥,𝐺𝑦)𝑆(𝑃𝑥,𝑃𝑥,,𝐹𝑥),𝑆(𝑇𝑦,𝑇𝑦,𝐺𝑦)

(𝑠(    𝑃𝑥,𝑃𝑥,𝐺𝑦)+𝑆(𝑇𝑦,𝑇𝑦,𝐹𝑥),
 

 

≤ 𝜑 ∫0 2 𝜓(𝑡)𝑑𝑡 + 
 

G∫
max{𝑆(𝑃𝑥,𝑃𝑥,𝐹𝑥)𝑆(𝑇𝑦,𝑇𝑦,𝐺𝑦),𝑆(𝑃𝑥,𝑃𝑥,𝐺𝑦)(𝑠(𝑇𝑦,𝑇𝑦,𝐹𝑥)      

𝜓(𝑡)𝑑𝑡
 

, for all x, y ∈ X, where 
 

𝜑 is contractive modulus where 𝜌(𝑡) is a Lebesgue Integral function which is 

summable non negative and such that 

 

(3.3.) ∫
𝛿 

𝜌(𝑡) dt > o , 𝛿 > o 
 

 

If (P ,F) and (T,G) are two pairs of continous ∅ - weekly commuting mappings. 

 

Then P,T,F,and G have a unique  fixed point in X. 

 

(i) (P,F) have a coincidence point. 
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n 

2 n     2 n ,   2 n 1 2 n     2 n , 2 n  2 

2 n   2 n , 2 n 1 2 n   2 n , 2 n  2 

(ii) (T, G) have a coincidence point. 

 

(iii)  Moreover, if both the pairs (A, F) and (T, G) are weakly compatible then P,T, F and G have a unique 

common fixed point. 

Proof. choose x0 ∈ X, then by (3.1) we can choose a sequence {xn} in X such that 

x0 = y0, Px2n = Gx2n+1 = y2n+1 and Tx2n+1 = Fx2n+2 = y2n+2, for all n = 0, 1, 2, . . .. 

We now show that the sequence {yn} defined above is a Cauchy sequence in 

X. Now we claim that Let us denote d(yn, yn+1) by Sn, for each n = 0, 1, 2, . . . 

dn dn 

First, we show that   (t)dt  G(  (t)dt . Now we claim that 
0 0 

 

lim S  0 
n



and then show that {yn} is a Cauchy sequence in X. 

For this, putting x2n for x and x2n+1 for y in (3.2), 

we 

 max{( S    ,S    S ), 
1 

d ( y    , y    y )} S2 n 1S2 n 1 ,S2 n 1  S2 n S2 n S2 n 1  max{ S2 n S2 n S2 n 1 ,0}  2 

  (t)dt  p   (t)dt  p   (t)dt  G
 (t)dt 

0 0 0  0 
 



 max{ S    ,S    S , 
1 

d ( y  , y  y )} 
S2 n 1 ,S2 n 1   2 

i.e.  (t)dt  G  (t)dt 
0  0 

 



But, from the triangle inequality for metric S, we have = 

1
 sy 

2 

 

 
 

2n, 

 
y2n 

 
, y2n2 

 
 

1 sy 
2 

 

 
 

2n, 

 
y2n 

 
, y2n1  s( y 

 

 
2n1, 

 
y2n1 , y2n2 )
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 

 

 

1
 s 

= 2 
2n  s2n  s2n1   max s2n , s2n , s2n1 




. Using this in above, we obtain 
 
s2 n 1s2 n 1 ,S2 n 1   max( s2 n ,s2 n , s2 n 1 )     

  (t)dt     (t)dt 

0  0 


= (𝑆2𝑛+1,𝑆2𝑛+1) 𝜓(𝑡)𝑑𝑡 ≤ 𝛽( max { 

(𝑆2𝑛,𝑆2𝑛) 
𝜓(𝑡)𝑑𝑡 (𝑆2𝑛+1,𝑆2𝑛+1) 

𝜓(𝑡)𝑑𝑡} 
∫0 ∫0 ∫0 

 
s2 n 1 

If we choose  (t)dt 
0 

as “max” in above, then s2n+1 >0 and we have 

 

s2 n 1 ,S2 n 1   s2 n 1 ,S2 n 1   s s2 n 1 ,S2 n 1 

  (t)dt     (t)dt    (t)dt, 

0  0  0 

 

a contradiction. Hence, 
 

s2 n1 ,S2 n1  s2 n ,S2 n 

(3.4)  (t)dt  
0 

 (t)dt, 
0 

 

Similarly, by setting x2n+2 for x and x2n+1 for y in(3.2), we obtain 
 

max{ s ,s 1 s , s ( y 
 

 

, y y )} 
( S2 n 2S2 n  2 ) S2 ns2 n 1s2 n  2  max{ s2 n 2s2 n 1 ,0} 

 
2 n 1 2 n  2 , 2 n 1 

2
 2 n 1 2 n 1   2 n 3     




  (t)dt     (t)dt     (t)dt     (t)dt 

0 0 0  0 
 



i.e 
 

max{ s ,s 1 s ,   s ( y , y 
 

 

y )} 
( S2 n  2 ,S2 n  2 ,S2 n  2 ) 

 
2 n 1 2 n  2 , 2 n 1 

2 
2 n 1 2 n 1,   2 n  3     




 (t)dt  
0 



 (t)dt 
0 


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 

 

f 


 

 



 

s2 n  2 ,S2 n  2 s2 n  2   max{ s2 n 1 ,s2 n 1s2 n  2, } 

i.e   (t)dt     (t)dt 

0  0 



hence 
 

s2 n  2 ,S2 n  2   s2 n 1s2 n 1 

(3.5)   (t)dt     (t)dt 

0  0 



Unifying (3.4) and (3.5), we obtain 
 

ssn 1 ,S2 n 1  snsn 

  (t)dt    (t)dt  for all n = 0, 1, 2, . . .. 
0  0 



s0  s( y0 , y0 , y1 ) 

Next, define a sequence {tn} by tn+1 = f(tn), with t1 =  (t)dt    (t)dt 

0  0 



via assumption (a) that, 0 < f(tn) = t < tn+1 < t1, ∀n ≥ 1, if t1 > 0. If t1 = 0, then tn = 0, 

for every n. 

 

s0 

in addition, by induction, we show that  (t)dt  tn1 

0 

for every n ∈ N 

 

If n = 1, then by putting x0 for x and x1 for y in (3.2), we have 
 

max{ s ( y , y ),s ( y , y ), 
1 

s ( y , y )} 
1 , y1 , y2 ) s ( y0 , y1 ),s ( y1 , y1 , y2 ) max{ s ( y0 , y1 ) s ( y1 , y2 ),0} 

 
0     1 1     2    

2 
2     0      




  (t)dt  
0 

  (t)dt  
0 

 (t)dt  f 
0 



 (t)dt 
0 





Hence 
 

s11  s ( y1 , y1 , y2 ) 

 (t)dt    (t)dt 

0  0 
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





 

max{ s ( y , y , y ),s ( y , y y ), 
1 

s ( y , y , y )} 
 

0     0     1 1     1,   2    
2 

2     2     0      



  



 (t)dt 
0 










max{ s ( y0 , y0 ,, y1 ),s ( y1 , y1 , y2 )} 

=  


 (t)dt 
0 



 s( y, 0 y0 , y\1 )   
s

0 
=    (t)dt  =    (t)dt =f(t1)=t2 

   
 0  0 

 

because if we choose s(y1, y1,y2) as “max “ then s(y1, y1,y2)>0 and it yields 
 

s1 s1 s1 

 (t)dt   ( (t)dt)   (t)dt which is a contradiction. 
0 0 0 

 

Thus, for n = 1, we observe that 
 

s1 

 (t)dt  t2 
0 

 

Assume, for some fixed n, that 
 

sn 

 (t)dt  tn1 

0 

is true. 

 

subsequently, by induction; we have, since 𝛽 is non decreasing, 
 

sn 1  
s

n 
  (t)dt     (t)dt    tn1   tn2 . 

 
0  0 



Thus, it follows that 



Turkish Journal of Computer and Mathematics Education   Vol.10 No.12 (2019), 34-55 

 

44  

 

 

Research Article   

 
 

 



 sk 

 

sn1 

 (t)dt  tn1 

0 

for all n ∈ N. 

 

if t1 = 0, then sn = 0 for every n, so that we consider the case where tn > 0, for every 

n. 

Now, by conditions (a)–(c) and tn+1 = 𝛽(tn), n ∈ N, which shows that 

lim tn  lim sn  0 , it follows that {yn} is a Cauchy sequence. certainly, if m, n ∈ N 
n n



with m ≥ n, then using that 𝜓 is a nonincreasing implies 
 

m 1 

sk 

k  n dn 

 
sn sn 1 

 
sn sn 1  sn  2 

m 1 

sk 

k  n 

 (t)dt   (t)dt   (t)dt   (t)dt  .........   (t)dt 
0 0 sn sn sn 1 

m  2 

sk 

k  n 

 
sn 

  (t)dt 
0 

sn 1 

 (t)dt 
0 

sn 2 

 (t)dt  ......... 
0 

sm1 

 (t)dt 
0 

 
m1  sk 

=   (t)dt  , 
 

k n  0 



We obtain 
 
 

 
s( y , y )  

m 1 


 

 
s
 


m     n k  n      n  m1 k      
 (t)dt  


  (t)dt 

 
   (t)dt 

 
 tk 1 

0 
   

0 


 

k n  0 


 k n 

 
m m t (t  t ) m     tk   tn 1 

=  t k   =  t k      k k k 1     G(t)dt    G(t)dt  . 
 

k n1 

 

k n1 tk  f (tk ) 


k n1  tk 1
 

  
  tm 1 



Since the sequence {tn} is convergent and 

m1 
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 

 

 
T
   

K
 

  G(t)dt    for each    0,  (t)dt  where r  0, k,then the  last term tends to 
 0   0 

zero as n   and hence {yn} } is a Cauchy sequence in X. 
 

Now we suppose that the range of one of the mappings is complete. 

 
Case 1: Suppose that G(X) is a complete sub space of X, then the sub sequence{ 

y2n+1}={G x2n+1} is cauchy sequence in G(X) and hence converges to a limit, say z 

in X. Since {yn} } is a Cauchy and its sub sequence {y2n+1} is convergent to z, so 

{yn} is also converges to z. Hence its sub sequence {y2n+2} is also convergent to z. 

Thus we have 

 

lim Gx2n 1  lim Tx2n 1  lim Px2n  lim Fx2n  z . 
n  n  n n



Let v  F 
1

z, then gv=z .We claim that Tv =z for this, setting x = x2n and y = v in 
 

the implicit relation (3.2) we have 
 

s( Px2 n , Px2 n ,Tv ) s( fx2 n , fx2 n , gv) s( Px2 n , ,Px2 n ,Tv ) 

  (t)dt  
0 

 (t)dt 
0 

 


max{( fx 

 

 

 
, fx 

 

 

 
, gv),s ( Px 

 

 

 
,Px 

 

 

 
, fx 

 

 

1 ),s (Tv ,Tv , gv),   ( s ( Px 
 

 

 

 

 
,Px 

 

 

, gv)} s (Tv ,Tv , fx 

 
)} 

max{ s ( Px2 n ,Px2 n , fx2 n ) s (Tv , gv),s ( Px2 n ,Px2 n , gv) s (Tv ,Tv , fx2 n )} 
 

2 n       2 n 2 n 2 n       2 n 
2 

2 n 2 n 2 n      



  (t)dt   
0 



 (t)dt 
0 






If we suppose that s(z, Tv) > 0, then we have, for n large enough, 
 

s(, ,Px2 n ,Tv ) s( fx2 n , , fx2 n , gv) s( Px2 n , ,Px2 n ,Tv ) 

  (t)dt  
0 

 (t)dt 
0 

max{ s( Px2 n ,Px2 n , fx2 n ) s (Tv ,Tv , gv),s( Px2 n ,Px2 n , gv) s (Tv ,Tv , fx2 n )}  s (Tv ,Tv , z} 

   (t)dt     (t)dt 

0  0 
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 

Letting n →  , it yields 
 

s( z,z.Tv)  s( z, z,Tv )   s( z, z ,Tv )  (t)dt  f   (t)dt     (t)dt 


0  0 

  
  0 



which is a contradiction. Thus s(Tv, z) = 0, so that Tv = z. Hence z = Tv = Gv, 

show that v is a coincidence point of T and G. 

Further, since T(X) ⊂ g(X), Tv = z implies that z ∈ f(X). 

 
Let u ∈ F 

−1
 z, then Fu = z. Now, we claim that Pu = z. For this, putting x = u and y 

= v in (3.2), we have 
 

max{ 0,s ( Pu,Pu, z ,0.
1 

s ( Pu, z )} 
s( Au, Au,z ) 0,s( Pu,,Pu,z ) 

max( 0,0,0)   2   (t)dt  p  (t)dt     (t)dt      (t)dt 
 

0 0  0  
 

0 





s( Pu,,Pu,z ) s( Pu,Pu,z ) s( Pu,Pu,,z ) 

i.e.,   (t)dt  
0 

 (t)dt 
0 

 (t)dt , 
0 

 

if s(Pu,z )> 0 getting a contradiction. Thus Pu = z. Hence z = Pu = Su, showing 

that u is a coincidence point of (P,f). 

Case II. If we assume S(X) to be a complete subspace of X, then analogous 

arguments establish the earlier conclusion. Indeed, in this case, the subsequence 

{y2n+2} = {Fx2n+2} is a Cauchy sequence in F(X) and hence converges to a limit, 

say z in 𝛽(X). Similarly to Case I, 

 

lim Gx2n1  lim Tx2n1  lim px2n  lim x2n  z . Let v ∈ X be such that 𝛽v = z. To prove 
n



that 

n n n



pv = z, we take x = v and y = x2n+1 in the implicit relation (3.2), hence, assuming 

that 
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 

s(pv, z) > 0, we get, for n large enough, 
 

s( Pv,Pv,Tx2 n 1 ) s( fv, fv, gx2n1 ) s( Pv,Pv,Tx2n1, ) 

  (t)dt  p 
0 

 (t)dt 
0 

max{ s( Pv,Pv, z ),s (Tx2 n 1 ,Tx2 n 1, gx2 n 1 ),s ( Pv,Pv, gx2 n 1 ),s(Tx2 n 1 ,Tx2 n 1 , fv)}  s ( Pv,Pv, z} 

   (t)dt  f   (t)dt 

0  0 



hence, taking the limit as n →  , we obtain 
 

s( Pv,Pv,z ) s( Pv,Pv,z ) s( Pv,Pv,z ) 

  (t)dt  f 
0 

 (t)dt 
0 

 (t)dt 
0 

 

which is a contradiction. Hence Pv = 𝛽v = z. 

 
On the other hand, since P(X) ⊂ G(X), then z = gu, for some u ∈ X. To check that 

Tu = z, we take x = v and y = u in (3.2), achieving 

 

s( z,z,u) s(Tv,Tv,z ) s(Tv,Tv,z ) 

  (t)dt  f 
0 

 (t)dt 
0 

 (t)dt 
0 

 

If s(Tu,z)>0, getting a contradiction. This proves that Tu = Gu = z. 

 
The remaining two cases are essentially the same as the previous cases. Indeed, if 

P(X) is complete, then by (3.1), z ∈P(X) ⊂ G(X). Similarly, if T(X) is complete, 

then z ∈ T(X) ⊂F(X).Thus pairs (P,F) and (T,G) have coincidence points. Hence in 

all we have z = Pu = Fu = Tv =v. This proves our assertions in (i) and (ii). Now, 

the weak compatibility of (P,F) gives Pz = P 

Fu = FPu = Fz; i.e., Pz = Sz. Similarly, the weak compatibility of (T,G) gives Tz = 

TGv = GTv = Gz; i.e., Tz = Gz. 

To show that z is a coincidence point of P,T,F and G, we have to check that Pz = 

Tz. 
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 

 

For this, putting x = z and y = z in (4.2), we have 
 

s( Pz,Pz,Tz ) s( fz, fz,z ) s( Pz,Pz,, Tz ) 

  (t)dt  
0 

 (t)dt 
0 

 
 

max{ s ( fz, fz, gz),s ( Pz,Pz, fz),s (Tz ,Tz , gz), 
1

[ s ( Pz,Pz, gz)s (Tz ,Tz , fz)]} 




max{ s ( Pz,Pz, z ),s (Tz ,Tz , gz),s ( Pz,Pz, gz),s (Tz ,Tz , fz)}  2 
  (t)dt   

0 


 (t)dt 
0 




s( Pz,Pz,Tz ) s( Pz,Pz,Tz ) s( Pz,Pz,Tz ) 

i.e   (t)dt  
0 

 (t)dt 
0 

 (t)dt 
0 

if s(Pz,Pz,Tz)>0, which is a 

contradiction. 

 
Thus Pz = Tz. Hence Pz = Fz = Tz = Gz. 

 
To show that z is a common fixed point, putting x = z and y = v in (4.2), we have 

 
s( Pz,Pz,Tv ) s( fz, fz,gv)s( Pz,Pz,Tv ) 

  (t)dt  
0 

 (t)dt 
0 

 
 

max{ s ( f , fz, gv),s ( Pz,Pz, fz),s (Tv ,Tv , gv), 
1
[ s ( Pz,Pz, gv) s (Tv ,Tv , fz)]} 




max{ s ( Pz,Pz, z ),s (Tv ,Tv , gv),s ( Pz,Pz, gv),s (Tv ,Tv , fz)}  2 
  (t)dt  f 

0 


 (t)dt 
0 




s( Pz,Pz,z ) s( Pz.Pz,z ) s( Pz,Pz,z ) 

i.e   (t)dt  f 
0 

 (t)dt 
0 

 (t)dt 
0 

 

if d(Pz, z) > 0, getting a contradiction. 

 
Thus, we obtain z = Pz = Tz = Fz = Gz. Uniqueness of common fixed point z 

follows easily by (3.2). This completes the proof. We remark that F in Theorem 3.1 

 
K
 

must be defined, at least, in 0,  (s)ds where cl(ran d) ⊂ [0, K]. 
 0 
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If we take ψ : R+ → R+ condition 𝜓 is a nonincreasing function then ψ is 

measurable, summable on each compact interval, and condition (4.3) holds if 



 (t)dt 
0 

is positive and finite for an >0. 

 

Note that condition 𝜓 is a nonincreasing function is valid for constant functions 

ψ, but it is not true for functions of the type ψ(t) = Rt, t > 0, where R > 0. 

Theorem 3.2. In Theorem 3.1, condition 𝜓 is a nonincreasing function can be 

replaced by the following one: 

 

x 

ψ(t) > 0, ∀t > 0, and f  (t)dt 
0 

f ( x) 

 (t)dt, 
0 

∀x > 0. 

 

Proof. We have to justify that the sequence {yn} defined in the proof of Theorem 

 
3.1 is a Cauchy sequence. Using that 

 
sn 1 

 (t)dt  f 
0 

 
dn 

 (t)dt , for all n = 0, 1, 2, . . ., 
0 

 

x 

and ψ(t) > 0, ∀t > 0, and f  (t)dt 
0 

f ( x) 

 (t)dt, 
0 

∀x > 0.we get 

 
sn 1 

 (t)dt 
0 

f ( sn ) 

 (t)dt , for all n = 0, 1, 2, . . ., and sn+1 ≤ f(dn), for all n = 0, 1, 2, . . .. 
0 

 

We define a sequence {tn} by t1 = s0, tn+1 = f(tn), ∀n ∈ N. If t1 = d0 = 0, then sn = 0 

for every n. Consider t1 > 0, hence tn+1 = f(tn) < tn, ∀n ∈ N and tn → 0. Besides, it 

can be easily obtained that sn ≤ tn+1, for all n = 0, 1, 2, . . .. Now, for m, n ∈ N with 

m ≥ n, we get 

 

k m1 k m1 k m tn 1 

s( ym , yn )   sk  tk 1   tk   g(t)dt and the sequence {yn} is a Cauchy 

 
sequence, 

k n k n k n1 tm 1 
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since 


 g(t)dt  
0 

 
x 

for each τ > 0. Note that condition f  (t)dt 
0 

f ( x) 

 (t)dt, 
0 

∀x > 0, is trivially satisfied if 

ψ ≡ 1 and reduces to f(Rx) ≤ RF(x), ∀x > 0, if ψ ≡ R. 

 
In fact such condition can be dropped, as established in the following result. 

 

 

 
Theorem 3.3. In Theorem 3.1, 𝜓 is a nonincreasing function can be replaced by 

the following one: ψ(t) > 0, for every t > 0. 

Corollary 3.4. Let P,T,f, and g be four self-mappings of a metric space (X, s) 

satisfying (3.1) and (3.6) 

 

max{ s ( fx, fx, gv),s ( Px,,Px, x),s (Ty ,Ty , gy), 
1

[ s ( Px,Px, gy)s (Ty ,Ty , fx)]} 
s( Px,Px,Ty )  2 

 (t)dt  G  (t)dt  for all x, y ∈ X, where f : [0, 
0  0 

 

+  ) → R is non decreasing and satisfies the Altman type conditions (a)–(c) and ψ 

: R+ → R+ is a non negative, Lebesgue measurable mapping which is summable on 

each compact interval, and satisfies (3.3). Assume that one of the hypotheses , 𝜓 is 

x 

a nonincreasing function ,ψ(t) > 0, ∀t > 0, and f  (t)dt 
0 

f ( x) 

 (t)dt, 
0 

∀x > 0. 

 

or ψ(t) > 0, for every t > 0 holds. If one of P(X), T(X), F(X) or G(X) is a complete 

subspace of X, then 

(i) (P,F) have a coincidence point. 

 
(ii) (T,G) have a coincidence point. 
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 

Moreover, if both the pairs (P,G) and (T,G) are weakly compatible then P,T,F and 

G have a unique common fixed point. 

Corollary 3.5. Let {Pi} i∈N,F and G be self-mappings of a metric space (X, s) 

such that (3.7) 

Pi(X)} ⊂ G(X), Pi+1(X) ⊂ F(X) (3.8) 
 

s(,si x,si x,si 1 y) s( fx, fx,gy)s(si x,si x,si 1 y) 

  (t)dt  
0 

 (t)dt   
0 

 
 

max{ s ( fx, fx, gy),s ( Px,Px, fx),s ( P 

 

 

 

 

y,P 

 
 

y, gy)), 
1

[ s ( P x,P x, gy)s ( Py,Py, fx)]} 




max{ s ( Pi x,Pi x, fx),s ( Pi 1 y,Pi 1 y, y ),s ( Pi x,Pi x, gy),s (( Pi 1 y,Pi 1 y, fx)}  i 1 i 1 
2 

i       i 



  (t)dt  f 
0 



 (t)dt 
0 






for all x, y ∈ X, where  ≥ 0, f : [0, +  ) → R is non decreasing and satisfies the 

Altman’s conditions (a)–(c) and ψ : R+ → R+ is a non negative, Lebesgue 

measurable mapping which is summable on each compact interval, and such that 

(3.3) holds. Assume that one of the 𝜓 is a nonincreasing function ψ(t) > 0, ∀t > 0, 

x 

and f  (t)dt 
0 

f ( x) 

 (t)dt, 
0 

∀x > 0. 

 

or ψ(t) > 0, for every t > 0holds. If one of Pi (X), F(X) or G(X) is a complete 

subspace of X, and if the pairs (Pi , F) and ({Pi+1, G) are weakly compatible, then 

{Pi} i∈N, f and g have a unique common fixed point. 

 
.Corollary 3.6. Let f and g be self-maps of a metric space (X, s). Let {Pi}i∈N and 

{Ti}i∈N be two sequences of self-mappings of the metric space (X, s) satisfying 

the conditions: (3.9) Pi(X) ⊂ G(X), Ti(X) ⊂ F(X), (3.10) 
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 

s( Pi x,Pi x,Ti y) s( fx, fx,gy)s( Pi x,Pi x,Ti y) 

  (t)dt  
0 

 (t)dt 
0 

max{ s( Pi x,Pi x, fx),s(Ti y,Ti y, gy),s( Px,Px, gy),s (Ti y,Ti y, fx)}  m( x, x, y ) 

   (t)dt  f   (t)dt 

0  0 



for all x, y ∈ X, where  ≥ 0, f : [0, +  ) → R is non decreasing and satisfies the 

Altman type conditions (a)–(c), ψ : R+ → R+ is a non negative, Lebesgue 

measurable mapping which is summable on each compact interval, and such that 

(3.3) holds, and m(x, y) = max{s(fx,fx, Gy), s(Pix, Pix ,Fx), s(Tiy, Tiy ,Gy), 
1

 
2 

[s(Pix, Pix ,Gy) + s(Tiy, Tiy, Fx)]}. 
 

Assume that one of the 𝜓 is a nonincreasing function ψ(t) > 0, ∀t > 0, and F 
 

x 

 (t)dt 
0 

 
f ( x) 

 (t)dt, 
0 

 
∀x > 0. 

 

or ψ(t) > 0, for every t > 0holds. If one ofPi(X), Ti(X), F(X) or G(X) is a complete 

subspace of X, then 

(i)(Pi ,F) have a coincidence point 

 
(ii) (Ti ,G) have a coincidence point. 

 
Moreover, if both the pairs (Pi,f) and (Ti ,G) are weakly compatible thenPi, Ti, f and 

g have a unique common fixed point. Now we give an example to show the 

validity of the main results Theorems 3.1–3.3. 
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