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Abstract 

In the current paper we discussed some applications of fixed-point theorem especially 

convexity structure of fixed-point theorem along with pinot’s formation there are some 

conditions on which    the convexity structure was developed through the Kirks 

theorem   which depends on metric space of fixed-point theorem and also showing 

some type of compactness and the characteristics of normal space we focused on some 

theorem in which we saw that how fixed point follows the property of convexity and 

how  it became normal and compact   studied the property of expansive mapping has 

fixed point   

Hence various steps in unmetrical analysis and its theory of approximations which is in 

successive form of fixed-point theorem and it mapping in this paper We give a proper 

frame work to the concept of convex of metric space through the way of convexity 

structure by using this application we develop new dimension in metric space. 

Keywords - Convexity structure, metric space, existence, numerical analysis 

 

Introduction 

In the field of Advanced mathematics fixed point theory is considered as important and 

powerful and also trustful Resource and also it is supposed that an important part of 

nonlinear analysis in some last decades it was seen that many researchers studied on 

this topic and till research in increasingly going on. This theory was originated in 19
th

 

century and some part is developed later. Which include solutions of uniqueness and its 

existence, differential equation. This theory was also associate with different 

mathematician like Liouville, Peano, Cauchy and many others it is considered that for 

the development of formulation of branch space fined point theory play an important 

role but one limitation of this theory was that it unable to give some information about 

Felix Browder’s assumptions. Which was used for the improvement of functional 

analysis of non-linear form. Which is an important & huge part of mathematics. 

 If we think wider form of a fixed-point theorem. We can make a statement 

which shows that mapping S of a space y into a space X enters some more forms of y 

including y such that sy = y there is a multiple of fined point theorem. Which is useful 

you the mapping and also for giving the prof in specific types of sequences and 

conditions among all these conditions some outcomes are considered as a iterates of 

sequences which forms because of some contradictory conditions. Which later become 

Cauchy sequence and having the limit function of fixed point with its mapping if we 

studied the common fixed-point theorem a combined sequence of recreation is fixed for 

this work. 
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In the field of abstract space which may include convex space, metric 

space and also its applications which is Usefully for the solutions of operator 

equation of nonlinear form. Which contain partial differential equation, ordinary 

differential equation functional differential equation, integral equation fractional 

differential equation the solution of above all equation is generally illustrated in 

the space of specific function the in case of complex situations because of 

availability of different choices of application of fixed-point theorem and the 

use of specific properties having space function shows the major impact on it. 

The theory of fixed point is also called as integrative theory which is useful for 

the discernment and used for solution of complex problem now in current days 

there is modernization in fixed point and also in the theory of fixed point 

 In the current paper we discussed convexity structure of fixed-point theorem. 

Which depends on the kirk’s theorem based on the metric space of fixed-point theorem 

here we also discussed some theorem regarding to this topic.  

The Structures of Convexity  

 The convexity structure was developed through the Kirks theorem whose 

abstract formulation was done by Penot in 1977. The function S is called convexity 

structure when it is an abstract set and having the family of summation () of subject of 

S and when it follows the following condition. 

i) The empty set  which belongs to summation.  

ii) When S belongs to Summation. 

iii) and summation should be closed in case of arbitrary intersection.  

 Let we consider S be a any subset which is convex and which have the element 

of summation if we consider S is metric space, then we will always consider that closed 

balls are convex. Let we assume that  (s) be closed ball having the smallest convexity 

structure. 

 A (s) is the family which accepts the subset of S if we recollect that P is an 

acceptable subset of s only. When it will an intersection of closed ball here, we assume 

this because of theorem of Kirk’s which contain some types of compactness and the 

characteristics of normal structure. It was not new that the generalized attempts can be 

explain by these two concepts in the form of metric space according to Takahashi in his 

work studied a very restrictive compact metric spaces and as per pe not conversely 

explain the term compactness for the structure of convexity. Which was responsible for 

less compactness in linear form or we can say like weak compactness so here we can 

say that a convexity structure  is compact when every family of subject of  having 

the characteristics of finite intersection properties. Which should be non-empty 

intersection we can write it as 

 (Aj) j €  with   Aj € () then  

 

             ∩ j  Aj ≠   

  

Provided         ∩ j    A j ≠  for Bf which is finite subset 

finite subset of B because as per the normal structure property is a nothing but metric 

space. That’s why it is not showing any complexity for the structure of conversely 
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Practically. We can say that the  conversely structure is normal only when there is 

non-empty and bounded set A  which is not reduced to single point then theorist aA 

such that  

sup {d (a, l) : l €A} < sup {d (l , m): l. m €A} = diam (A)  

Which becomes a pinot’s formulations 

1) Theorem 

Let (S. P) is bounded metric space which is non empty and showing the 

structure of convexity which becomes normal and compact then only every no 

expansive mapping T: S – S has a fixed point. 

 According to Kirk’s theorem a function whose all family of convex set is said to 

be normal and a normal structure are called as branch space. But there their family 

should be large and it includes some sets. Which is admissible let we take example, 

consider X

 is branch space. Which showing the power of pinots formulation While X


 

not successes to have the properties  

of the normal structure but A (X

) is become normal and compact which denotes that if 

A be subset of X

 which is nonempty and admissible then only every non expansive 

napping T: A – A snowing fixed point. Which was evaluated by sine and sordid.  

 

2) Theorem  

 Let S be admissible subject which is nonempty of X

 then every non expansive 

mapping T: S – S has fixed point. 

 As we know that according to kirk’s theorem for the proof of minimal invariant 

set through lemma of Zorn’s we used weak compactness for the countable compactness 

we got some results from the study of Gillespie and Williams by giving some 

constructive proof so in other word we can say that the convexity structure  is 

consider to satisfy a countable intersection property means for any (Am)1<m with Am € 

 then 

                      ⸦ M = 1     Am ≠  
Provided that       
            M = 1     for many n>1 this weakening is very significant in many 

feasible conditions by using topology we can’t define compactness but it can define 

sequentially if the convexity structure  is countably compact then only it is uniformly 

normal this results we got in branch spaces. 

 Which is called as metric translation and it was given by Maluta. When we are 

dealing with the normal structure which is uniform at that time, we got positive answer 

for that is we can say that convexity structure is countably compactor a basically 

compact if A (s) is countably compact and showing its normal ness then only A (s) is 

compact.  
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through the way of convexity structure by using this application we develop new 

dimension in metric space. 

 3) Theorem -Let (S, d) be a complete metric space, f :X → S continuous function and 

(φi) sequence of continuous functions such that φ i: [0, ∞) → [0, ∞) and for each p, q ∈ 

S, d (f 
i
 (p), f 

i
 (q)) ≤ φi (d (p, q,)). Assume also that there exists function: [0, ∞) → [0, 

∞) such that for any r > 0, φ(r) < r, φ (0) = 0 and φi → φ uniformly on the range of d. If 

there exists p ∈ S such that orbit f at p is bounded then f has a unique fixed-point q ∈ S 

and all sequences of by f converge to q. 

Proof. From the statement of the theorem, it follows that φ is continuous, because the 

sequence  

(φi) is uniformly convergent. For any x,y ∈ X, x ≠ y, we have 

lim d (f 
n
 (x), f 

n
 (y)) ≤ lim φ n d (x, y) =   φ d (x, y) < d (x, y)1533   

If there exist x, y ∈ X and ε > 0 such that lim d (f 
n
(x), f 

n
(y)) = ε then there exists k such 

that 

   Φ (d (f k(x), f k(y))) < ε, because φ is continuous, and φ (ε) < ε. This implies that 

   lim d (f 
n
(x), f 

n
(y) = lim d (f 

n
 (f 

k
 (x)), f 

n
 ≤ (f 

k 
y))) ≤ lim   φ n (d (f 

k
(x), f 

k 
(y)) 

                                    = φ (d (f 
k
 (x), f 

k 
(y)) < ε1533  

which is a contradiction. So, we obtain that 

 lim d (f 
n
(x), f 

n
(y)) = 0, 

for any p, q ∈ X, which implies that all sequences defined by f, are equi-convergent and 

bounded 

      Now let a ∈ S be arbitrary, (an) be a sequence of at point a, Y = (an) and F n = {p ∈ 

Y: d (p, f 
k
(p)) ≤ 1/n, k = 1,.,n}. Y is bounded because (an) is bounded. From above it is 

following that F n is nonempty and since f is continuous F n is closed, for any n. Also, 

we have Fn+1 ⊆ Fn. Let (p n) and (q n) be arbitrary sequences, such that p n, q n∈ Fn. Let 

(nj) be a sequence of integers, such that 

 Lim d (p n j, q n j) = lim d (p n , q n). 

 Now we have 

Lim d (p n j, q n j) ≤ lim (d p n j, f 
n
 j (p n j) + d (f 

n
 j (p n j), f 

n 
j (q n j) + (d (q n j, f 

n
 j (q n j) 

= lim φ n j d (p n j, q n j) = φ lim d (p n j, q n j),1533 

and so lim d (p n j, q n j) = φ (lim d (p n j, q n j)) which implies that lim d (p n j, q n j) = 0, 

because Y is bounded. Thus lim d (p n   , q n) = 0 and  so lim d (p n , q n ) = 0. This 

implies that lim diam F n = 0. By completeness of Y follows that there exists z ∈ S such 

that ⋂     
    {z}. Since d (z, f (z)) ≤1/n for any n, we have f (z) = z. From (1) follows 

that all sequences of defined by f converge to z. 

4)Theorem: 

 Let P be the Banach space having self-mapping A, B & C of P following. 

|| By – Cx ||   max { || Ay – Ax ||, ||Ay-By||, ||Ay – Cy ||, || Ax – Cx ||, ||Ax – Cy ||} 

 for   x, y  y &  ,  > 0, 1>  

Let ℈  x0 € y such that the sequence {Ayn} can be defined as followed.  

1) Ay n+1 = (1 – kn) Ayn + Kn
 
Byn, n>0 

2) Ayn+1 = (1 – kn) Ayn + knCyn  n>o 

Proof  -let the sequence {Ayn} can be defend as above then  

|| Aq – Bq ||  || Aq – Ayn+1 || + ||Ayn+1 -Bq || 
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          ||Aq – Gyn+1 || + (1 - kn) ||Ayn – Bq|| + kn || Cyn – Bq || 

          ||Aq – Ayn+1|| (1 – kn) || Ayn+1 – Cq ||+ Kn  max{   ||Ayn – Aq||,  

                        ||Ayn – Cyn||, ||Aq – Bq||, ||Ayn - Bq||, ||A q- Byn||}  

It was noted that Ayn  q which stated the convergence of Cyn – q 

Now if we take n   , then  

 || Aq – Bq||   (1 – f + f) ||Aq – Bq||.  

Hence Aq = Bq, so we can say that Bq is the common fixed point of A and B 

 Similarly, we can find Bq = Cq, so we get Bq is common fixed point of A and B  

  Aq = Bq = Cq 

By doing same procedure of A at q we obtain Ayn = A
2
 yn    Aq and hence Aq = q as 

for every Banach space is Hausdorff therefore q is common fixed point of A, B and C. 

 

Conclusion  

In the current research paper, we focus on one of the applications of fixed-point 

theorem that is also called as the convexity structure which is related to metric space of 

fixed-point theorem in our study it was seen that the convexity structure is based on 

kirik’s theorem which was nothing but one significant form of fixed-point theorem it is 

useful for showing the compactness of the normal space in the field of linear analysis 

here we also discussed some theorem related to it. 
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