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This paper introduced a new class of harmonic univalent function defined by an integral 

operator. Additionally study investigates some properties of this subclass such as essential as 

well as adequate coefficient bounds, extreme points, distortion bounds and hadamard product. 
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1.1. INTRODUCTION: 

Harmonic functions are famous for their use in the revision of minimal surfaces as well as also 

play vital roles in a variety of problems during applied mathematics. Harmonic functions have 

been studied in many areas such as differential geometers [5-9]; mathematical finance [10-

14].Silverman [10] provided sufficient coefficient condition for normalized harmonic functions 

to map onto either starlike otherwise convex regions. These conditions be in addition shown to 

be necessary when the coefficients are negative. Ahuja [1] investigated harmonic analogs and 

formed certain harmonic functions which preserve close-to-convexity below convolution. Ahuja 

[13] determined representation theorems, distortion bounds, convolutions, convex combinations, 

as well as neighbourhoods for harmonic functions. Yalçin [14] defined and investigated a new 

division of harmonic univalent functions as well as obtained coefficient conditions, extreme 

points, distortion bounds, convex harmonic univalent functions Ang et al. [18] consequent 

several sufficient conditions of the linear combinations of harmonic univalent mappings to be 

univalent and convex in the direction of the real axis. Li and Ponnusamy [16] investigated the 

subject of disk of convexity of sections of univalent harmonic functions. Ho [17] established the 

mapping properties of integral operators on space of bounded signify oscillation and Campanato 

spaces. Berra et al. [18] provided the mapping properties of some integral operators on space of 

bounded. Li et al. [15] provided approximation of functions by linear integral operators on 

variable exponent spaces associated with a general exponent function on a domain of a Euclidean 
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space.a subclass of harmonic univalent functions involving of complex-value functions and 

investigate some properties of this subclass. 
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convexity of order α 

3. M. Darus, S. Hussain, M. Raza and J. Sokol, On a subclass of starlike functions, 

4. H. Aldweby and M. Darus, On Harmonic Meromorphic Functions Associated with Basic 

Hypergeometric Functions,  

5. R. M. El-Ashwah, M. K. Aouf, A. A. Hassan and A. H. Hassan, Certain new classes of 

analytic functions with varying arguments,  

6. E. A. Elrifai, H. E. Darwish and A. R. Ahmed, On certain subclasses of meromorphic 

functions associated with certain differential operators.  

7. Aqueel ketab al-khafayi waggas galib atshan : some properties of  a class of harmonic 

multivalent functions defined by an integral operator . 

2.1 PRELIMINARIES: 

 Here, we tend to investigate some important concepts of Harmonic Functions .we start with 

introducing the following important concepts that are used throughout the paper. Hence, let H 

denote the class of functions which are complex-valued, harmonic, univalent, sense-preserving in 

∆ = {𝑧 ∈ 𝐶 ∶ |𝑧| < 1} normalized by 

𝑓(0) = ℎ(0) = 𝑓𝑧(0) − 1 = 0.  

Definition 2.1: Each 𝑓 ∈ 𝐻 can be expressed as 𝑓 = ℎ + 𝑔 ∈ 𝐻, where h and g are analytic in ∆. 

Therefore if 𝑓 ∈ 𝐻, then  

h(z) =   +      g(z) =    |bp| < 1.                    (1) 

are the analytic and co-analytic part of 𝑓 respectively.  

With respect to the definition 1, we assume that 𝐻λ,k be the subfamily of H consisting harmonic 

functions 𝑓 = ℎ + 𝑔 where  we define new operator I
n
f as  

f(z) = h(z) +   p > n . Z ∈ U.                    (2) 
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 In this case, if co-analytic part of 𝑓 = ℎ + 𝑔 is identically zero, then H reduces to the class of S 

of normalized analytic univalent functions.  

For 0 < 𝜆 ≤ 1, 0 ≤ 𝛽, 𝑟 < 1, 𝑘 ∈ 𝑁0 = 𝑁 ∪ {0}, 0 ≤ 𝑡 ≤ 1,𝛼, 𝜃 ∈ 𝑅, we have the following useful 

definition.(2) gives  

 Definition 2.2: The class 𝛼, 𝛽,𝑡) is a set of all functions f ∈ H satisfying the relation 

Re{  } +     (3) 

Let the subclass Hλ,k(n+1,n,α,β) consisting of functions f = h + g ∈ H and (3) holds true. The 

function  =h +  in Hλ,k(n,α,β) so that  h  and g are of the form  

h(z) =   -      (z) =    |bp| < 1.                     

3 Main Results:  

In the current subdivision, we examine to obtain coefficient bounds for functions in the 

subclasses Hλ,k(n+1,n,α,β,) and (n+1,n,α,β,). These properties consist of essential as well 

as enough coefficient bounds, extreme points, distortion bounds and Hadamard product. The 

subsequent theorem reveals an central property for a function to be harmonic univalent.  

Theorem 3.1: 

 Let f = h + g ∈  and also given by (1) . If  

 + ≤ 2, (4) 

Where     Ψ(n + 1, n, p, α, β) = . 

                       . 

, n  then f∈ (n + 1, n, p, α, β) 

 Proof: According to (2) and (3) we only need to show that 

Re( )  
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The case r=0 is obvious . for 0  it follow that  

Re( )  

Re{    

+  -  

 

= Re{    

+  -  

 

 =Re  

Where  

For z = r  we have  

A(r   =  

+   -   D(n+1,n,p, = 

 

B(r   =  
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+  

Setting  

 The proof will be complete if we can show that  

  this is the case since , by the condition (4)(we can write)  

    

 

 

Where =  

 The harmonic univalent function  

f(z)= +   +      (5) 

 where n belong to , 0  

  +    =1  

 Show that the coefficient bound given by (4) is sharp  

 The function of the form (6) are   

  [ + ] =  

1+   +    =2 

 In the following theorem it is show that the condition (5) is also necessary for the function  = 

ℎ +   where h and  are of the form (4).  
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Theorem 3.2: Let  = ℎ + and also be given by (4). It hence   

if and only if  

 + ≤ 2, (6) 

, n  then f∈ (n + 1, n, p, α, β) 

Proof: since  H  λ ,k  (n+1,n,p,α,β) ⊂ (n + 1, n, p, α, β) we only need to prove the only if part 

of the theorem for function  

Re { }  +  

Re{    

+  -  

    (7) 

Where  

the above required condition (8) must hold for all values of z ∈ U. Upon choosing the values of z 

on the positive real axis where 0 ≤ z = r < 1, we must have    

    (8) 

  

If the condition (7) does not hold, then the expression in (8) is negative for r sufficiently close to 

1.This contradicts the required condition for fn ∈ H λ ,k  (n+1,n,p,α,β). And so the proof is 

complete.  

The following theorem gives the distortion bounds for functions in H λ ,k  (n+1,n,p,α,β) which 

yields a covering results for this class. 

Theorem 3.3 Let  ϵ H  λ ,k  (n+1,n,p,α,β) then for  = r  we have  
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 +  

 +  

 Where  (n + 1, n, p, α, β) =.  

                       . 

Proof: We prove the right side inequality for |fn|. The proof for the left hand inequality can be 

done using similar arguments. Let fn ∈  (n + 1, n, α, β) Taking the absolute value of fn then by 

Theorem 2.2, we can obtain 

 ≤ 

 

=  

 

(   +  (n + 1, n, p, α, β)  (  

(   +  (n + 1, n, p, α, β)  

(   +  (n + 1, n, p, α, β)  

Corollary 3.4: Let   (n + 1, n, α, β) then for  = r  we have  

 

For β = 0 we obtain the results given in [4]. For β = 0, p = 1 and using the differential S˘al˘agean 

operator we obtain the results given [7]. The beautiful results, for harmonic functions, was 

obtained by P. T. Mocanu in [8]. 
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4. Conclusion: 

1. In this paper we carried out a new version of subclass of harmonic univalent functions 

that are useful in mathematical finance. Further, we investigated some properties of the 

proposed subclass such as necessary and sufficient bounds, extreme points, distortion 

bounds and hadamard product, salagean integral operator. 

2. Certain new subclasses of meromorphic functions. We aim to study some important 

properties such as coefficient estimates, growth rate.  

3. Fixed Coefficient Results for the subfamily of consisting of functions for which is fixed. 

It is easy to see that is a compact and convex family for which the extreme points. 
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