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1.Statement of the Problem 

The general form of a delay functional differential equation is
                                    

 t t' (t, ) (p, , ) + (p, , ) p u p v p   , for all T],[0,=It  ,                                      (1.1) 

For fixed 0r and 0T , where for every It  and every ) T]),C([-r, t  , t denotes the element of 

C([-r,0], )   defined by 

           t ( , ) ( , )t        for all ]0,[ r  ,     .                                                             (1.2) 

The function t   can be regarded as the history of   from time rt   up to time t    

and  the function u , v  are assumed to be continuous on the set C([-r,0])I R   

The delay differential equation (1.1) can be studied in a more general frame of functional differential 

equations. Indeed, it suffices to define the function :I C([-r, T])u R   as 

( , , ) ( , , )tu t v t     

in order to rewrite equation ([1.1] as 

              
'( , ) ( , , ) ( , , )p t u t p v t p     for all ],0[ TIt 

,
  .                                    (1.3) 

Also,other types of well-known functional differential equations can be reduced to an equation of the 

form of (1.3).  

Another example is furnished by the equations with maxima, which are of the type 

 
( )

'( , ) , ( , ), max ( )
s S t

p t w t p t p s  



  

for all ],0[ TIt   ,    .                          (1.4) 
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When ],,[)( trttS   (1.4) can be regarded as a particular case of      , but formulation (1.3) 

permits us to consider more general forms of )(tS
.
 

Equations with maxima have attracted much attention recently due to their importance in mathematical 

models such as the automatic control of technical systems. 

Monotone iterative techniques have been extensively applied to study the existence of solutions for 

delay differential equations and equations with maxima. S, where equation       is studied with periodic 

boundary conditions of  type 

(0, ) ( , )p p T                                                                       (1.5) 

and a constant initial condition (0, ) ( , ), [ ,0].p p t t r      

For (1.4), Stepanov [15] considered a nonlinear two-point boundary condition of the form 

( (0, ), ( , )) 0w p p T    and a Carathéodory function u
.
 

We shall consider here a functional differential equation 

                
'( , ) ( , ( , ), , ) ( , ( , ), , )p t u t p t p v t p t p        for a.e. ],,0[ TIt                           (1.6) 

with less restrictive conditions on u , in the spirit of    . 

In  relation to the boundary conditions, we would like to emphasize the fact that the usual pointwise 

boundary conditions which naturally arise in ordinary differential equations, do not seem to be so natural for 

functional differential equations. Indeed, if we regard the problem of finding a periodic solution as the problem 

of finding a fixed point for the Poincaré map, then the natural condition that appears in connection with equation 

(1.1) or (1.4) is  

                      0( , ) ( , )Tp p     for all ]0,[ r
,
                                               (1.7) 

instead of  (1.5). Condition (1.7) was considered in [3], where the monotone iterative method was developed for 

(1.1) with u  continuous. 

We also remark that this periodic condition can be seen as a particular case of the more general 

functional boundary condition 

                             0H(p , )=0Tp  ,                                                                                                 (1.8) 

for a given mapping ]),0,([]))0,([(: 2 rCrCH   proposed by Halanay [4]. The linear case of 

Halanay’s boundary conditions 1 0 2 ,TA p A p     
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where ])0,([]))0,([(:, 2

21 rCrCAA   are given linear operators, was considered in 

 [9, Chapter 11] and becomes (1.7) for .0,21  IdAA   

As far as the authors are aware, there is no previous work on existence of solutions for equation (1.1) or 

(I.4) together with condition (1.8) in the frame of upper and lower solutions. In this paper we consider the 

general functional boundary condition 

             
( , ) ( , )p B p   

 
for all ],0,[ r   .                                                     (1.9) 

where   is defined over a suitable set of functions :[ , ]p r T R   .More precisely, for 0r  and 

0T  fixed, we will define : ([ ,0])T

rB S L r   

where ])0,([ rL 
 denotes the space of functions which are Lebesgue-measurable and bounded on  ]0,[ r , 

[ , 0]
{ :[ , ] : ([ ,0])T

r r
S r T R L r  


     and ])},,0([

],0[
TAC

T
  

and ]),0([ TAC  is the space of absolutely continuous functions on ],0[ T .  In 
T

rS  we consider the 

supremum norm 

)(sup
],[

t
Trt





 . 

We shall consider the following boundary value problem 

     

'( , ) ( , , , ) ( , , , ) , . . [0, ],

( , ) ( , ) [ , 0],

t tp t u t p p v t p p for a e t I T

p B p for all r

  

     

   

   
                                           (P) 

subject to the following assumptions on the functions , : T

ru v I R S R    and 

: ([ ,0])T

rB S L r  . 

 (F)    (f1)   For all ( , ) T

ru R S    , ( , ) T

rv R S   the function (., , , )u p   , (., , , )v p    are  

 measurables on I . 

            (f2)   For a.e. It  and all ( , ) T

ru R S    , ( , ) T

rv R S    we have 

lim sup ( , , , ) ( , , , ) lim inf ( , , , )
q p q p

u t q u t p u t q     
  

  , 

lim sup ( , , , ) ( , , , ) lim inf ( , , , )
q p q p

v t q v t p v t q     
  

  . 
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(f3)   For a.e. It  and all ,u v R  the function ( , ,., )u t p  , ( , ,., )v t p   are   

 nondecreasing on 
T

rS . 

(f4)   For all 0R  there exists )(1 ILR    such that for a.e. It  and for all 

( , ) T

rp R S with p R and R 


     we have 

( , , , ( , )Ru t p t     

( , , , ( , )Rv t p t    . 

(B)        : ([ ,0])T

rB S L r  is nondecreasing. 

 The aim of this paper is to prove a general existence result for problem     under conditions     and 

    assuming the existence of lower and upper solutions. The proof of such a result is based upon an existence 

result for the Cauchy problem for ordinary differential equations and the generalized iterative techniques from 

     .  

Finally, several types of periodic conditions can be included in the formulation of problem    . For 

instance, the functional periodic condition (1.7) corresponds with 
T

rSfor   TB  . 

The ordinary periodic conditions (0, ) ( , ) ( , ), t [-r, 0],p p T p t        

correspond with B ( , ) ( , ) [ , 0].T for all r          

2. Initial Value Problem 

Let 0T  be fixed and consider the initial value problem 

       
'( , ) ( , ( , ), ) ( , ( , ), ) . . [0, ], (0, )p t u t p t v t p t for a e t I T p a                                 (2.1) 

The following result is Theorem     in    , and we include it here for the convenience of the reader. 

Theorem 2.1. Assume that :u I R R   satisfies the following conditions: 

1. for all p R  the function (., )u p  is measurable on I , 

2. for a.e. It  and all p , we have 

lim sup ( , ) ( , ) lim ( , )
p q p q

u t q u t p u t q
  

   

      3. there exists )(1 IL  such that for a.e. t I and all p R   

( , ) ( )u t p t . 
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Then the initial value problem (2.1) has extremal solutions for every a R . 

This last theorem can be extended by using lower and upper solutions. 

Definition 2.3. We say that   is a lower random solution of (2.1) if  ),(IAC  

'( , ) ( ) ( , ( , ), ) . . (0, ) .t u v p t t for a e t I and a           

An upper solution 
 
is defined analogously reversing the inequalities. 

 Let   and   be lower and upper solutions of (2.1) and   . We say that a solution of (2.1), mx , 

is the maximal solution of (2.1) in  ],[


  if ],[ mx  and xxm   for every solution x  of (2.1) in 

],[  . In an analogous way we define the concept of minimal solution in ],[  and when the minimal and 

maximal solutions in ],[   exist, we call them extremal solutions in ],[  .  

Theorem 2.4. Assume that :u I R R   satisfies the following conditions: 

1.  for all p R  the function (., )u p  is measurable on I ; 

2.  for a.e. It  and all p , we have 

lim sup( )( , ) ( )( , ) lim inf( )( , )
q p q p

u v t q u v t p u v t q
  

      

3.  for every 0S   there exists )(1 ILR   such that for a.e. It  and all p R  with  P S  we 

have 

( )( , ) ( )Ru v t p t   

If   and   are, respectively, a lower and an upper solution of problem (2.1) and   , then the problem (2.1) 

has extremal solutions in  ],[  . 

3. Bondary Value Problem 

Main Result 

To prove our main result, we need the following lemma, which is Theorem       in    . 

Lemma 3.1. Let Y  be a subset of an ordered metric space ],[, baX  a nonempty interval in Y  and 

],[],[: babaG    a nondecreasing mapping. 

If { }nG p  converges in Y  whenever [ , ]np a b  is a monotone sequence, then G  has a minimal 

fixed point [ , ]p a b  and a maximal one [ , ]p a b .  
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Moreover, these extremal fixed points satisfy the relations 

min{ [ , ]: }p p a b G p p     and max{ [ , ]: }p p a b G p p    . 

Now, to make a proper use of this lemma, we give some preliminaries about the space 
T

rS  defined in 

Section    We can define a partial ordering on 
T

rS  as follows: 

for 
T

rS21,  we write 21    if and only if )()( 21 tt    for all ].,[ Trt   If 
T

rS21,  and 

21   , we define the functional interval 

}:{],[ 2121   T

rS
.
 

It is easy to see that the intervals }:{)[ 11   T

rS  and }:{]( 11   T

rS  

are closed in 
T

rS , considering the supremum norm. Therefore ).,(


T

rS  is an ordered metric space (see [7]). 

Next we introduce the concepts of lower and upper random solution for problem    . 

Definition    . We say that :[ , ]r T R    is a lower random solution of     if 
T

rS  and 

'( , ) ( , ( , ), , ) . . [0, ],

( , ) ( , ) [ , 0].

t f t t for a e t T

B for all r

     

      

 

  
 

Analogously, we say that :[ , ]r T R    is an upper solution of     if 
T

rS  and 

'( , ) ( , ( , ), , ) . . [0, ],

( , ) ( , ) [ ,0].

t f t t for a e t T

B for all r

     

      

 

  
 

Finally, we say that p is a random solution of     if it is both a lower and an upper random solutions. 

The following theorem is our main result. 

Theorem 3.3. Assume that conditions )(F  and )(B are satisfied. 

If there exist   and  , lower and upper random solutions of )(P , and   , then )(P  has 

extremal random solutions in ],[  .  

Proof. We shall only prove the existence of a minimal random solution, since the arguments to show that there 

is a maximal one are analogous. 

By condition (f4) there exists )(1 IL  such that for a.e. ,It all [ ( , ), ( , )]p t t     

and all ],[    we have 
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     ( )( , , , ) ( , ) .u v t p t                                                                                          (3.1) 

Let us consider the mapping ],[],[:  G , where for a given ],[    the function ],[  G  

is defined as follows: 

Definition of G  on ]0,[ r . We define 

                                                           
( , )G B     for all  ]0,[ r                                      (3.2) 

Notice that   BBB  on ]0,[ r  and thus  G  on ]0,[ r . 

Definition of G  on ],0[ T . By condition (f3), and since (0, ) (0, ) (0, )G       , the restrictions 

1  and 
1  are, respectively, a lower and an upper random solution (in the sense of Definition     ) of the initial 

value problem 

  
'( , ) ( )( , ( , ), , )p t u v t p t      for a.e. , (0, ) (0, )t I x B    .                                    (3.3) 

Hence we can apply Theorem     to ensure that (3.3) has extremal random solutions between 1  and 1 .  

We define G  on ],0[ T  as the minimal random solution of       between 1  and 1 .  

Since ])0,([
]0,[

rLG
r

 


  and )(IACG

I
 , then 

T

rSG  . Moreover, 

 G  on ],[ Tr  and, hence, ],[  G . 

Claim 1. G  is nondecreasing.  Let ],[, 21    be such that 21   . Since B  is nondecreasing, for 

all ]0,[ r  we have that 

1 1 2 2( , ) ( , ) ( , ) ( , )G B B G               

In particular, we have that 1 2(0, ) (0, )B B    .  

On the other hand, by the definition of G  and the condition (f3), for a.e. It  we have that 

2 2 2 2 1( ) '( , ) ( )( , ( , ), , ) ( )( , ( , ), , )G t u v t G t u v t G t              

which implies that 
2 I

G  is an upper solution (in the sense of Definition 2.3) of (3.3) with 1  . Moreover, 

 2G  on I  and 1  is a lower solution of (3.3) with 1  . Thus, by Theorem 4.2 , the problem )3.3(  

with 1   has solutions between 1  and 
I

G
2
 . Finally, since 

I
G

1
  is the minimal random solution of that 

problem between 1  and 1 , we conclude that 21  GG   on I . 
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Claim 2. }{ nG  converges in 
T

rS  whenever ],[}{  n  is a monotone sequence.  

Let ],[}{  n  be a monotone sequence. Since   is nondecreasing and maps ],[   into itself, then 

}{ nG  is monotone and bounded. Hence we can define 

( , ) lim ( , )n
n

q t G t  


  for all  ].,[ Trt   

Obviously, q    on ],[ Tr . Let us prove that 
T

rq S .  

First, 
[ ,0]r

q


 is measurable on ]0,[ r  because it is a point wise limit of measurable functions on 

]0,[ r  Thus 
[ ,0]

([ ,0])
r

q L r


  . 

On the other hand, by (3.1) and the definition of nG , for all n and all 

],0[, Tst  we have 

| ( , ) ( , ) | ( , )

t

n n

s

G t G s r dr         

which implies that for all ],0[, Tst   we have 

| ( , ) ( , ) | ( , )

t

s

q t q s r dr       

Therefore
| ( )Iq AC I and, thus, 

T

rq S . 

 By Lemma 3.1 G has a minimal fixed point * [ , ]p Y   which satisfies 

      * min { [ , ] : }.p Y G                                                                                       (3.4) 

It is easy to verify that the fixed points of G, and in particular *p  are solutions of (P) 

Claim 3. *p is the minimal solution of (P) in ],[    Assume that [ , ]    is a solution of (P). Since   is a 

solution of (P), we have that ( , ) ( , ) ( , )B G            for all ].0,[ r  Moreover,   is a 

solution between II || and   of the initial value problem (3.3) with  , hence ( , ) ( , )t G t     for 

all It , because |IG is the minimal solution of that problem between 1 1and  . Therefore we conclude 

that G   on ],[ Tr  which, together with (3.4), implies that * on [ , ]p r T  . 
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